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SUMMARY

In this paper, we employ the concept of the
adjoint network simulation in the context of Tellegen's
theorem to describe a new technique for solving the
power flow equations and automatically supplying power
network sensitivities.

The load flow problem comprises the solution of a
set of nonlinear equations in the form

f(x) = u, (@D)
where x denotes a vector of dependent variables (system
states) and u represents appropriate independent
(control) variables. In a gradient-type iteration
mEthod, the form (1) is perturbed about a nominal point
x~ at iteration k in the form

B¥ ax¥ = sk, (2)
where K %

K H" N

Rm= |~ (3)

~ Jk Lk
is the Jacobian matrix of the Newton-Raphson method
evaluated at iteration k, ka = xk+1 - xk. ng =

k
E(scheduled) -u is a mismatch vector and § denotes

first-order change.

The adjoint network simulation in the context of
Tellegen's theorem exploits the fact that (1)
represents electrical network equations rather than
general equality constraints. In the sensitivity
approach based on Tellegen's theorem, employing the
exact steady-state power model, the sensitivities of
properly defined network state variables with respect
to network control variables, at a base-case point, are
supplied via one adjoint simulation and repeat forward
and backward substitutions. This adjoint network
simulation involves the formulation of a set of linear
equations in the form

k "k _ "k

PR S
where i denotes different state variables, uk is a
simple vector having at most two non-zero elemefits and

Hk Nk

~T ~T
k
R = (5)
~T Jk Lk

~T ~T

is an adjoint matrix of coefficients. Once equations

(4) are solved for the adjoint variables 9:. at

iteration k, the sensitivities of the ith state
variable w.r.t. all the defined control variables can
be directly evaluated ag linear functions of the
corresponding elements of 9. .

Now, if we define the network states to be the

elements of §k of (2) and the network control variables

to be the vector uk, then the sensitivities we obtain
from the adjoint neétwork simulation are essentially the

elements of the matrix (l}k)'1 of (2).
equations (2) are readily solved.

Thence,

L8S 4LT

From the above description of the adjoint method,
it is evident that we have replaced the formulation and
solution of (2) in the Newton-Raphson method by the
adjoint formulation and solution of (U4). This
replacement offers the following far-reaching
consequences.

1. The adjoint matrix of coefficients Rk of (5),
although of the, same size and sparsity as the
Jacobian matrix R~ of (3), is much simpler, mostly
constant, comprising mainly 1line susceptances and
conductances, applicable to both the rectangular and
the polar formulations of the power flow equations,
totally free, however, from trigonometric function
evaluations and, above all, it permits approximate
(and decoupled) versions in both modes of formula-

‘tion by approximating few elements of RE'(and
discarding the matrices !ﬁ and gf).

2. The exact version of the method proposed enjoys the
same rate of convergence as the Newton-Raphson
method. The change from an approximate version with
strictly constant matrix of coefficients to the
exact one and vice versa, during the solution
procedure, is accomplished by kaltering only the
voltage-dependent elements of R, These elements

represent a relatively small portion of the matrix

(mainly the diagonal elements of the matrices @ﬁ.
Nk. g and Lk).
~T ~T ~T

3. Our method ‘automatically supplies the sensitivities
of all the dependent variables at the load flow
solution without any additional adjoint simulation.

The paper includes the numerical results of
applying the exact version of the method and one of its
approximate versions to a 6-bus system as well as a
26-bus system (Saskatchewan Power Corporation). The
following table summarizes the results of the exact
(method I) and the approximate (method II) versions.
In the approximate version, a few iterations (3 for the
6-bus system and 2 fdr the 26-bus system) of the
decoupled version are performed and then the exact
version is applied, via updating the voltage-dependent
elements of the matrix of coefficients, to improve
convergence wW.r.t. nonsaturated bus voltages. In the
table below we list Max{|sP|, |8Q|}, all values are in
per unit and k denotes iteration number. Starting flat
voltage profile is used.

6-Bus System 26-Bus System

K I II 1 11

1 0.554 1,208 0.837 0.881

2 0.295x107" 0.171  0.389x10"" 0.558

3 0.166x107>  0.26x10"'  0.106x1073  0.490x10™2
4 0.663x1078  0.226x1073 0.106x1078  o0.487x10~>
5  0.171x107 2 0.143x1077 0.13ux10""" 0.825x10"""
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Abstract - We employ an adjoint network concept
based on an augmented form of Tellegen's theorem to
describe a novel method for solving the load flow
problem. The method incorporates successive adjoint
network simulations with a sparse, mostly constant
matrix of coefficients, the majority of its elements
representing basic data of the problem already stored
in computer memory. Nevertheless, the exact version of
the method enjoys the same rate of convergence as the
Newton-Raphson method. Moreover, it automatically
supplies the sensitivities of all system states with
respect to adjustable variables at the load flow
solution without any additional adjoint simulation. An
approximate version of the method is also presented.
It partly employs very fast repeat forward and backward
substitutions with constant LU factors of a reduced
matrix of coefficients and is applicable to both the
rectangular and the polar formulations of the power
flow equations. Numerical examples are presented for
illustration and comparison.

INTRODUCTION

The load flow problem [1], being solved in a wide

" variety of power system analysis and planning studies,

is tackled in this paper in a new and different way.

We employ the concept of the adjoint network simulation

in the context of Tellegen's theorem [2] to describe a
technique for solving the power flow equations.

We devote the first few sections to describing the
novel method and to illustrating its analytical
features in comparison with the Newton-Raphson method
[31. We then illustrate the implementation of the
exact, approximate and decoupled versions of the
method.

This paper aims mainly at introducing the new
method and illustrating its analytical and general
computational aspects. The results of two (6-bus and
26-bus) test power systems are presented which, we
feel, amply serve the purpose of the paper.

PRINCIPAL NOTATION

n number of buses, also index of the slack bus
ng number of branches in the network

n number of P, Q-type (load) buses

ng number of P, V-type (generator) buses

L =1, 2, coey n denotes a load bus

g = nL+1, eee Dp¥NG denotes a generator bus

t = n+l, ..., ng denotes transmission elemenfs

m = %, g or n, denotes bus number
szPm+JQm complex powgr at bus m

SM vector of bus powers

Vm=|Vm|(e complex voltage of bus m

Im current in branch m
VM vector of bus voltages
XT bus admittance matrix
f real vector of dependent variables
u real vector of independent variables
j denotes /=1
iteration count
[ denotes first-order change
* denotes the complex conjugate

distinguishes adjoint network variables
identifies vectors and matrices
BACKGROUND

The load flow problem comprises the solution of a
set of nonlinear equations of the form

* *

Ey T Yy = Sue m
where Ey is a diagonal matrix of elements of V, in a
corresponding order. The set of equations ?W) are

normally solved in either the rectangular or the polar
forms. When rearranging (1) for the unknown variables,
in the appropriate mode of formulation, the resulting
set of real equations is,written in the general form

f(x) = u. (2)
The order of (2) is 2n-2 for the rectangular form and
2n—nG—2 for the polar form.

In a gradient-type iterative mgghod, the form (2)
is perturbed about a nominal point x at iteration k as

RK sxk = 5uk, (3)
where " K

ko |20 X )

RO = [~ =

- gk Lk

is the Jacobian matrix evaluated at iteration k, Gfk =

k+1 K Kk _ k .
XX and su = E(scheduled)_g is a mismatch vector.

The Newton-Raphson Method

In the Newton-Raphson method of solving the power
flow equations (NRM), the set of linear equations (3)
is solved at each iteration for the perturbed
variables



sxK = (R%)7T suk.

(5)

The computational burden per iteration consists mainly
of evaluating the elements of the Jacobian matrix R,
calculating its LU factors and performing the
subsequent fo&yard and backward substitutions. The
elements of R are voltage-dependent and have to be
updated and stored at each iteration. In the polar
formulatioq( this &ask is reduced by discarding the
matrices N* and J° of (4), in the Newton's decoupled
load flow [4] and eliminated in the fast decoupled loa

flow [5] by further approximations to the matrices g
and L™ of (4). This is done at the cost of the rate of
convergence.

The Tellegen's Theorem Method

The adjoint network simulation in the context of
Tellegen's theorem exploits the fact that (2) repre-
sents electrical network equations rather than general
equality constraints. In the sensitivity approach based
on Tellegen's theorem [6,7] employing the exact a.c.
power model, the sensitivities of properly defined
network state (dependent) variables with respect to
network control (independent) variables at a base-case
point are supplied via one adjoint simulation and
repeat forward and backward substitutions. In the
proposed application of this method to the power flow
solution, we, define the network states to be the
elements of x of (3) and the network control variableﬁ
to be thﬁ vector u-, Hence, the sensitivities of X
w.r.t. u obtained from the adjoint siﬂylﬁtion are
essentially the elements q{ the matrix (R) of (5).
Therefore, the vector 6x of (3) caq{'be directly
calculated knowing the mismatch vector su-,

Now, the adjoint network simulation involves the
formulation of the linear equations

"k _ Tk
T XK = b, Q)
X . k Tk .
where i denotes different elements of x , b, is a
simple vector having at most two non-zero “elements and
T" is an adjoint matrix of coefficients. Equations (6)
are to be solved for the adjoint variables 81 and then
the sensitivities of x? w.r.t. the elements of ug are,
simply, linear functions of the corresponding elements
k
of gi'

From the above description of the adjoint method,
it is evident that we have replaced the formulation and
solution of (3) in the NRM by the adjoint formulation
and solution of (6). Hence both methods, when applied
without approximations, create the same sequence of
iterative solution points. Therefore, they have the
same rate of convergence. The evaluation of the two

methods must be on the basis of the computational eff-
ort and storage requirements involved in (3) and (6).

STRUCTURE OF ADJOINT EQUATIONS

In the following, we summarize the specific
structure of (6). A summary of the main derivation
steps is presented in the Appendix. For more details,
the reader is referred to [6-81].

The system of linear equations (6) has [7] the
general, detailed structure

Gt G (By+y ) -Bg T Ly

Boo  Bag¥e2)  Gar Gggtigy) Yr| | e '
B2 Be Gty S || Veo| |
9 diag{vgz} 9 diag{vg1} QGZ 262

P)

where L and G denote load and generator buses,
respectively, subscripts 1 and 2 denote, respectively,
the real and imagin%;y parts of the quantities Ty, Ig»
Vg. Y o= diag{—Sz/VL} and ¥g = diag{Sg/Vg}. e bus

admittance matrix of the network Y., with the minor
adjustments [8] to include phase—shiaiiﬁg transformers,
has been partitioned in the form

Y .Y
N R B (8)
i Yo Yog

Also, in (T7), Gop * jQGL N diag{Vg} Y, and Gg. + JBgg
= diag{Vg} ! .

The“form (7) is common to both the rectangular and
the polar forms of thg~ power flow equations. The
elements of the vectors I, and IG which constitute the
RHS of (7) are given by Table I.  Observe that each of

Y. =G

=T T

L and z has at most one non-zero component. The
solution of (7) is then substituted to obtain the
sensitivities the dependent variables. The
expression for sxi is given by
k AT k
sxg = =R, su, (9)
where 7 , which constitutes elements of &%)~! of (5,

is givél by Table II.
TABLE I

RHS VECTOR OF THE ADJOINT EQUATIONS

Mode of Dependent Element iz Element 18
Formulation Variable p=m o#m g=m g#m
v -1 0 -V 0
1
Rectangular n g2
sz j 0 Vg1 0
1V | -V, |/v 0 0] 0
L' e
Polar n
em J/VE 0 1 0
TABLE II

SENSITIVITIES w.r.t. INDEPENDENT VARIABLES

+

Independent Corresponding Element
Variable of 7,
R
Pm Re{Ym/V:}
Pg Re{Yg/Ve}
Qz Im{Vt/Vz}
IV, | el vy + VY TV |

FEATURES OF LOAD FLOW ANALYSIS USING TELLEGEN'S THEOREM

The set of linear equations to be solved each
iteration, in the Tellegen's theorem method of solving
the power flow equations (TTM), is of form (7). The
adjoint matrix of coefficieﬂts of (7) is much simpler
than the Jacobian matrix R™ of equations (3) to be
solved each iteration in the NRM. As is clear from
(7), the majority of elements of the adjoint matrix are
line conductances and susceptances representing basic
data of the problem available and already stored in



computer memory. Moreover, they are constants and do
not have to be updated at each iteration. Observe
that, in the case when no voltage-controlled buses are
considered, these constant elements represent all the
off-diagonal elements of the submatrices in (7). On
the other hand, the elements of the Jacobian matrix of
the NRM reflects mainly partial derivatives of bus
powers w.r.t bus voltages. These elements are voltage-
dependent and they have to be recalculated whenever the
bus voltages are altered.

It is to be noticed, however, that several forward
and backward substitutions are required (at least from
the theoretical point of view) in each iteration of the
TTM. In the NRM, only one forward and one backward
substitution is required.

The overall computational effort in any of the two
methods 1is, hence, evaluated based upon the whole
process of updating the matrix of coefficients,
factorizing it and performing the forward and backward
substitutions. From the preliminary experience we
have, we find that the overall computational effort
(not the storage) of each method depends on the network
size and configuration, the mode of formulation and the
number of P,V-type buses considered. The TTM was found
superior for medium networks analyzed in the polar
coordinates with fewer voltage-controlled buses. For
large networks, however, the NRM, in rectangular
coordinates, applied with sparsity utilization is
superior due to the increasing effort of performing the
forward and backward substitutions when applying the
exact version of the TIM. It is to be remarked that
this general statement is valid only when applying the
two methods in an exact way. It is not applicable, for
example, to the case when only some of the variables
(those which do not reach their saturation values) are
to be updated in each iteration of the TTM. It is also
not applicable to the use of decoupled versions of the
two methods as will be illustrated in subsequent
sections.

As stated before, the form of the adjoint matrix
of (7) is common to both the rectangular and the polar
formulations of the power flow equations. Hence, our
formulation eliminates the trigonometric function
evaluations in calculating the voltage-dependent
elements of the matrix of coefficients when the polar
form is used. Observe that the trigonometric functions
are computationally more time-consuming than the simple
operations involved through the use of (7).

The number of equations of (7) is 2n-2. However,
in the polar formulation, the vector T is zero from
Table I. Hence, the set of equations “corresponding to
TGZ can be easily omitted by eliminating the variables
fgo- This will reduce the order of (7) to 2n - n; - 2
Wﬁgle preserving the sparsity structure. Therefore, we
conclude that the adjoint matrix of coefficients has
the same size and sparsity as (but is simpler than) the
Jacobian matrix of the NRM in any mode of formulation.

It is important to remark that, in the proposed
method for solving the power flow equations, the
sensitivities of all the dependent variables (system
states) in the power flow equations w.r.t. bus control
variables are readily available at the load flow
solution without further adjoint simulation. The 2n-2
forward and backward substitutions, which would be
required to obtain these sensitivities by the Lagrange
multiplier approach [9], are already performed in the
TTM and the results are readily available. In
addition, the sensitivities w.r.t. line variables can
be obtained directly by substitution into appropriate
formulas [6,7] similar to those of Table II.

APPLICATIONS

In this section, we illustrate the practical
implementation of the exact version of the TTM for
solving the power flow equations described in the last
two sections.

Algorithm

(i) Set k « 0.
k k 0
(ii) Calculate u = f(x'), X 1is assumed.

(iii) Evaluate those elements of the adjoint matrix Tk
of (7) required to be updated. -

Using the LU factors of Ik, solve the 1linear
equations (6) for different 1i.

(iv)

(v) From the solution of (6), evaluate the vector 7
of (9) using the expressions of Table II. -

(vi) Update the dependent variables using
k+1 _ .k “7 .k
Xg FX -ony Sun
k k
where 8U™ = U o pequied) ~ Y -
(vii) If convergence is attained stop, otherwise set

k « k+1 and go to (ii).

Simple Example

Consider the simple 2-bus example [3] shown in
Fig. 1, which consists of a load (%=1), a slack
generator (n=2) and one transmission 1line (t=3).
Equations (9) have the form

1.8 + Voq 11.0 + Voo V’L1 ) Zz1
-11.0 + vzz 1.8 - Wz1 sz I"2
where ¢£1 + JWLZ = 'Sz/vz and, from Table I,

I“ = =1, 122 = 0 for sensitivities of V , }
’

- >

\
= 0, 1 for sensitivities of V"2

22 °

where the rectangular coordinates have been used, 1 and
2 denoting real and imaginary parts.

21

bus_n(=2) ¥ bus 2(=1)

t=1.8—j11.0pu.

S4=.22+1.08
vp=1.210_

Fig. 1 2-bus sample power system
l

Table III shows the results obtained at successive
iterations. The initial value of V. is 1 + jO. It can
be shown that these results are “identical to those
obtained by applying the NRM. The value of VL at the
solution is 1.2013 - j0.0151.

Applications to Test Power Systems

In this paper we consider two power systems (6-bus
and 26-bus) to illustrate the analytical and general
computational aspects of the method introduced. The
detailed data of the 6-bus system can be found in [7].
For the structure and the line data of the 26-bus
system (Saskatchewan Power Corporation System), the
reader is referred to [10]. Table IV shows the
operating bus data used. The net injected powers are
shown.

Table V shows the principal results obtained by
applying the exact version of the TTM to both power
systems. Polar coordinates with starting flat voltage
profile have been used. All values shown are in per
unit. The computations have been performed on a CYBER
170 computer. As illustrated before, the results of
Table V are identical to those obtained by applying the
NRM.



TABLE III

EXAMPLE OF LOAD FLOW SOLUTION USING

TTM

TABLE V

RESULTS OF EXACT TELLEGEN'S THEOREM METHOD

Iteration Quantity 6-Bus System 26-Bus System
Quantity
1 2 3 y Largest Initial |&P| 2.2824 2.80000
Mismatches | Q| 0.7373 8.9999
-8 -8
st 0.1580 0.1155 0.0044 0.0000 Largest Final | 8P| 0.1463x10_8 O.106x‘|0_9
5Q _2.2300 0.7056 0.0270 0.0000 Mismatches | 6Q| 0.663x10 0.985x10
. . . . .
dvz1/dPg ~0.0183 ~0.0129 ~0.0140 ~0.0140 No. of Iterations 4 4
dvz1/d01 -0.1121 -0.0681 ~-0.0737 -0.0739
sV 0. 0. -o0. -0.
21 2528 0.0495 0.0020  -0.0000 THE DECOUPLED VERSIONS OF TELLEGEN'S LOAD FLOW
dav P -0. -0. -0. -0. 2
Lz/d 2 0.0732 0.0732 0.0732 0.073 The implementation of the exact version of the
TTM, although possessing the quadratic rate of
dv£2/dQL 0.0120 0.0120 0.0120 0.0120 convergence of the NRM with a simpler, mostly constant
v -0. . . . gatrix of coefficients, may not be practically
8 22 0.0151 0.0000 0.0000 0.0000 justified for very 1large power networks due to the
increasing computational burden per iteration. As in
TABLE IV the NRM, where efficient decoupled verisons have been
successively developed [4,5], the TIM can also be
BUS DATA FOR 26-BUS SYSTEM applied in decoupled and approximate forms as
illustrated in this section.
Primal Formulation
Bus m IVmI o P Q,
In order to facilitate the subsequent derivation
1 _ _ ~0.82 ~0.21 and illustration of the decoupled forms of the TTM, we
2 B - 0'0 0‘0 first jrearrange (7) to be in the form
3 - - -0.57 -0.17 k kY[ ok ok
3 - - -0.148 -0.21 L | R (109
5 - - -0.43 -0.11 Jk Lk ;k - ak ’
6 - - -0.40 -0.10 pe e I -
7 - - -1.11 -0.27 : s X s
8 _ _ -0.23 ~0.06 where the subscript t is to distinguish the formulation
9 _ B ~0.67 _0.21 of the TTM from that of (4) of the NRM. The vectors
10 - - -1.02 -0.27 “k ?k. gk and §k are related to corresponding vectors
1 - - -0.43 -0.14 of (7 by
12 - - -0.43 -0.12 ~ ~ ~
13 - - 0.0 0.0 \J - \ 1 - T
1 - - 0.0 0.0 & o2, % oMY, & < F ana &F =22, G
]2 - - ?-g1 0% Vo2 Va1 Ig2 161
17 - - -0.03 -0.01
18 1.07 - 2.80 0.0 hence, the submatrices of (10) are given by
19 1.05 - 1.45 0.0 _
20 1.0 - 2.80 0.0 (-B,;+¥% ,) =B (G;, +¥, .) G
21 1.02 _ 1.10 0.0 Hk - ~LL" L2 LG , Nk - ~JLL L1 LG ,
22 0.89 - -0.56 0.0 ~T 0 diag{V_ .} ~* 0 diaglV_,}
23 1.0 - -0.04 0.0 L - & ~ &
24 1.0 - -0.05 0.0 (12)
25 1.0 - 0.63 0.0
26 1.01 0.0 0.0 0.0 K (GLL ~L1) ELG K (BLL+¥L2) ELG
J. = _ and L =
~ G (G..+¥_..) ~ B (B =¥~.)
Transformer tap (a ,) between buses m and m' L ~OL ~6G.G1 ~GL ~6G G2
o (13)
a = 1.03 a = 0.96 a = 1.03
13,26 ’ 26,16 ’ 2,10
3 ! ' Observe that, in the formulation above, and under
asg o1 = 0.97, aj;gq = 0.89, a; 3 = 0.98 the assumption of flat voltage p&oflle, the off-
! ' ' diagonal elements of the matrices and L7 comprise
asy = 0,98, a = 0.99, a = 1.03 . k
24,3 5,21 5,25 line susceptances while those of the matrices NT and JT
Bus Types comprise line conductances. Upon neglecting the
: k k k k
n, = 17, ng = 8 matrices !1 and gT w.r.t. QT and ET. a decoupled

structure of the TTM similar to that of NRM is

obtained.



Features of Decoupled Versions of TTM

We state some of the pioneering features of the
decoupled versions of the TIM and the main aspects
which may be exploited in developing improved decoupled
versicns.

(i) The decoupling principle is applicable in the
TTM to both the polar and the rectangular
formulations of the power flow equations. The
exploitation of this fact can lead to the
construction of more efficient decoupled
versions in the rectangular formulation where
the trigonometric function evaluations are
totally eliminated. Note that, in the NRM, the
decoupling principle is valid in the polar
formulation only.

(ii) An approximate version with strictly constant
matrix of coefficients can be reached in the TTM
by approximating few elements. This is clear
from the structure of the matrix of coefficients
in (10) where most of its elements are already
constant.
(iii) The symmetry of the matrices in the decoupled
TTM can be attained via some approximations
regarding the modelling of the phase shifters
[81. This wusually leads to more efficient
computations [5].
(iv) The structure of (10)-(12) developed in the
context of Tellegen's theorem provides
valuable, explicit information about the degree
of approximation in the decoupled versions of
both NRM and TTM. The voltage-dependent
elements (the Y matrices) in (10) are mainly
diagonally added to the constant G and B
matrices. This may be exploited in constructing
a hybrid exact/decoupled version in which the
exact version is to be applied at the final
iterations to improve the convergence w.r.t.
certain bus voltages. This procedure will be
followed in one of the approximate versions
presented in the next section. It also has the
advantage of providing more accurate sensitivity
information at the load flow solution.

APPLICATIONS OF THE APPROXIMATE TTM

Neglecting the vy matrices in (12) and (13) and
assuming flat voltage profile the matrices Hﬁ. N:. Jf
and Ek are reduced to constant matrices. Hence, we
reach 'a constant matrix of coefficients of (10) in the
form

-B G

Bir B G G
0 1 0 0
e - ~ = =L aw
Gp S By B
S S Bor  Bag

As pointed out before, the off-diagonal block matrices
of 51 may be discarded. This leads to a decoupled
version with two sets of equations to be solved at each
iteration.

Applications to Test Power Systems

In our paper, the results of one approximate
version are presented. A few iterations (3 for the
first system and 2 for the second system) of the
decoupled version are performed and then the exact

version is applied, via updating the voltage-dependent

elements of the matrix of coefficients, to
convergence w.r.t. nonsaturated bus voltages.
In Tables VI and VII, we list the results of this
approximate version (method C) as well as the results
of a fast decoupled version (method B) of the NRM with
no adjustments to the matrix of coefficients. The
corresponding results of the exact TTM are also shown
(method A). All values are, again, in per unit.

improve

TABLE VI

RESULTS OF DIFFERENT VERSIONS FOR 6-BUS SYSTEM

Iteration No.

1 2 3 4
-1 -y -8
A 0.167  0.127x10"" 0.948x10"" 0.463x10
MAX B 0.205 0.167 0.116x10"" 0.251x1072
| 6P| -1 -3
c  0.201 0.171 0.220x10" " 0.105x10
-1 -3 -8
A 0.554  0.295x10"" 0.166x107> 0.663x10
MAX B 1.221 0.843x10"" 0.287x10"" 0.133x107"
15Q] B B .
C  1.208  0.601x10"" 0.260x10"' 0.226x10
-1 -1 -y -8
A 0.463x10"" 0.367x10"" 0.244x10"% 0.109x10
MAX B 0.836x10"" 0.583x1072 0.233x10"2 0.835x10™>
le, | - - . -
V' ¢ 0.833x107" 0.558x1072 0.397x1072 0.312x10""
A 0.698x10”" 0.649x1072 0.434x10™" 0.185x1078
MAX B 0.118x10"' 0.413x10"' 0.480x10™2 0.140x10"2
legl -1 -1 -2 -4
C 0.156x10" " 0.388x10"' 0.946x107>  0.681x10

Very Accurate Solution

A B C
Max{|sP|, |6Q]}  0.171x107'2 o0.476x10™% o0.171x107'2
No. of Iterations 15 18 3+3
Method Code
A Exact TTM e, 281V
B Fast decoupled version ee ] LY:]

C Approximate version of TTM

CONCLUSIONS

We have presented a method for solving the power
flow equations. The method utilizes an adjoint network
concept in the context of applying Tellegen's theorem
to the power model. Our approach, hence, is novel
since it does not belong to any of the existing
techniques of load flow analysis.

The exact version of our method enjoys the same
rate of convergence as well as the size and the
sparsity of equations as the Newton-Raphson method,
while employing a much simpler, mostly constant matrix



TABLE VII

RESULTS OF DIFFERENT VERSIONS FOR 26-BUS SYSTEM

Iteration No.

1 2 3 4
-1 - -8
A o0.27 0.116x10" ' 0.591x107 " 0.,106x10
MAX B 0.546 0.584 0.554x10" " 0.673x107 "
6P| -2 -5
c 0.881 0.558 0.329x10°° 0.487x10
A 0.837 0.389x10""  0.106x10™> 0.985x10™7
MAX B 0.548 0.657x10™"  0.500x10™" 0.828x1072
16Q| > =
C 0.566 0.191 0.490x10"° 0.367x10
A 0.528;(10'1 0.272x1072 0.818x107° o.1o3x1o'9
MAX B 0.931x1o'1 0.340x10'2 0.112x1o‘1 0.653x1o'3
le,l _ _ _
V' ¢ 0.932x10"" 0.140x10"" 0.805x1073 0.922x107°
A 0.596x10"" 0.462x1072 0.181x10"" 0.256x1070
MAX B 0.615x10"" 0.216x10"" 0.915x1072 0.512x1072
le,| - - - -
® ¢ 0.826x10"" 0.744x10"" 0.116x107° 0.131x107°
Very Accurate Solution
A B c
12 -8 -11
Max{| 6P|, |6Q|} 0.892x10 0.565x10 0.825x10
No. of Iterations 5 29 2+3
Method Code
A Exact TTM e, g s
B Fast decoupled version ee 4 §6

C Approximate version of TTM

of coefficients. With minor, valid approximations,
this matrix of coefficients reduces to a constant
matrix that has to be factorized only once for several
iterations.

The novel method and its approximate and decoupled
versions are all applicable, directly, to both the
polar and the rectangular forms of the power flow
equations. The matrix of coefficients, which is
totally free from the trigonometric functions, is
common to both forms.

Our method automatically supplies the
sensitivities of all the dependent variables at the
load flow solution without any additional adjoint
simulation.

The method presented, whether applied in the
exact, approximate, decoupled forms or combined with
other versions of the Newton's load flow, is believed
to provide a novel, very promising phase of power
network analysis.

APPENDIX

DERIVATION OF TELLEGEN'S THEOREM SENSITIVITY VERSION

Here, we summarize the main derivation steps
incorporated in the sensitivity approach based on
Tellegen's theorem.

The application of Tellegen's theorem to the power
model results in the identity

Ez 63 + Ez 53 = 0, (A1)
where X and u are general 2n, - vectors of all branch
state and control variables, respectively, and the
vectors §, and ﬁh are, in general, linear functions of
the formulated ~adjoint network current and voltage
variables. Hence, the %, and §i are related through
Kirchhoff's current and Voltage"faws formulating a set
of 1linear network equations to be solved for the
unknown adjoint variables.

The adjointk network is defined for a particular
element x. of X of (3) by setting the corresponding
component “of fi, to unity and all other components to
zero. Thig résElts in the form (9). Observe that the
vectors x , u and # of (9) are, respectively,
subvectors of ¥, U and L, of (AD).
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