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Abstract

A unified study of the class of adjoint network approaches to power
system sensiti?ityvanalysis which exploits the‘Jacobian matrix of the
load flow solution is presented. Generalized sensitivity expressions
which are easily derived, compactly described and effectively used for
calculating first-order changes and gradients of functions of interest
are obtained. These generalized sensitivity expressions are common to
all modes of formulating the power flow equations, e.g., polar and
cartesian. The approach exploits a special complex notation and complex
matrix manipulations to define the adjoint system and to derive the
sensitivity formulas. The approach is applicable to both real and

complex function sensitivities.
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I. INTRODUCTION

Two kinds of analysis can be distinguished in power system
operation and planning studies. In the first kind, which implies the
load flow solution [1,2] of the power network, the system states are
obtained with the control (independent) variables fixed at particular
values. The solution obtained describes the power system steady state
behaviour associated with these particulér values of the control
variables. The second kind of analysis deals with variations in control
variables and the resulting effect on either system states or, in
general, on a particular function of interest [3]. This analysis is
usually referred to as sensitivity analysis. The importance of
sensitivity analysis has been recognized [3-5] in power system operation
and planning studies to supply first-order changes of functions of
interest and their gradients required for effective optimization
techniques.

The class of adjoint network approaches [4,6] incorporating the
method of Lagrange multipliers' provides the advantage of using the
transpose of the Jacobian_of the load flow problem as an adjoint matrix
of coefficients. When describing adjoint network approaches which
exploit the Jacobian of the 1load flow problem; the sensitivity
expressions for different elements are derived according to the mode of
formulation used, e.g., polar or cartesian. Different forms of
sensitivity expressions have been presented for different studies. A
uni€s i sensitivity study for this class of adjoint network approaches
has not, however, been previously described.

The impact of the conjugate notation [7,8], which describes the

first-order changés of general complex functions in terms of formal
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derivatives w.r.t. complex system variables provides a useful tool for
describing a generalized adjoint network sensitivity approach, as
presented in this paper, where generalized sensitivity expressions are
easily derived, compactly described and effectively used subject to any
mode of formulation. The adjoint matrix of coefficients is always the
transpose of the Jacobian of the original load flow problem and,
regardless of the formulation, these generalized sensitivity expressions
can be used.

In the first few sections, we briefly describe the notation used
and illustrate the problem formulation. For the detailed analytical
aspects of the conjugate notation, the reader is referred to [7,8]. We
then derive the complex transformation matrices relating different modes
of formulating the power flow equations to a standard complex form.
This standard complex form is employed in the subsequent sections to
define and analyze the adjoint system and to derive the generalized
sensitivity formulas. In order to illustrate the novel concepts, two
examples of the simplest 2-bus sample power systém are employed
throughout the péper. Numerical results for a 6-bus sample power system
are also presented. The formulas derived,; however, are general and can

be directly programmed for a general power system of practical size.

IT. NOTATION
In the conjugate notation [7,8], a complex variable
IR IR PY M
*
and its complex conjugate Ci replace, as independent quantities, the

real and imaginary parts of the variable. Hence, we may express the

first-order change of a continuous function of a set of complex
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variables arranged in a column vector ¢,

=7y + J Tos (2)

* 1Y

and their complex conjugate ¢ in the form

d 9
(LT s+ ( T
~ - g

§f = ST ¥, (3)
where & denotes first-order change, T denotes transposition and 3f/3¢
and 9f/3rz* are column vectors representing the formal [9] partial
derivatives fo f w.r.t. ¢ and t¥, respectively.

~

It can be shown [7] that, for a real function f, we may write

*
A=y ()
az 3

III. BASIC FORMULATION
The electric power network can be represented by a system of node
equations in the form

E = IM, (5)

7 M

where

Tp =i *+dip (6)

is the bus admittance matrix of the power network,

R R P (7
is a column vector of the bus voltages, and
Ty = Iy + 3 I (8)
is a vector of bus currents.
we write the bus loading equations in the matrix form
* *
E I =39S (9)

MM M’

where EM is a diagonal matrix of components of V.,  in corresponding

~

order, i.e.,



By Vo= Yy
where v is given by
0
1
A .
vV = .
LT

and SM is a vector of the injected bus powers'given by

8 o
Sy = Py v 3 Q-

~

Substituting (5) into (9), we get

* *
Ey Yp Yy = Sy

(10)

(11

(12)

(13)

The system of nonlinear equations (13) represents the typical load flow

problem, whose solution is required.

The system (13) may be written in the perturbed form

S eV + B v * g v
K™ sVy + Ko sl = 85y - By o¥p Vy,

* *
where GVM, GVM. 6SM and GYT represent first-order changes of VM'

and YT’ respectively,

S A ¥
KW= Ey Ip
=S . . . .
and K~ is a diagonal matrix of components of IM' i.e.
=S
Kov= Iy
We write (14) in the form
S =S * S
Kooy + K0 oly = dn
wilere we have defined
S A - % *
4" = 85y = By Xy Yy

S *

(W)
¥ %

TRt

(15)

(16)

(17

(18)

Note that for constant YT’ d” of (18) is simply SSM and (17) rigorously

~

represents a set of linear equations to be solved in the well-known

Newton-Raphson iterative method.
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The form (17) must be adjusted for practical considerations. In
practice, one bus is selected as a slack bus of specified voltage.
Hence, the equation of (17) corresponding to the slack bus is replaced
by
* *

—T
+ En GYM = GVn. (19)

kT sV
n .

~

M

where we have assigned the last bus, namely the nth bus, as a slack bus,
k =0 (20)
~n -

and

(21)

1 =)
1]

ay
Observe that in the special application to the load flow solution, the
equation corresponding to the slack bus may be eliminated.

Moreover, a power system usually contains voltage-controlled buses
or generator-type buses. Consider the equation of (17) corresponding to

a generator bus g. Let

5 4 P+ IVl (22)
hence
~ .
GSg = GPg - legl (23)
Since
2 =V I 4V I, (24)
g g 8 g g :
Lhien
% % * *
25?g = vg SIg + Ig avg + vg sIg + Ig 5vg. (25)
Using (5), we write Ig as
I =yl v (26)

g = Jg M
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T
where y represents the corresponding row of the bus admittance matrix
%T’ hence
T T
§I = §V,, + V., 8y .
g =Yg °m T g
Also,

2n
SIV | = (v V2 2 (v svr + v sV )/ (2IV )
gl =% g =g CTg v g Olg gl

(28)
~%
Using (25)-(28), it is straightforward to show that §S_ of (23) is given
by
~% v —T V* * VT V*T * :
ng = Eg 6~M + Eg 6~M + Vg y 5Xg/2 + Vg Vi 5zg/2, (29)
where
k 2 wls2) v T vt e - wvts@iv D] (30)
g g Vg * g Mc I ' gl o
and
K Yoy gy vyt vse - 5V VDI w
~8 g ~8 ~g M g g ~8

(31)
and where u

is a column vector of unity gth element and zero other
elements.

Using (29), the equation of (17) corresponding to the gth bus
is replaced by

-2 M g’
where

(32)

d = 6P - 38|V | -V VS sy 2 -V VL sy /2 (33)
g - *Tg I Mgl = Vg v oYge = Tg v Pgle 3
We write (17), including (19) for slack bus and (33) for generator

buses, in the form

—_ * ’

Kaly + X sty = d. (3
* * .

.ve that the elements of &Vy and §Vy namely, 5Vi and 5Vi, i=1,...,n

* .
an be replaced by the relative quantities GVi/|Vil and 5Vi/|Vi|,

respectively. In this case the elements ki and E; of the ith row of

. and |V.] k, .,
jt id

respectively. Note also that we could equally well specify |Vg|2

the coefficient matrices K and K are replaced by ]lekiJ
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instead of IVgI for a generator bus. In this case IVgI2 replaces |Vg|
in (22) as a control variable and the required modifications for

subsequent derivation can be performed in a straightforward manner.

IV. MODES OF FORMULATION

In the pre&ious section, we have considered the complex formulation
of power system equations. We shall exploit this formulation to derive
compact forms of sensitivity expressions. In this section, we
investigate, via suitable transformations, the relationship between the
cémplex formulation and other formulations. This investigation provides
the possibility of formulating the adjoint equations to be solved in the
same mode as the original 1load flow problem. Hence, the available

Jacobian of the load flow may be used in solving the adjoint system.

Transformation for Rectangular Formulation

We define the transformation matrix

*
L, Ly TR I
L9 8 -2 , (35)
) L. L " 5"
o 2 -3
where 1" is the identity matrix of order n and
%A 1n, (36)
hence
1n jn
qy-1 _
(E ) = n nle (37)
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n denoting the number of buses in the power network.

n
%1 !
_ 1
-2 _.n
‘2 J
and (7), that
N E
Ym1 Ly
v L
M2 2
: j -
hence
3 f‘
8V L
2 | | ke

Using the perturbed form (40), it
(34) can be written in the form

r =
Ky + K (K + Ky

L—(§2 + §2) (—51 + 51)J

where we have set

K=K +3J

K=Ky +3J
and

d=d1+J

The 2n x 2n matrix of coefficients in (41), denoted by K°" '

constitutes the well-known Jacobian matrix of the flow problem

182l

j K

j d

1n T
.n
j g
*
Lol Ym
L* V*. [}
z2|l v
L v
“1{18m
L llev® |
2o 118Vy

It follows, using

(38)

(39)

(40)

is straightforward to show that

V1

Vo

2 ’

~2 "

rectangular form. Moreover, writing (34) in the form

(41)

(42)
(43)

(u4)
t

in



sV

M
[K K] = d, (45)
- | -
§ %M
it follows that
[ *
L, Ly
(K X1 = (k¥ K4 , (46)
- - - *
= Lo

where K% and K¢ are formed directly from the Jacobian of (41) as

q _ Z : =
K* = (51 + 51) + 3(52 + K

~2) (47)

~

and

7

= (K + Ry = (K + K)o (48)
Observe that (46) relates the Jacobian of the complex formulation

(34) to the Jacobian of the rectangular formulation (41).

Transformation for Polar Formulation

For polar formulation, we set

Vi = |Vi| Z_Gi , 1 =1, .., n, (49)
where Vi are elements of VM, and we define the vectors
~ ~ 9
v,
vy R (50)
|V, |
L J
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and

C )
64
s 2 1. . (51)
5n
L J
Then, we define the transformation matrix
L L*
o ,
A
P 2 <l (52)
~ L L .
~V V.

* * v
where L., L., L and L —are diagonal matrices whose elements represent

*
the formal partial derivatives 23s./aV;, 23s;/aV;, 3|V;|/aV; and

*
3|V;|/aV,, respectively, hence

A .
EG 2 diag {Lsi} (53)
and
L 2 diag (L.} (54)
2 g vi’?
where
LGi = =3/(2 Vi) (55)
and
L WICIL AL 6
vi © i/( | i| . (56)
The inverse of LP is given by
; - - A
L L
~8 Y
P! - . (57)
o
~6 ~VJ

~ ~

~ ~%
«here Ls. Ls. Lv and Lv are diagonal matrices whose elements are the

' * *
partial derivatives aV;/38;, aV;/08;, 3V /3| V5| gnd aVi/3 |V,

respectively, hence



~ A -
Ea = diag {Lsi} (58)
and
L 2 diag (L .} | (59)
v ag vi®
where
si = jVi (60)
and
Lvi = Vi/]Vi| . . (61)

Similarly to (40), we may write

*
86 L L. |[sv
S nt R O I
= . % |- (62)
8| V| Lo L || vy

Using the perturbed form (62), it is straightforward to show that

(34) can also be written in the form

p p—
Ky o K 88 d,
= , (63)
p pa—
Ko K5 |81V -ds
where we have set
kP = kP &+ 5 kB (64)
~ N ~2
and
% - Kﬁ + 3 Eg , (65)

and where the matrices Kp and K° are related to K and K through the

~

relationship
*
~6 ~8
(K K1 = (k° X1 . | - (66)
-~ ~ ~ L L
~V ~V

1r
The 2n X 2n matrix of coefficients in (63), denoted by kP ,

-~

constitutes the well-known Jacobian matrix of the load flow problem in

polar form.  Observe that (66) relates the Jacobian of the complex
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formulation (34) to the Jacobian of the polar formulation (63), where %p
and“%p are formed directly from the Jacobian of (63).
At the end of this section, we illustrate the foregoing concepts by

two simple examples.

Example 1

Consider first the 2-bus sample power system of Fig. 1 which
consists of a load bus and a slack bus. The solution of the load flow
equations (13) is given by

Vi

n

0.7352 - j 0.2041
and

52 = 5.6705 + j 1.0706.

Note that S2 is the injected power at bus 2. The matrices K and K of

~ ~

(45) are given by

(8.0852 - j 12.0097) (-8.4934 + j 13.4802)
K =
~ 0 -0
and
| (-5.2623 + j 5.5411) 0
K = .
~ 0 1

Hence, using cartesian coordinates, the matrix of coefficients of (41)

has, using (42) and (43), the form

8
2.8229 -8.4934 17.5508 -13.4802
Kcrt ) 0 1 0 0
~ 6.4686 -13.4802 -13.3475 8.4934
0 0 0 1
- J

which is the Jacobian of the load flow problem in cartesian coordinates

when the slack bus equations are included.
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For the polar formulation, the matrices L_ and Lv of (57) are given

~8
by
- (0.2041 + j 0.7352) 0
28 0 ;
and
~ . |(0.9636 - j 0.2675) 0
Ly = o :

Hence, using (52), (57) and (66), the matrices KP and P are given by

-
D (13.4802 + j 8.u4934) (-13.4802 - j 8.4934)
K*¥ = :
- 0 _j
and
- .
(-1.9745 - j 9.8031) (-8.4934 + j 13.4802)
kP - ,
~ | L 0 1
from which the matrix of coefficients of (63) has the form
13,4802 ~13.4802 -1.9745 -8.4934 |
Kplr _ 0 0 0 1
~ -8.4934 8.4934 9.8031 -13.4802
L o 1 0 o |

which is the Jacobian of the load flow problem in polar coordinates when

the slack bus equations are included.

Example 2
Now, consider the 2-bus sample power system of Fig. 2 which
consists of a generator bus and a slack bus. The solution of the load
flow equations (13) is given by
§, = -0.1995 rad,

Q1 = 1.9929
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32 = 4,2742 - 3 1.7131.

The matrices K and E'of (45) are given by
(2.3920 - j 9.4199) (-4.4300 + j 8.2864)
E ) 0 0
and
_ (2.1938 + j 8.4398) (-4.4300 - j 8.2864)
E ) 0 1

Hence, using cartesian coordinates, the matrix of coefficients of (41)

has, using (42) and (43), the form

[ 4.5858  -8.8600  17.8597  -16.5729 ]
ort 0 1 0 0
=7 0.9802 0 -0.1982 o |
L 0 0 0 1 J

which is the Jacobian of the load flow problem in cartesian coordinates

when the slack bus equations are included.

~

For the polar formulation, the matrices L6 and Lv of (57) are given

by

~ (0.1784 + j 0.8822) 0

L6 =

~ O 2
i J

and

~ (0.9802 - j 0.1982) 0

L =

~V 0 1

.cace, using (52), (57) and (66), the matrices kP and P are given by

16.5729 -16.5729
kP -
e 0 _



and
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0.9556 - j 1.0

kP -

0

-8.8600

from which the matrix of coefficients of (63) has the form

r 3
16.5729 -16.5729 0.9556 -8.8600
0 0 0 1
Kplr -
- 0 0 1 0
0 1 0 0
§ J

which is the Jacobian of the load flow problem in polar coordinates when

the slack bus equations are included.

V. COMPLEX ADJOINT ANALYSIS
In this section, we derive the required sensitivity expressions
using the compact complex form (34). We exploit the relationships
derived in the previous section to provide flexibility in solving the
resulting adjoint system of equations in other modes of formulation. We

have shown that,‘ using cartesian coordinates, (34) has the form

ort 8V d,
K = . (67)
Vo -d5

t

where the 2n x 2n matrix of coefficients Kcr which constitutes the

~

Jacobian matrix of the load flow problem in rectangular form is given

from (41). Also, using polar coordinates, (34) has the form

88 d,
(68)

"
-

Kplr

SIVH 2
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Kplr which constitutes the

where the 2n x 2n matrix of coefficients
Jacobian matrix of the load flow problem in polar form is given from

(63).

Standard Complex Form

We write (34) in the form

K K| 8y d

= . (69)
% * *
SR EMRE

It can be shown [8] that the matrix of coefficients of (69), denoted by
gCmp

~

, has the same rank as that of (67) and the system of equations (69)
is consistent if and only if the system (67) is consistent.

For a real function f, we may write, using (3) and (4)

GVM
~ A* ~
of = [u' 4 ] + 5, (70)
Lox * P '
8V
where we have defined
L 35 (71)
~ M
and used
*
HL T, (72)
M aYM

8f denotingthe change in f due to changes in other variables in terms

of which f may be explicitly expressed. Hence, from (69)
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K X
"~ I\* ~ ~

sf = [yl w13
~ ~ * *

or

d
~ A* ~
sf = [VF U'Tg

where
or, simply

Hence, the first-order change of the real

gradients can be evaluated by solving (75)

Cartesian Coordinates

d
+ §f (73)
* p
d
+ & , L))
p
o
(75)
~x%
o
TR (76)

function f and corresponding

and substituting into (74).

Similarly to (70), we may write, using the rectangular formulation

(va1
§f = [Br Bs]
$Vyo
where we have defined
~ A _af
e =9V

~M1

+ &f 77)
Y

(78)
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and
¥s
Hence, from (41)
°T
8f = [Yr Y
where

—~

L('§2

= T

— T
K)o (K,

of

A
g 5, (79)
3o
d,
] + Gfp . (80)
-5
— Tr- } r A~
+Ky) Vel I %
= (81)

—_— T ~ ~
+§1) L YSJ s

Observe that the matrix of coefficients of (81) is the transpose of the

Jacobian matrix of the load flow problem in rectangular form (67).

Theorem 1

(a) The solution vectors Vr

(81) are given by

<)

and

<<
"

~

where V is given from (75).

~ ~

(b) The RHS vectors W and Hg of

are given by

and vS of the adjoint system of equations

2 Re{V}

2 Im{V},

the adjoint system of equations (81)
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e D
"
[
—
te D
+
1

where % is given by (71) and L, and L, are given by (35).

Proof

Comparing (74) and (80), and using (66), we get

= (Yr + ] YS)/Z . (82)

<<

From (82), the first part of the theorem is proved. Now,
multiplying (81) from the left by the transpose of L9 of (35) and using

the relation

_— *
+ K2)T kT ga*T
2 = . (83)

—_ X — *
(=K. + KT (=K, K1)T gl gt

1 —
1.

—_
I
(&N

4
13

T <*T - T T ~
K K v Ly Lo flwe
= . (84)
—T T || n# s 7|~
S I e
hence, from (75)
T T ~
H E1 EZ Hr
g | = 7 *7 ~ (85)
L5 L Ly ¥s
or, simply
N s
we L] B e
Hs



- 21 =

The relationship (86) could also be derived by applying, formally, the
chain rule of differentiation using the definitions (71), (78) and (79).

Observe that equation (82) relates the solution of the adjoint
system (81) to that of (76), and equation (86) relates the RHS of (81)

to that of (76).

Polar Coordinates

Using the polar formulation, we may write

88
of = [yl oyl .ot (87)
T ey °
where we have defined
y &2t 88
Eo Y (88)
and
~p af
Ev = m . (89)
Hence, from (68)
d
§f = [V V'] + &f (90)
§ VT4 0
2
where
PT PT : ~
K K 1 Y Ys
= . (91)
=PT =PT - ~
K LY By

The matrix of coefficients of (91) is the transpose of the Jacobian

matrix of the load flow problem in the polar form.
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Theorem 2

(a) The solution vectors Vd and VV of the adjoint system of equations

(91) are given by

V = 2 Re{V}

~8 ~
and

YV = 2 Im{Y'}v

~

where V is given from (75).

(b) The RHS vectors ﬁG and ﬁv of the adjoint system of equations (91)

are given by

e D
"
v

s Ys v v

where {i is given by (71) and L6 and L are given by (53) and (54).

Proof

Comparing (74) and (90), and using (44), we get

Vs (V4 3V /2. (92)

From (92), the first part of the theorem is proved. Now, multiplying

(90) from left by the transpose of LP or (52) and using the relation

*
TP PTG PR
1 ~2 ~ ~ ~ ~
2 = , (93)
—_ _ — —p*
KPT —KPT KPT KP T 1 -3

=1 ~2 ~ ~ ~
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it follows from (64) and (92) that

—* ~ ~
J T[4 oI
~ ~ ~ ~§ v ~8
= , (94)
_ * ~% *T % A
T AT LT T
~ ~ ~ ~0 v Vv
hence, from (85)
, T T A
Iy Ls Ly Hs
x| = [¥T *T * (95)
o ~8 ~V Y
or, simply
Bs
w=[Lg L] | B o
Yv

Again, the relationship (96) could also be derived by applying,
formally, the chain rule of differentiation using the definitions (71),
(88) and (89).

Equation (92) relates the solution of the adjoint system (91) to

that of (76), and equation (96) relates the RHS of (91) to that of (76).

Remarks

We remark that using (82) or (92), the adjoint system can be
formulated and solved in a convenient mode, preferably the same-
formulation as the original ioad flow problem, while the first-order
~hange of f and corresponding gradients may be derived compactly using

~

= adjoint variables V. On the other hand, the relations (86) and (96)

allow the use of more elegant formal derivatives which, in many cases,

facilitate the formulation. For example, consider the function
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2 * * ( )
f = O’IVi - VJ' = O(Vi—Vj)(Vi—Vj) s 97

where Vi and Vj are the ith and jth components of V., respectively, and

M

0 is a real scalar or variable. Note that f of (97) may represent, for

example, the power loss in line ij. For the polar formulation, ﬁv and

ﬁé of (91) are calculated as follows. The ith and jth components of i

and ﬁv are given by

gy = ol-2 (|V;| cos &, - |le cos éj) [V, | sin &
+2 (V.| sin &, - IVj| sin Gj) |V, | cos &;1,
g.. = 2 (|V,]| cos &, = |V.| cos §. V.| sin §.
LIPS ol (] lI 85 | Jl GJ) | J| i
-2 V.| sin 6§, - |V.| sin §. V.| cos 6.1,
(V;] sin &g = [V,] sin 6) [V ] cos &,]
i,y = ol 2 (JV;] cos &, - |Vj| cos 6j) cos &,
+2 (|Vi| sin &; - |Vj| sin éj) sin Gi]
and
hyj = ol 2 (|Vi| cos §; - |Vj| cos 5j) cos Gj
-2 V. in §, - |V.| sin §.) sin §.].
(] ;| sin §; | JI GJ) GJ]

A1l other components are zero. On the other hand, one may calculate

~ 0 I

% *
v, - Vj)

V* V*
SO

L 0 J

~ ~ T—1 .
and use (95) to calculate H, and 1, where (LP*) is the transpose of

-1
P of (57). In this example, the derivation of the formal

derivatives is clearly easier.
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We also remark that other forms of power flow equations can be
handled in a similar way. The previous theorems can be easily
generalized for other formulations provided that transformations similar
to (35) and (52) are defined.

We illustrate the foregoing concepté by the two simple examples

considered before.

Example 3

For the first system, as shown in Fig. 1, consider the function
2 *
1 | = V.,V .

f=|V "4

From (71),

. :
v 0.7352 + jO.2041

—_

e D
"
]

0 0
and (76) has the solution

0.0562 + j0.0892

<>
1] .

1.6788 + jO.0

Also, for the polar formulation, we have from (88) and (89)

~

He = 0
and
R 2|V, | 1.5261 |
H = = iy
v 0 0 J
and (91) has the solution
r =
~ 0.1123
Vs =
: 3.357T
L J
and
~ 0.1783W
Vv = .
~ 0
L J
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~ ~

Note that the VG and V obtained for the polar formulation and V satisfy

(92).
Example U
For the second system, as shown in Fig. 2, consider the function
V4
+
f = 61 = tan_1 [——li—l——] .
3OV
From (71)
~ —j/(2V1) 0.1101 - jO.5445
B o= =
- 0 0
and (76) has the solution
~ 0.0302 - j0.0288
V = .

0.2673 + jO.5
Also, for the polar formulation, we have from (88) and (89)

1

-8 0
and
y = 0
and (91) has the solution
~ 0.0603
~8  10.5346
and
~ —0.0577
Vv = .
~ 1.0

A~ A ~

Observe that the obtained V6 and Vv for the pdlar formulation and V satisfy

(92).



- 27 -

VI. GRADIENT CALCULATIONS

In the previous section, we have derived the adjoint systems in
different modes of formulation and investigated the relationships between
the corresponding excitation and solution vectors. In power system studies
such as contingency analysis, the first-order change of f is of prime
interest. The first-order change &f can be calculated from (74), (80) and
(90). On the other hand, the derivatives of f w.r.t. control variables are
required to be calculated, for example, in planning studies.

In the following, we consider the buses to be ordered such that
subseripts %=1, 2, ..., n identify load buses, g = nL+1, eees Mpo+ DA
identify generator buses and n = np o+ nG+1 identifies the slack bus.

The vector d of (34) is now partitioned into subvectors associated with

the sets of load, generator and slack buses of appropriate dimension in the

form
dr
g = 9G . (98)
d
n
where dL has elements d2 given from (18) by
~ d S* V* VT (99)
!’ - 6 2, - 2 ~M GZQI 99

T .
yl representing the corresponding row of the bus admittance matrix YT’ d

G
* , ~
has elements dg given by (33) and dn is 5Vn from (19). Also, the vector V

of (74) is partitioned correspondingly in the form

)
~L
(100)

1<
"
<

L J

Note that the above formulation leads to expressing the vector d solely

in terms of variations in control variables, the gradients in terms of which
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can be obtained by writing (74) in the form

~ ~ A~ T
o T af
sf = YL SL + YG SG + Vndn + (ap) 68
ART % ~RT % ~% ; af *T
+ YL gL + YG EG + Vndn + (3—) 68 . (101)

=

AT L A
Bood o= 2V dy
=1
Lo, Lon L,
= 5 (V g8S)Y- 3 3 (V vV VvV Y ), (102)
=1 % L =1 m=1 Lo m am

where ng is an element of ¥T' which is assumed, for simplicity, to be a
symmetric admittance matrix (the case of unsymmetric admittance matrix can

be analyzed in a similar straightforward way), or

n n
vTa - - v 6s™) Lo VovE v -v)
Yoo 9 = 2 g 89+ I oV, N YTy Von
=1 =1 m=1
m# g
- '} \') . 10
221 ( . Vz . symc) (103)

where Yom denotes the admittance of line &m connecting load bus & with bus m
(=%, g or n), and Yi0 is the shunt admittance at bus 2. The second term of

(101) is given, using (33) by

A n-1 ~
v d. = T V d
~G G =n, +1 & &
g=ny
n-1 ~

z V. (8P -3 &§|V_|)
g:nL+1 g g
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~ *
- 3 gV Re{vg v 5ng} (104)
g:nL+1 m=1
or
~T n-1 ~ n-1 n %
Vid, = g V (P -js|V_|) + = r V_ Re{V (V -V ) sy 1}
-G -G g=n_ +1 g g g g=n_+1 m=1 g m 8 gn
L .
m#g
I’l—1 ~ *
- 3 V Re{V_V_ sy .}, (105)
g:l’lL+1 g g g go

where ygm denotes the admittance of line gm connecting generator bus g with
bus m (=%, g or n), and ygo is the shunt admittance at bus g. The third
term of (101) is given, using (19) by

~

~ *
Vn d, = Vn GVn . (106)
The fourth term of (101) is simply the first—prder change of f due to
changes in other variables p in terms of which the function f may be
explicitly expressed.

Equations (103)-(106) provide useful information for gradient
evaluation since they provide direct expressions w.r.t. the control
variables of interest. The derivatives of the function f w.r.t. the control
variables are obtained as follows, where wWe temporarily assume that p does

~

not contain such control variables.

Load Bus Control Variables

From (103) and its complex conjugate, the derivatives of f w.r.t. the

*
Aem L d Sm and SL at load bus g is given by

df o¥
ag; = Vz (107)
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and

-V . (108)

Generator Bus Control Variables

From (105) and its complex conjugate, the derivatives of f w.r.t. the
real generated power Pg and the voltage magnitude |Vg| at generator bus g

are given by

~%
——df =V (109)
ds &
g
and
Qgi =V , (110)
ds g
g

~

where Sg is given by (22).

Slack Bus Control Variables

From (106) and its complex conjugate, the derivatives of f w.r.t. the

*
slack bus voltage Vn and Vn are given by

df _ %
it Vn (111
n
and
v . (112)
n
dv
n

In practice, the phase angle of the slack bus voltage is set to zero as
a roforence angle. Hence, the slack bus has only one effective real control

variable.
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Line Control Variables

The derivatives of f w.r.t. line control variables yij' can be obtained
from (103) and (105) and their complex conjugate as follows. For Yoo

between load buses & and &', we have from (103) and its complex conjugate

~ * ~ *
df W vV -V V) (V. =V (113)
dy [} [} [} [
(¥}
and
~x A ~% ' * * :
df*‘ = (V V —V\V\) (V\ —V)- (1114)
d [} [ ) L L
You

For Y50 between load bus % and ground, we have from (103) and its complex

conjugate
daf 3 *
— =z -V Vv V (115)
dyzo [ S )
and
~% *
aft _ vy v, (116)
dy L 2 R
20

For ygg‘ between generator buses g and g, we have from (105) and its

complex conjugate

df ~ ¥ ~ *
= V - V.., V.. V.=-V) (117)
ay <" Vg1 Vg = Vgrr Vg) Upm Vg
gg
and
daf ~ ~ * *
=‘V V-V\ V\ V\—V)’ (118)
av (ng 18)(8 g
y
gg
where
I\=A .l\ 1
Vm Vm1 + sz (119)

and m is a bus index. For ygo between generator bus g and ground, we have

from (105)
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~ *
ar 9 Ly v, (120)
dy gl g '8
go dygo -

For yng between load bus & and generator bus g, we have from (103) and (105)

and their complex conjugate

df WV -V Uy (V- V) (121)
dy,, 81 g T g g gl
g .
and
df ~ ~% x %
IR R PR AR RICHER AR (122)
Vee .

For yln between load bus % and the slack bus n, we have from (103) and its

complex conjugate

df : *
=V V (V. -V) (123)
dyydn g2 & n g
and
df ~% LI
= - . L
o VoV, (V=) (124)
Yon

Finally, for ygn between generator bus g and the slack bus n, we have from

(105) and its complex conjugate

df ° '
=V V. (V. -V) (125)
dygn g1 n g
and
df‘ ~ * *
= Vg1 ) (Vn-Vg) . (126)
dy
gn

wpecial Considerations

If p of (101) contains some of the above control variables, the partial
derivatives of f w.r.t. appropriate control variables must be added to the
expressions obtained.

When any of the control variables Uy is a function of some real design
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variables we write

auk

ALy (127)

Guk = I
1

Ay

where Cki is the ith design variable associated with u, and Acki denotes the

k

change in Cyi Hence,

u
df .df _k (128)

oy dY 3gyy

The control variables associated with other power system components,
e.g., transformers, which are represented in the bus admittance matrix Y
can be easily considered. The corresponding sensitivity expressions may be
derived in a similar straightforward manner.

Equations (107)-(118) and (120)-(126) compactly define the required
formal derivatives of the real function f w.r.t. complex control variables.
In practice, gradients w.r.t. real and imaginary parts of the defined

control variables are of direct interest. These gradients are simply

obtained from

dgf -2 Re{gé— (129)
K1 K
and
dgf. - —2Im{g§— , (130)
k2 K

where the complex control variable u, is given by

k
u =u . + ju . (131)
Table I summarizes the derived expressions of function gradients w.r.t.

real control variables of practical interest.
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Example 5

Using the values of V obtained, we have for the first system

~

EF; = 2 V11 = 0.1123 ,
daf  _ 5 _
56? = 2 V12 = 0.1783 ,
df -
Ev’“ =2 V21 = 3.3577 D
21
df 25
5— = 2|V, | V,, = 0.1038 ,
10
daf _. I _
e 2 Re{V1V1 (V2—V1)} = -0.0192 ,
12
and
daf I
EETE —ZIm{V,IV1 (V2—V1)} = -0.0502 ,

where Gmm‘ and Bmm‘ denote, respectively, the conductance and susceptance of

line mm~ connecting buses m and m*, m =0 denotes the ground.

Example 6

For the second system, we have

df _ : _
E?? = 2 V11 = 0.0603 ,
df -
d|V1| = 2 V12 = -0.0577 ,
df -
—_— =2V = 0.5346 ,
dV21 21
d—g—f— = 0.0 ,
10
daf -

*
Ea:; = 2 V11 Re{V1 (VZ_V1)} = 0.0044
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and

af 5y xm{v:vz} = -0.0108.

The gradients obtained can be easily checked by small perturbations

about the base case values.

VII. SE&SITIVITY OF COMPLEX FUNCTIONS

In the previous sections, we have derived the required} sensitivity
expressions and gradients for a general real function. The relationships
between different modes of formulation have been.investigated and
expressions relating the RHS and solution vector of corresponding adjoint
. systems have been derived.

The sensitivities of a general complex function can be obtained using
the previous formulas derived simply by considering the real and imaginary
parts separately. In this case, only the RHS of the adjoint system of
equations has to be changed. In other words, only one forward and one
backward substitutions are required for each real function, provided that
the LU factors of the formed matrix of coefficients are stored and that the
base case point remains unchanged.

In this section, we show how the compact complex formulation can be
exploited to formulate the adjoint system corresponding to a general complex
'function and to derive the required sensitivities. The relationships
between different modes of formulation are again investigated for the

complex function case.
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For a complex function f, we may write, using (3)

sV

M
~“T 2T
§f = [ ol + &f , (132)
~ ~ % p
Y
where we have defined
~ A
W (133)
- M
and
Z A
v o= égg—. (13%)
Ty

Gfp being the change in f due to changes in other variables in terms of

which f may be explicitly expressed. Hence, from (69)

K K d
AT AT ) )
sf = [y p d + §f (135)
~ ~ —% * * p
K K d
or
d
6 = [V V) + 8f (136)
- o~ * | P
d
~J
where
——* ~ ~
KDR v |
= , (137
— * 2 2
KT T 7 "
which represents the adjoint system of equations to be solved. The

first-order change of the complex function f can be evaluated by solving
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(137) and substituting into (136).
The relationships between the adjoint solution of different modes of
formulation are derived as follows. Let
fzf+ 3 f, (138)
hence
§f = 6fy + J 6f2, | (139)
and let ?: and ?; be the solution vector of the adjoint system (81) using
cartesian coordinates for the real function f1. Similarly, let ?f and §s be
the solution vector of (81) for the real function f2. Hence, using (80) and

(136), one may write

T =T # _ 01T ST . 02T 2T
Vid + Vid = (V) dp = Vg dp) + 3OV dy = Vg dp), (140)
hence, from (44),
Vo= (V]S V92w GG+ V)/2 (141)
and
V= o+ V)2 + 5=V + VD)2, (142)
~ r .8 .S .r .

Equations (141) and (142) relate the solutions of the adjoint system (81)
for both f1 and f2 to the solution of (137) for the complex function f.
Similarly, 1let V;

(91) using polar coordinates for the real function f1. Also, let V

and VJ be the solution vector of the adjoint system

2 2
) v

be the solution vector of (91) for the real function f2. Hence, using (90)

and V

and (136), one may write

°T, ST % ST 2T 22T 22T
R A LA R A S P 2
hence, from (44)
Y = (YG - Yv)/2 + J(YV + YG)/Z (144)
and
_l_\_ A1 l\2 . I\1 A2
Y = (YG + Yv)/2 + J(-Yv + YG)/2 . (145)
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Equations (144) and (145) relate the solutions of the adjoint system
(91) for both f1 and f2 to the solution of (137) for the complex function f.
For gradient calculations, we proceed as before and use the partitioned

forms (98), (100) and

o)
VL
Y = YG ’ (146)
vn
. ¢ J
and we write (74) in the form
°T oT o af \ T
§f = Vy dp + Vg dg + ¥V d + (5007 8o
2T % 2T % & % 3f T
+ YL gL + YG SG + Vn dn + (—) Gg. (147)

ap

The first, second and third terms of (147) are given by (103), (105)

and (106) respectively. The fifth term of (147) is given, using (99), by

=

n, L
AN T 63 ) S Fovata
J T A g 88 vz 2 V V() ey,
=1 2=1 m=1
m#L
n A * *
- § Vz Vz Vl 8Y 0 (148)

2=1

Also, the sixth term of (147) is given, using (33) by

1 n-1 n

ne
ol R 4 ol ol *
Vo d, = = V_(8P_ + J8|V_|) + I 2 V_ Re{V_(V_-V_ ) &y_ }
G
~G .G gen, +1 g g g g=n +1 m=1 g g m g gm
m#g
n-1 .
- 3 V Re{V_V_ sy .} (149)
g0
g=n_+1
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and the seventh term of (147) is given, using (19) by

>

d =V &8V . (150)

Equations (103), (105), (106), (148), (149) and (150) provide useful
information for gradient evaluation of the complex function f w.r.t. the
control variables of interest. Under the assumption that P does not contain
such control variables, the derivatives of the complex function f are

obtained as follows.

Load Bus Control Variables

*
From (103) and (148), the derivatives of f w.r.t. the demand SL and Sz

at load bus & is given by

df s
38 ° V!?, (151)
L
and
L-v, . (152)
dSz

Generator Bus Control Variables

From (105) and (149), the derivatives of f w.r.t. the generator control

variables are given by

daf =

—_— =V 153)
- g (153

ds
g

and

daf -

—_—=V_ , 154
> g (154)

dsS

where Sg is given by (22).
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Slack Bus Control Variables

From (106) and (150), the derivatives of f w.r.t. the slack bus voltage

*
v .
Vn and , are given by

af =V (155)
dv
n
and
ad__v . (156)
n
av_

Line Control Variables

The derivatives of f w.r.t. line control variables yij can be obtained
from (103), (105), (148) and (149) as follows. For ylm‘ between load buses

2 and &, we have from (103) and (148)

af g vV ov.vy w V) (157)
dyg,~ 2 8 RS A A )

and
df TV STV (e mvh (158)
d * — Rl l — 2\ 9,\ 9,\ — 2 .
T

df 3 *
_— =z -V VvV Vv (159)
d¥.0 A
and
af _ = *
; — = - Vz Vl VZ . (160)
Y50
For ygg between generator buses g and g', we have from (105) and (149)
df 1 ~ N | A 2 *
== [(V_ + V)V - (V.+V OV I(V.-V) (161)
dy 2 g g g g g 8 g g

gg’
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and

df 1 .,0 - ~ — * * ,
== [(V + VIV - (V. +VOHV.IWV. -=V) . (162)
2 g g 8 g g 8 g g

d ~
ygg

For ygO between generator bus g and ground, we have from (105) and (149)

df df 1,0 s ¥
= = - = (Vv Vvyvyv . 16
3y = - (T T VU (163)
80 dyg,

For ygg between load bus & and generator bus g, we have from (103), (105),

(148) and (149)

LA R A AR N R (164)
dyz 2 g g’ g L L ) g
g
and
df il sV oT vt vy . (165)
ay 2 g g g [ ') L g
Y ‘

For ymn between load bus g and the slack bus n, we have from (103) and (148)

ddf v v (V,=V,) (166)
Yon P
and
df 2 * *
S Ty, ey (167)
Yon

Finally, for ygn between generator bus g and the slack bus n, we have

from (105) and (149)

df 1w sy v W) (168)
dy . ~ 2 ''g g’ g n g
gn
ara
df 1,0 2 % % .
= = (V VYV (V=V) . 16
dy* 5 ( g + g) g (.n g) ( ?)

gn
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Remarks

If o of (147) contains any of the above control variables, the partial
derivatives of f w.r.t. appropriate control variables must be added to the
expressions (151)-(169).

Equations (151)-(169) compactly define the required formal derivatives
of the complex function f w.r.t. complex control variables. The gradients

of f w.r.t. real and imaginary parts of the control variables are obtained

using
———dif = ——gg L (170)
k1 k  du,
and
e - - S (71
k2 k du,

where uy is given by (131).
Expressions of forms (170) and (171) can be directly obtained from

(151)-(169) .

Example 7
Now, we consider the first 2-bus system and the complex function
f = V1 = V11 + J V12.

Using cartesian coordinates, the adjoint system solutions for V11 and V12

are given, respectively, by

~4 0.0883
LA ,
~ 2.3144

i
~ 0.1161
L ,
~ 0.2041

.




- 43 -

0.0428
vf -
- 0.1117
and
-0.0187
2o ,
- 0.7352

hence, from (141) and (142)

0.0535 + j 0.0794

V =

~ 10.7896 + j 0.1579
and

- |0.0348 - j 0.0366

V-

~ 1.5248 - j 0.0462

The derivatives of f w.r.t. control variables are calculated, using the

derived expressions, as follows. For S1,

- ='V1 = 0.0348

j 0.0366

and

<>
"

— =V, = 0.0535 + j 0.0794 ,

dS1

hence, from (170) and (171)

gi_ = 0.0883 - j 0.0428
]
and
%%T = 0.1161 - j 0.0187.
For V2,
%%— - %é = 1.5248 - j 0.0462



and
df
dV*
2
hence, from (170)
df
dV21
For y1o,
df
—— = -|V
dy10 1
and
daf
— = -1V
AT
hence, from (170) and (171)
df
dG1O
and
df
dB1O
For y12.
df 3 *
— =V, Vv
dy12 11
and
daf =
; = = V1 V1 (
Y12
nence, from (170) and (171)

df

TV TR

2.3144

<>
"

>

2
I

<
"

=V, = 0.7896 + j 0.1579,

+ 3 0.1117.

- 0.0311 - j 0.0L62

- 0.0203 + j 0.0213,

= - 0.0514 - j 0.0249

0.0676 - j 0.0109.

(V2—V1) = - 0.0080 + j 0.0231

V* V*
2~ 1)

- 0.0022 - j 0.0127,

T - 0.0102 + j 0.0104

12
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and

E%L = - 0.0358 - j 0.0059 .
12

VIII. APPLICATIONS TO A 6-BUS SAMPLE POWER SYSTEM

In this section, we present some of the numerical results obtained
for a 6-bus power system [10] using the sensitivity formulas derived in
the paper.

The system consists of three specified load buses (g = 1,2,3), two
generator buses (g = 4,5), the slack bus (n=6) and eight transmission
lines (¢t = 7, ..., 14). The single 1line diagram for this system is
shown in Fig. 3. The 1line and bus data are shown, respectively, in
Tables II and III. All values shown are in per unit. The application
of the adjoint network approach results in the load flow solution shown
in Table IV.

Examples of sensitivities of bus states, namely |V1|, Qs 84, and
64 w.r.t. system bus and line control variables are shown in Tables V to
VIII. The estimated effects of the line and circuit outages on the
different states, based on first-order changes, are also shown.

Observe that the sensitivities w.r.t. non-existing elements, e.g.,
the shunt parameters in Tables V - VIII can be evaluated as well.

Althéugh the sensitivites of a genekal function can be evaluated
using the same adjoint matrix of coefficients at the load flow solution
ar”? LUy defining the RHS of the adjoint equations corresponding to the
function considered, these sensitivities can also be obtained, directly,
~using the resulté of Tables V to VIII. For example, consider the

function
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2 2 2
£o= T,1% = 1V, = V17 o |Y,1%, (172)

mn

which may denote the 1loading of 1line 1,4, The sensitivities of this

function w.r.t. a control variable uk is given by

2V, - V|

Buk

df  of 2
du, = * 21Vy = Uy 1Yy

(173)

which, when substituting values at the load flow solution and noting

that |Vu| is constant, reduces to

3|V, | 26 36
%5- =-§f— - 1.6871 ——— - 4.8588 3;1 + 4.8588 5— .
Uy Uy Uy Uy Kk

Now, let uk denote the conductance of line 2,4, Hence, from Tables V,

VII and VIII, we get

—— = - 0.0324.

Similarly, if Uy denotes the susceptance of line 2,4, we get

a%ﬁ_ = - 0.0932.
2l

The effect of line 2,4 outage on the function considered can be

estimated using the relation

df df
-— G -—=—2B,,, (17w
dqu 24 dBZU 24

§f =

where we have set the changes in 1line conductance and susceptance,

respectively, to -G2u and —B?u. Substituting the values of G

(=0.58R82) and 824(=_2'3529) in (174), we get

24

8f = 0.019 - 0.219 = - 0.200,
which 1s identical to the result presented in the Tellegen's theorem
approach of [10] where the function f = |I1M|2 was considered, directly,

in the adjoint simulation without state transformations.
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IX. CONCLUSIONS

A unified study for the class of adjoint network approaches to
power system sensitivity analysis which exploits the Jacobian matrix of
the load flow solution has been presented. Generalized sensitivity
expressions which are ieasily derived, compactly described and
effectively used for calculating first-order changes and gradients of
functions of interest have been obtained. These generalized sensitivity
expressions are common to all modes of formulation, e.g., polar and
cartesian.

A first step towards deriving these generalized sensitivity
expressions has been performed where we have utilized a special complex
notation to compactly describe the transformations relating different
ways of formulating power network equations to a standard complex form,
This special notation and the derived transformations have been used to
effectively derive the required sensitivity expressions only by matrix
manipulations.

The use of these generalized sensitivity expressions requires only
the solution of an adjoint system of linear equations, the matrix of
coefficients of which is simply the transpose of the Jacobian matrix of
the load flow solution in any mode of formulation. These generalized
sensitivity expressions are applicable to both real and complex modes of
performance functions‘ as well as the control variables defined in a

particular study.
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TABLE I

DERIVATIVES OF A REAL FUNCTION f W.R.T. CONTROL VARIABLES

Control Variable

Description

Derivative

G ~
gg

B N
gg

Blg

demand real power
demand reactive power

generator real power

generator bus voltage
magnitude

real component of
slack bus voltage

conductance between
two load buses

"susceptance between

two load buses

shunt conductance of
a load bus

shunt susceptance of
a load bus

conductance between
two generator buses

susceptance between
two generator buses

shunt conductance of
a generator bus

shunt susceptance of
a generator bus

conductance between
load and generator
buses

susceptance between
load and generator
buses

~ ¥ ° *
2 Re{(V V=V .V (V=V}
2 In{(V VeV V)V =V )}
- {(Vz [N A

2y

-2 |Vz‘ 21

2y

2 V1" Voo

~ * 2 *
t glg gl¢g g g

~ * *
e V V—V\ v\ V\-V
ZIm{(g1gg1g)(g g)}

2y

-2 [V 17 v,

g

ORI B
2 Re{(Vg1Vg—V2V2)(V£—Vg)}

AN R
-2 Dn{(Vg1Vg—Vle)(VL—Vg)}
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Control Variable Description Derivative
A~k
G conductance between 2 Re{V V (V. -V )}
wn g 4 n R
load and slack buses
O
B susceptance between -2 Im{VV (V. -V )}
an load and slack buses baem ok
~ *
ng conductance between 2Vg1 Re{Vg(Vn—Vg)}
generator and slack
buses
B v I *V
gn susceptance between -2 Vg1 m{Vg o}

generator and slack
buses




- 51 -

TABLE II

LINE DATA FOR 6-BUS POWER SYSTEM

Terminal Resistance Reactance Number of
Line No. Buses Rt (pu) Xt (pu) Lines
i 1,4 0.05 0.20 1
2 1,5 0.025 0.10 2
3 2,3 0.10 0.40 1
4 2,4 0.10 0.40 1
5 2,5 0.05 0.20 1
6 2,6 0.01875 0.075 4
7 3,4 0.15 0.60 1

8 3,6 0.0375 0.15 2
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TABLE III
BUS DATA FOR 6-BUS POWE 6-BUS
Pm Line Quantities
Bus
Index, m Bus Type (pu)
Total Derivat
1 load -2.40
Line
2 load -2.40 Conductance
3 load -1.60
1,4 ~0.006326
Y generator -0.30 1,5 -0.011838
2,3 0.000027
5 generator 1.25 2,4 -0.000207
2,5 0.000163
6 slack - 2,6 -0.000002
3,0 -0.000265
3,6 -0.000017

Load Bus Quantities - Tot

Bus Real
Power
1 0.029522
2 -0.000131
3 0.000378

Generator Bus Quantities

Bus Voltage
Magnitude

i 0.357365
5 0.73200L
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TABLE VI

6-BUS SYSTEM: SENSITIVITIES OF QH

Line Quantities

Total Derivatives

Contingency Effect

Line Outage of OQutage of
Conductance Susceptance One Line Circuit
1,4 -0.056140 -0.044515 0.143437 0.143437
1,5 0.065943 0.060168 -0.205565 -0.411130
2,3 0.000236 0.004289 -0.009954 -0.009954
2,4 0.256340 0.022413 0.098051 0.098051
2,5 -0.015503 0.028010 -0.150048 -0. 150048
2,6 0.046139 0.039093 -0.086459 -0.345835
3,4 0.243148 -0.031249 0.144371 0.144371
3,6 0.062174 0.056610 -0.128837 -0.257674
Load Bus Quantities - Total Derivatives
Bus Real Reactive Shunt Shunt
Power Power Conductance Susceptance
1 -0.457852 -0.358531 0.438519 0.343391
2 -0.115872 -0.168723 0.107512 0.156551
3 -0.127525 -0.258052 0.104029 0.210506
Generator Bus Quantities - Total Derivatives
Bus Voltage Real Shunt Shunt
Magnitude ‘Power Conductance Susceptance
n 7.51274 -0.550625 0.572870 0.0
5 -4.66462 -0.219233 0.237122 0.0
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TABLE VII

6-BUS SYSTEM: SENSITIVITIES OF §

1

Line Quantities

Total Derivatives

Contingency Effect

Line Outage of Outage of
Conductance Susceptance One Line Circuit
1,4 0.001197 -0.010358 0.050152 0.050152
1,5 -0.004594 -0.016180 0.070737 0.141473
2,3 -0.001609 0.000178 -0.001366 -0.001366
2,4 -0.010354 -0.031650 0.068981 0.068981
2,5 -0.011653 -0.025839 0.107885 0.107885
2,6 -0.005283 -0.025867 0.077008 0.308030
3,4 -0.020029 -0.036084 0.054530 0.054530
3,6 -0.002723 -0.019449 0.058881 0.117762
Load Bus Quantities - Total Derivatives
Bus Real Reactive Shunt Shunt
Power Power Conductance Susceptance
1 0.309969 -0.002339 -0.296880 0.002240
2 0.085296 0.026631 -0.079143 -0.024709
3 0.061420 0.027332 -0.050104 -0.022297
Generator Bus Quantities - Total Derivatives
Bus Voltage Real Shunt Shunt
‘Magnitude Power Conductance Susceptance
Iy 0.192793 0.208858 -0.217296 0.0
5 0.271949 0.223549 -0.241790 0.0
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TABLE VIII

6-BUS SYSTEM: SENSITIVITIES OF ¢

mn

Line Quantities

Total Derivatives

Contingency Effect

Line ‘ Outage of Qutage of
Conductance Susceptance One Line Circuit
1,4 - -0.006119 0.005953 -0.035213 -0.035213
1,5 -0.004959 -0.011033 0.046087 0.092174
2,3 -0.000725 -0.000212 0.000073 0.000073
2,4 -0.017094 -0.0510U5 0.110050 0.110050
2,5 -0.006343 -0.016282 0.069157 0.069157
2,6 -0.005350 -0.024608 0.072997 0.291989
3,4 -0.028650 -0.050482 0.067952 0.067952
3,6 -0.003276 -0.023336 0.017661 0.035321
Load Bus Quantities - Total Derivatives
Bus Real Reactive Shunt Shunt
Power Power Conductance Susceptance
1 0.222333 0.005176 -0.212945 -0.004957
2 0.081031 0.026460 -0.075185 -0.024551
3 0.073688 0.032826 -0.060111 -0.026778
Generator Bus Quantities - Total Derivatives
Bus Voltage Real Shunt Shunt
Magnitude Power Conductance Susceptance
Yy -0.047087 0.281747 -0.293130 0.0
5 0.272518 0.164929 -0.178387 0.0
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Q t;US 2 y12=6"j20 : bus1
- ; Ql?f-s« i3
v,=1.0/0
¥o0"13 Yi0%i2

IS S S

Fig. 1 2-bus load-slack sample power system
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1
bus 2 At bus! —=—
Y,5=6-j20
O-F &
V,=1.0/0 IV,1=0.9
Yo7 i3 | Y1012

IS S

Fig. 2 2-bus generator-slack sample power system
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Fig. 3 6-bus sample power system

bus 4
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