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Abstract

This paper presents an application of the Tellegen's theorem
approach to power network sensitivity calculations. Our theory employs
an adjoint» network concept based upon a novel, generalized cbmplex
branchb modelliné procedure allowing the >exact steady;state component
Amodels of power networks to'be considered without any approximation.
Exact forhulas for first-order change and reduced gradients are derived
and tabulated. The theoretical results are fully verifiéd numerically
on a 6-bus system and on a 26-bus, 32 line system. The full bus and
line data are provided for the examples to permit independent

verification of our results.
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I. INTRODUCTION

Efficient sensitivity analysis and gradient evaluation, essential
in power system operation and planning, is the subject of this paper. A
nuhber of relevant papers have dealt with appropriate computational
'techniques invthe context of applying the Lagrange multiplier approach
[1,2] and the Tellegen's theorem [3] approach [4-7] to sensitivity
calculations in eiectrical bower networks.

The term}sensitiVity calculations is used to indicate the procedure
of expressing the first-order change of a function f.solely in terms §f
variations in the independent variables u, which.are related to the
system states by a set of nonlinear power flow equations, and the
subsequent formulation of the reduced gradients df/de.

Previous work based on Tellegen's theorem approximates the a.c.
power model to permit direct application of the theorem. These
approximations have been successively improved from the use of the d.c.
load flow model [L] td the ﬁse of an improved a.c. approximate model
[5]. The use of the eiact a.c. power model, which leads to gradients
free from erroré; has been encountered by the Eelatively difficult
médelling of powér network components in terms of the current and

vvoltage variables employed in the Tellegen's theorem formulation.

In this paper, we employ a novel concept of generalized, perturbed
complex branch modelling together with a pertinent adjoint technique of
derivation to attain general sensitivity formulas based upon the.exact
a.c. power model without any approximation. In Section II we introduce
the notation and illustrate the concept of generalized complex branch
modelling. The subsequent technique of adjoint network simulation and

analySis is outlined in Section III. In Section IV we present the
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applications to an important special version of the approach which
employs a simple and efficient adjoint analysis. ‘Numerical results are

presented in Section V on 6-bus and 26-bus systems.

IT. POWER NETWORK STEADY-STATE ELEMENT MODELS
We denote by n and Nps respectively, the number of buses (nodes)
and the number of branches in the network. We shall use b = 1,2,..., nB_
to denote a branch index. In general, we denote by Ly, @ complex
variable associated with branch b, r may represent voltage V, current I,
poﬁer S, fadmittance Y, transformer tap ratio a, etec. The complex
conjugate of ¢ is written as t*¥ and § will be used ‘to denote the

first-order change.

Classification of Branches

The branches of the network are classified into two main types,
namely the bus-type branches denoted by b = m = 1,2,...,n and the
Line-type branches for which bst=nsl,...,ny. For the power netuworks, we
may further classify the bus-type branches so that m = ¢ = 1,2,...,nL
identify_load branches associated with P, Q-type buses (Fig. 1a5 for
which the complex power Sz = Pl + jQL is to be specified, g = nL + 1,
cesy nL + ne identify generator branches associated with P, V-type buses
(Fig. 1b) for which the real (active) power Pg and the voltage magnitude
|vg| aré to be specified and n = n o+ ng o+ 1 identifies the slack
generator branch for which the bus voltage is to be specified. The
line-type branches, on the other hand, may contain the ordinary passive

elements (Fig. 1¢) of equivalent w-networks representing, for example,

the transmission lines and transformers with real turns ratio as well as



the elements of equivalent m-networks, derived [8] using :the general
branch modelling of Fig. 2, for the transformers with complex turns
ratio (phase shifting transformers). Note [9] that the phase shifting
transformers cannot be modelled by an equivalent g-network using the

ordinary passive elements of Fig. lec.

Complex Perturbed Form Qf.Branch Models

“In general, we deal with branch models of the form -
(I v Lv,u,uh =0 ' (1)
b b’ Tpr Voo Vpr Upe Up) = 0

where Ub denotes an independent (control) variable to be specified for

h

branch b. In terms of variations in the complex current and Voltage

variables and their complex conjugate, we write (1) in the perturbed

form
— * — * S
hbi GIb + hbi GIb = hbv GVb + hbv GVb + Wb, (2)
~ where thg coefficients hbi’ Egi’ hbv and Egv represent the forﬁal [81]
partial derivatives of hb w.r.t. Ib' I:, Vb and V:, respectively. These

formal derivatives may be evaluated using the ordinary differentiation

rules. Moreover, it can be shown [8] that, for real hb, we have hbi =
* _ " .

h. . and h = h . Observe that the perturbed branch models of Figs.
bi bv -~ bv

la-c are special cases of the general form (2). Note also that in the

perturbed branch models of typical electronic circuits we may exclude

the coefficients h ., and h
bi bv

constant voltage sourges are modelled by hbi = hbi = hbv = 0 and hbv =

of the conjugate variables (e.g., the

.
In this paper we manage to handle, directly, the generalized
perturbed form (2) and to use the proper theory and techniques of

analysis to avoid any approximation. The adjoint network simulation in



the context of Tellegen's theorem, hence, represents the basis of a
suitable approach to follow where the theory itself is expressed in

terms of the fundamental network branch models.

ITI. THE ADJOINT SIMULATION OF POWER NETWORKS

The Augmented Forms of Tellegen's Theorem
Tellegen's theorem, which depends solely upon Kirchhoff's laws and
the topology of the network, states that

G I =0, : (3)

I. V. = 0 and b b

I z
p PP b

~

where the summation is taken over all branches, the distinguishing the

variables associated with the topologically similar adjoint network.
Since the Vb and Vb of (3) satisfy Kirchhoff's voltage law (KVL),

* ~% ~

the Vb and Vb also satisfy KVL. Similarly, since the Ib and Ib satisfy
* ~%

Kirchhoff's current law (KCL), the Ib and Ib also satisfy KCL. Hence,

including (3), we may consider some [10] or all [11] of the exhaustive

valid perturbed forms

~ - L o T
I &V =0, £V 8I_ =0, £ I 6V, =0, =V &I =0,
, B b . b b L b b L b b
zllb 8V, = 0, E v, §I =0, é I, 8V, = 0 and g v, §I, =0,

where we have perturbed only the variables of the original power
network. The considered terms are then added, subtracted or augmented
via arbitrary complex coefficients [6] together or to other valid

expressions [8] to formulate an augmented Tellegen sum of the form

£ £r swp = 0, ()
P



where T denotes transposition,

. b
b
*
!bv Vb
S —_ A .
Wy = = (5)
“bi I
*
and
~ f .
£, = ~bi . (6)
- f
~bv

is a complex vector the elements of which are, .in géneral, linear
. functions of the adjoint current and voltage variables and their complex

~

conjugate,fbivand fbv being 2-component vectors.

Standard Branch Jacobian Matrices

The augmented Tellegen sum (4) has been written in terms of
variations in V., V;, I, and I;. We shall call these variables the
basic variables since the theory is expressed in terms of them. Now,
for each branch, and according to its type, another set of variables
called the element variables is of practical interest. The element

variables'will_be denoted by the vector z _ of four components describing

~b
the practical state xb and control ub variables associated with branch
b,
X .
b
zy = i , (7
-b

xb and u_ being 2-component real and/or complex vectors.



The element vahiables éssociated with a given branch can be chosen
appropriately in different ways [8]. Table I illustrates the
conventional selection of the element variables for different power
network branch types where real variables are considered. It should be
. noticed that other element vériables can be defined for a particular
branch [6] which may constitute complex variables. For example, we may

defi S*]T I* T
efine u, = [Sz JJ X = [It t] , ete.

') -t
We relate the variations of the element variables Zb to those of
the basic variables wb by
‘where Jb = (azg/éwb)T is a transformation matrix. containing the

conventional and/or formal derivatives of zbfw.r.t. wb. The inverse

~ ~

tfanspose of Jb'is of major interest in our derivations and we shall

- denote it by the partitioned form

b b
M M
S L A (9)
~21 22
where the submatrices Mb Mb Mb and Mb are 2x2 Jacobian matrices
L1112 21 .22

which are standard for a branch type of a network. The branch Jacobian
matrices for different branch types of power networks are shown in Table
I.

-We remark that otherA branch types can be modelled, by defining
appropriate element variables according to the physical nature of the
corresponding element, and analyzed in a similar straightforward way
[8]. In this respect, we also remark that the same argument applies
equally well to typicél électronic circuits liable to be modelled in an
analogous way. Recalling the interesting discussion of [5] with regard

to the modelling difficulties imposed by the source elements of power



networks in comparison with those of typical electronic circuits, we
observe that the element variables for the constant voltage and constant
current sources constitute directly the basic variables w . Hence, the

correSponding branéh Jacobian matrices of Table I are simply O or 1 (the

identity matrix).

Transformed Adjoint Variables and Network Sensitivities

Let
Mox = W11 foi * Moo Ty (10)
and
Mou = Mo fpi + Moo Ty an

be transformed adjoint'vakiables associated with the bth branch, where

be and Dbu

functions of the adjoint current and voltage variables and their complex

are 2-component vectors, the elements of which are 1linear

conjugate.  Hence, using (6)-(9), the augmented Tellegen sum (4) is
written in terms of variations in the element variables as

T ~T
é (be Gfb * Ebu GEb) = 0. (12)

The first-order change of a general real or complex function f of

all the state vectors Xb and the control vectors u,_ is expressed in the

~b
form
sf = 5 [( g{-— )T ox, + ( S‘f"" )T su 1. (13)
b ~b ~ ~b ~

Assuming a possible consistent modelling [12] of the adjoint system, we

set

L | (14)



hence, from (12) and (13)

st =3 L0y 01 s (15)
b ~b ~ -

which‘expreSses.the first-order change of f solely in terms of
variations in the control variables so that the total derivatives (the
reduced gradients) of f are obtained as

| df _ af °

= %u. ~ Mue

(16)
duy 3y

Consistent quelling of Adjoint System

The édjoinﬁjnetwork is defined, for a given-function, by (14) which
in general requireé two cémplex relationships.to be satisfied for each
branch. The argument of the consistent modelling of the adjoint system
is directly related to the possibility of satisfying these two
relationships simultaneously which, in turn, depends [12] on the form
and the mode (i.e., real or complex) of the function f as well as on the
form of the augmented Tellegen sum considered in the analysis. In this
respect, we shall only mention two examples and, for more analytical and
theoretical details, the reader is referred to [8]. The first example
is the case of typicai electronic circuits where f may represent, e.g.,.
a complex node voltage and the Tellegen sum is fofmulated as va
" difference form of (3). The second example is the case of a power
network represented as in Table I, f is a general real function and the
augmented Tellegen sum used is of the real form
IR ) X 2
I

be - Vb I -V I) =0. Q17

+ b b b

z (Ib v

b b
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In the above tWo-examples, the relation (14) is satisfied. The form
(17) will be used invSection IV to derive exact sensitivity formulas for

a general real function.

The Adjoint Analysis

For a given function f, the adjoint network branches are modelled

by (14), where, as shown before, the elements of nbx are .linear

This adjoint modelling defines the

~ f\* ~ ~
functions of Vb, Vb, Ib and I

first set of relationships which the adjoint currents and voltages must

*
b*
sétisfy. ~ The second set of relationships is simply the Kirchhoff's
current.and voltage laws implied in the Tellegen's theorem fdrmulation.
Thebapplication of Kirchhoff's laws results in a set of adjoint linear
equationsA to be solved for the unknown adjoint current and voltage
variables. A generalized form of the adjoint network equations which is
common to all forms of augmented Tellegen sum and for general complex
functions has been derived [8]. The solution of the adjoint system is
then substituted in (15) and (16) to obtain the first-order change and
the total‘derivatiyes of f. Note that in the case of éomplex control
variables u_ = the formula (16) represents the formal total derivatives

which are related to the conventional total derivatives w.r.t. real and

imaginary parts of u by Simple relations [81].

IV. AN IMPORTANT SPECIAL VERSION
In this section, we consider the adjoint network simulation based
on the special augmented Tellegen sum of the form (17) which provides a
consistent adjoint network modelling for all real functions. We shall

consider the set of element variables of Table I and state the specific
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structure of the adjoint equations to be solved. Hence, our exact
formulas for first-order change and reduced'gradients may be directly

implemented and programmed.

The Adjoint Equations

~

For the augmented Tellegen sum (17) the vectors f and f of (6)

~bi ~bv
are simply given by
b b
'pi = ,:E* and fbV = - \,;* . (18)
b b

Using the expressions of Table I, the adjoint branch modelling is given,

from (10) and (14), for a load branch by

2 2. 0% , af . af
YIL = —(Sg/Vz)Vz +»[|V£| 3|V2| -J 362 ]/(2V2), (19)
for a generator branch by
' ~ ¥ % * ® . % ; af
VI -V I =(S/V)V =(S/V)V =-j— (20a)
g g g 8 g g g g g g asg
and
~ * "%
V.V -V Vv o=-jv v 2 (20b)
g g g 8 g g an
for the slack generator branch by
° ¥ af af
Vn = —Vn ( 3t Q )/2 - (21)
: n n
and for a transmission braﬁch by
I, =Y, V, +Y [ =% g 25 /2. (22)

——____J——-__—-
t t 't t aRe{It} aIm{It}

Observe that the'adjoint branch models are also of the general form (1)
in terms of the adjoint currents and voltages and their complex

conjugate. The application of KCL and KVL to the adjoint network of the
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branch models (19)-(22) results in [7] the following real structure of

the adjoint equations.

1 1

(23)

twoer QD
T IR B

2

v
! 2

t Q2 W

where subscripts 1 and 2 denote, respectively;'the real and imaginary

parts of complex quantities, V (= V1 + jV.,) is a vector of n-1

~

components representing the unknown adjoint load and generator bus

voltages and I is a corresponding RHS veector,

~

. v . 1
v-|-<t and 1 = |z (21)
e Ts

L and G denoting, respectively load and generator buses. The elements

I and I of the vectors |
~% ~8 ~L

A

and ZG are given by the formulas

2 A 1
I, £ - av; (|v

A g
AN 38,

1 * of . of
+5Y, V (=% +J=F)
2 7in n# aPn aQn

of af

1
-=Z [r,, Y ( - J )] (25a)
2 t ¢t Tt aIt1 aIt2
and
~ A f 2 af
I, =5+ =3 |V |7 =&
36 F)
g g g Qg
Taf af
- Im{V_z [ Y ( =— = j =—)1}
g + gt 't aIt1 BIt2
?f . of

+ In(v VYo )1, (25b)

gn n aPn aQn
where xmt denote elements of the bus incidence matrix of the network and
ymm' m = & or g, are elements of the symmetric bus admittance matrix.

The submatfices in (23) are given by
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* *
g +¥p) Vg
G+ jB-= . % (26a)
oL oG + ¥g)
and
*

(Ypp - ¥) ive
G‘ + j B\ = ’ (26b)
~ ~ 0 2 diaglV )

where the bus admittance matrix VY, excluding the column and row

~

corresponding to the slack bus, has been partitioned in the form

Y Y o
Y=G+jB= |~ -G 27
Yoo Yoo
- = A . .
[XGL zGG] z =j2 dlag{Vg}[¥GL %GG]’ (28)
v, & _diag{s /V°} and v. & j2 diag{s _/V }. (29)
L [ A ) ~G g g

In practice, the 2n-2 real adjoint equatibns (23) are to be solved

for the adjoint bus voltages V. Knowing V, the adjoint branch currents

~

and voltages; which constitute the vectors fbi

and fbv of (18), are
easily obtained. Using the standard expressions of Table I, the vector

A

npy ©f (11) is evaluated and, then, substituted in (15) and (16).

Remarks

We remark on the simplicity of formulation and efficiency of
computations involved in the adjoint analysis using the form (23) of the
adjoint equations and leading to exact formulas for first-order change
and reduced gradients of general real functions. The adjoint matrix of
coefficients of (23) is at least as sparse as the bus admittance matrix

of the power network. It is simple, mostly constant, the majority of
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its elements are line conductances and susceptances representing basic
data of the problem available and already stored in the computer memory.
Moreover, it is independent of the function f which is represented only
in the RHS of the adjoint equations. Hence, several functions can be
handled by repeat forward and backward substitutions using the LU
factors of the adjoint matrix at a base-case point. These functions,
whethef expressed in terms of bus or line 'variables, are treated
directly withéutb transformations (the RHS éf (23). contains partial

derivatives w.r.t. all network state variables).

V. NUMERICAL RESULTS
We present some numerical results to illustrate the use of the
exact sensitivity formulas derived. So as not to be restricted to any
particular application, we consider two systems demonstrating
first-order change and gradient evaluation for some of the network bus
and line states. The results presented are exact and have been verified

by small - perturbations about the base-case point.

6-Bus System

A 6-bus sample power system [71 shown in Fig. 3 is considered. The
required data is given by Table II. Powers injected into buses are
shown. The corresponding a.c. load flow solution is shown in Table III.
Table IV shows the adjoint matrix of coefficients at the load flow
solut{on. This matrix is common to all the sensitivity calculations
performed at the base-case point.

We firét consider the derivatives of the load bus state 6. and the

3

generator bus state Q Table V shows the RHS vector of the adjoint

5
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equations for both states and the adjoint voltageé resulting from the
solution of (23). Table VI shows the derivatives calculated using our
formulas.

We investigate the effect of 1line removals by considering 1line
current loading functions of the form

£= 1%

The coﬁtrol variables associated with generator and load buses afe
maintained at their base-case values. The results of different
contingencies based on first-order estimation are shown lin Table VII
which also shows, for the purpose of comparison, .£he exact function
changes. |

Other numerical results for the same system have been presented in-

[7,81.

26-Bus System

This power system (Saskatchewan Power Corporation System) has been ‘
consideréd [13-15] in some relevant studies on steady-state power system
analysis.

The sinéle line diagram of this system is shown in Fig. U. The
line data is shown by Table VIII. The operafing bus data and
transfbrmer taps considered in the load flow analysis are shown,

respectively, in Tables IX and X (nL = 17, n, = 8, n. = 32). All values

G
shown are in per unit. The a.c. load flow solution obtained is shown by
Table XI.

We present here the derivatives of the load bus state |V6| shown in

Table XII, the load bus state §, shown in Table XIII, the generator bus

state Q20 shown in Table XIV and the generator bus state 620 shown in
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Table XV, as calculated by our formulas and verified by perturbation.
Finally, we 1list in Table XVI the effects of certain circuit

removals on the states 'VG" §y» Q and § Control variables

20 20°
associated with generator and load buses are maintained at their base-
case values. Exact changes as calculated by new load flow solutions are

compared with those predicted by first-order estimates. Two cases are

considered: an important line 2,13 and a normal line 6,7.

VI. CONCLUSIONS

Instead of gpproximating the a.c. power flow model to cope with the
cénventionél form and technique of analysis of Tellegen's theorem, Qe
have empldyed a suitable augmented form of the theorem applicable to the
generalized complex branch models of power networks. The proper adjoint
network technique followed has led to simple derivation and elegant
formulation of exact sensitivity formulas based on the a.c. power model
without any approximation, Moreover, it offers the flexibility of
working with any set of real and/or complex state and conﬁrol variables
of practical- interest._ The _important special version described in
~Section IV provides exact sensitivity formulas for general real
functions while employing a simple and efficient adjoint analysis. The
work presented in this paper claims general concepts in network
modeiling and analysis applicable to systems of general complex branch

models.
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TABLE IIa

BUS DATA FOR 6-BUS POWER SYSTEM

o Py P Vil L8
Index, i Bus Type (pu) (pu) (pu)

1 load -2.40 0 - [ -

2 load -2.40 0 - L;—

3 load -1.60 -0.40 - /-

4 - generator -0.30 4— .02 /-

5 generator 1.25 - 1.04 / -

6 slack - - 1.04 / -

TABLE IIb
LINE DATA FOR 6-BUS POWER SYSTEM

Number

- Branch Terminal Resistance Reactance of
Index, t Buses Rt (pu) Xt (pu) Lines

7 1,4 0.05 0.20 1
8 1,5 0.025 0.10 2
9 2,3 0.10 0.40 1
10 2,4 0.10 0.40 1
1 2,5 0.05 0.20 1
12 2,6 0.01875 0.075 u
13 3,4 0.15 0.60 1
14 3,6 0.0375 0.15 2
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TABLE III

LOAD FLOW SOLUTION OF 6-BUS POWER SYSTEM

Load Buses

|V, = 0.9787 §, = =0.6602

|V2| = 0.9633 85 = -0.2978

|V3] = 0.9032 65 = -0.3036
Generator Buses

Qu = 0.7866 64 = -=0.5566

QS = 0.9780 _ 55 = -0,4740

Slack Bus

Pe = 6.1298 Qg 1.3546
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TABLE V

. RHS AND SOLUTION VECTORS OF THE ADJOINT

NETWORKS FOR 63 AND Q5
f = 63 f = Q5
Element '

No. RHS Vector Solution Vector - RHS Vector Solution Vector
1 0 -0.0223 0 0.0600
2 0 -0.0142 0 0.0275
3 -0.1655 -0.0570 0 0.0328
4 0 -0.0287 0 0.1354
5 0 ~-0,0220 0 -0.0240
6 0 -0.0180 0 0.4884
7 0 -0.0082 0 0.1466

-8 0.5283 -0.0188 0 0.0548
9 0o ~0.0178 0 0.0843

10 0 -0,0113 1.0816 0.5721
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TABLE VI

AND Q5 W.R.T CONTROL VARIABLES

vLine Quantities

Derivatives w.r.t. Gt Derivatives w.r.t. Bt
Line
f = 63 ‘ f = Q5 f = 63 f = Q5
1,4 -0.001205 0.063610 0.000743 0.065953
1,5 -0.001595 -0.046596 -0.002133 -0,004421
2,3 0.005312 0.001612 -0.000166 -0.010535
2,1 -0.003359 -0.043764 -0.008465 0.048458
2,5 A -0,001260 0.163046 -0.002965 -0,023595
2,6 -0.001242 0.076305 -0.009986 0.050501
3,4 0.000744 0.014771 0.015220 0.054970
3,6 0.010158 0.019837 -0.037461 0.038517
Load Bus Quantities
Derivatives w.r.t. PL Derivatives w.r.t. Ql
Bus -
f‘:G3 .f':QS f=§3 f:QS
1 ' 0.058622 -0.709070 0.001132 -0.713165
2 0.033200 -0.143975 0.007596 -0.274202
3 0.132854 -0.107990 - 0.001969 -0.101658

Generator Bus Quantities

Derivatives w.r.t |Vg| Derivatives w.r.t. Pg
Bus

f=(53 f:QS f:63 f=Q5
4 -0.008082 -4.51867 0.066205 ~0.312777
5 : 0.056708 7.58088 0.047554 -0.461239
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TABLE VII

CONTINGENCY RESULTS FOR 6-BUS POWER SYSTEM

Function Removed Calculated ' Exact
Line Index ' Line Index Function Change Function Change
1,4 2,4 -0.200 -0.224
2,3 1,5% 0.002 0.005
2,3 2,3 -0.029 -0.021
2,4 2,4 -0.470 -0.404

¥ Only one line of branch 1,5 is removed.
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TABLE VIII

LINE DATA FOR 26-BUS POWER SYSTEM

Terminal Resistance Reactance 1/2 Shunt
Line Buses Rt (pu) Xt (pu) Susceptance
1 13,26 0.0 0.0131 0.0
2 26,16 0.0 0.0392 0.0
3 16,23 0.0 0.4320 0.0
4 23,26 0.0 0.3140 0.0
5 2,10 0.0 0.0150 0.0
6 9,10 0.1494 0.3392 0.4120
T 9,12 0.0658 0.1494 0.0182
8 12,26 0.0533 0.1210 0.0147
9 9,14 0.0618 0.2397 0.0319
10 11,14 0.0676 0.2620 0.0349
11 19,26 0.0610 0.2521 0.0295
12 6,26 0.0513 0.1986 0.0265
13 6,19 0.0129 0.0532 0.0074
14 7,19 0.0906 0.3742 0.0437
15 6,7 0.0921 0.3569 0.0475
16 11,22 0.0513 0.2118 0.0248
17 8,11 0.0865 0.3355 0.0uy7
18 17,22 0.0281 0.1869 0.0237
19 8,21 0.0735 0.28u7 0.0379
20 17,21 0.0459 0.3055 0.0387
21 1,4 0.0619 0.2401 0.0319
22 4,21 0.0610 0.2365 0.0315
23 20,21 0.0 0.0305 0.0
24 15,1 0.0 ~.0.0147 0.0
25 2,13 0.0086 0.0707 0.3017
26 1,7 0.0199 0.0785 0.0404
27 15,20 0.0107 0.0617 0.4471
28 2,18 0.0074 0.0608 0.2593
29 1,3 0.0 0.0392 0.0
30 - 24,3 0.0 0.1450 0.0
31 5,21 0.0 0.1750 0.0
0.0 0.1540 0.0

32 5,25
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TABLE IX

Injected Power

Bus Voltage

Bus
Pm Qm |Vm‘| 6m
1 -0.82 -0.21 - -
2 0.0 0.0 - -
3 -0.57 -0.17 - -
4 -0.48 -0.21 - -
-5 -0.43 -0.11 - -
6 -0.40 -0.10 - -
N -1.11 -0.27 - -
8 -N.23 -0.06 - -
9 -0.67 -0.21 - -
10 -1.02 -0.27 - -
11 -0.43 -0.14 - -
12 -0.43 -0.12 - -
13 0.0 0.0 - -
14 0.0 0.0 - -
15 0.0 0.0 - -
16 -1.31 -0.30 - -
17 -0.03 -0.01 - -
18 2.80 - 1.07 -
19 1.45 - 1.05 -
20 2.80 - 1.00 -
21 1.10 - 1.02 -
22 -0.56 - 0.89 -
23 -0.04 - 1.00 -
24 -0.05 - 1.00 -
25 0.63 - 1.00 -
26 0.0 - 1.01 0.0
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TABLE X

TRANSFORMER TAPS FOR 26-BUS POWER SYSTEM

Terminal
No. Buses Real Imaginary
1 13,26 1.03 0.0
2 20,21 0.97 0.0
3 24,3 0.98 0.0
4 26,16 0.96 0.0
5 15,1 0.89 0.0
6 5,21 0.99 0.0
7 2,10 1.03 0.0
8 1,3 0.98 0.0
9 -5,25 1.03 0.0
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TABLE XI

LOAD FLOW SOLUTION OF 26-BUS POWER SYSTEM

Load Buses

v,
Vsl
ARy
[ Vyl
Vg
|Vl
1Vl
Vgl
Vgl
V0l
Vgl
[Vqol
V3l
[Vqyl
APEY
V6l
V41

Generator Buses

Slack Bus

Qg

19
20
21
22
23
24
25

o O O O D DO O

26

1.0357
1.0685
1.0438
0.9908
1.0081
1.0339
1.0133
0.9450
0.9675
1.0393
0.9037
0.9699
1.0465
0.9449
0.9324
1.0363
0.9322

-0. 4004
0.1872
0.7795

-0.0294

-0.1775

-0.1144

-0, 1645
0.1691

0.1334

0.0747
0.0884
0.0527
0.0989
0.2607
0.0536
.0.0178
0.0426
-0.1127
0.0667
-0.1100
-0.0764

 0.0150

-0.1136
0.1042
-0.0455
0.0298

0.2385
0.0921
0.2432
0.2270
-0.0996
-0.0266
0.0459
0.3599

-0.0513
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TABLE XIla

SENSITIVITIES OF |V6| W.R.T. LINE CONTROL VARIABLES

Total Derivatives Total Derivatives

Line Line
Conductance Susceptance Conductance Susceptance
1,3 0.000016 -0.000008 8,21 0.000026 -0.000012
1,4 ~0.000063 0.000071 9,10 -0.000007 0.000019
1,7 -0.000259 -0.000207 9,12 0 0.000002
1,15 -0.000040 0.000092 9,14 -0.000004 0
2,10 0 0 11,14 -0.000007 -0.000001
2,13 0 -0.000001 11,22 -0.000001 0
2,18 0.000001 0 12,26 -0.000002 0.000004
3,24 0.000020 0.000132 13,26 0 0
4,21 -0.000227 -0.000123 15,20 -0.003259 -0.000283
5,21 0.000001 0 16,23 0 0
5,25 0.000070 0 16,26 0 0
6,7 0.000938 0.000891 17,21 0.000033 0.000011
6,19 -0.001403 -0.001018 17,22 0.000012 -0.000004
6,26 0.001868. 0.001477 19,26 0.000064 -0.000134
7,19 -0.000542 -0.000590 20,21 0 0
8,11 0.000018 -0.000014 23,26 0 0
TABLE XIIb
SENSITIVITIES OF |V6| W.R.T. LOAD BUS CONTROL VARIABLES
Total Derivatives Total Derivatives
Bus Bus
Real Reactive Real Reactive
Power Power Power Power
1 0.000416 0.003612 10 -0.000023 -0.000005
2 - =0.000019 -0.000003 11, -0.000516 0.000014
3- -0.000560 0.002894 12 -0.000060 -0.000001
4 -0.000053 0.001956 13 -0.000003 -0.000001
5 -0.000689 0 14 -0.000309 -0.000012
6 0.008807 0.037495 15 0.000224 0.003030
7 0.002370 0.008613 16 0 0
8 - -0.000627 0.000021 17 -0.000633 0.000009
9 -0.000132 0.000007
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TABLE XIIc

SENSITIVITIES OF lV6| W.R.T. GENERATOR BUS CONTROL VARIABLES

Total Derivatives Total Derivatives

Bus Bus

Voltage Real Voltage Real

Magnitude Power Magnitude Power
18 -0.000060 -0.000018 22 0.000124 -0.000594
19 0.760458 -0.001371 23 0 -0
20 0.047441 -0.000697 24 0.021261 0.000579
21 0.008785 -0.000689 25 0 -0.000689

TABLE XIIIa
SENSITIVITIES OF 8y W.R.T. LINE CONTROL VARIABLES
Total Derivatives Total Derivatives

Line Line

Conductance Susceptance Conductance Susceptance
1,3 -0.000192 0.000015 8,21 -0.010632 0.004918
1,4 0.004666 0.004063 9,10 0.002908 -0.007684
1,7 -0.002326 0.002995 9,12 0.000129 -0.001003
1,15 -0.002815 -0.000193 9,14 0.001515 -0.000023
2,10 0.000015 -0.000059 11,14 0.002930 0.000285
2,13 -0.000097 0.000564 11,22 0.000373 0.000195
2,18 -0.000413 -0.000093 12,26 0.000844 -0.001837
3,24 -0.000578 -0.000259 13,26 -0.000046 0.000030
4,21 0.000909 -0.015409 15,20 -0.005599 0.000341
5,21 -0.000368 0 16,23 0 0
5,25 -0.002813 0 16,26 0 0
6,7 0.002793 -0.005164 17,21 -0.013307 0.004458
6,19 -0.000126 0.000021 17,22 -0.004930 0.001574
6,26 -0.002185 0.004555 19,26 =0.003811 0.007994
7,19 0.004486 -0.010855 20,21 -0.000291 -0.000086
8,11 -0.007151 0.005629 23,26 0 0
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TABLE XIIIb

SENSITIVITIES OF §, W.R.T. LOAD BUS CONTROL VARIABLES

y
Total Derivatives Total Derivatives
Bus ' Bus
Real Reactive ' Real Reactive
Power Power _ Power Power
1 0.027288 -0.007064 10 0.009323 0.002098
2 0.007825 0.001294 11 0.210780 -0.005619
3 0.272595 -0.005661 12 0.024345 0.000451
y 0.40u4849 -0.025155 13 0.001304 0.000253
5 0.281369 0 14 0.126244 =0.004725
6 0.081724 -0.000725 15 0.275659 -0.005067
T 0.221138 -0.004001 16 0 0
8 0.256180 -0.857789 17 0.258648 -0.003580
9 0.054047 -0.002763
TABLE XIIIc
SENSITIVITIES OF 64 W.R.T. GENERATOR BUS CONTROL VARIABLES
Total Derivatives Total Derivatives
Bus “ . Bus
Voltage Real Voltage Real
Magnitude Power Magnitude Power
18 0.002431 0.007195 22 -0.050600 0.242404
19 -0.037700 0.081957 23 0 0
20 -0.186725 0.276178 24 -0.041581 0.272557

21 -0.092270 0.281369 25 0 0.281369
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TABLE XIVa

SENSITIVITIES OF 020 W.R.T. LINE CONTROL VARIABLES

Total Derivatives Total Derivatives

Line Line
Conductance Susceptance Conductance Susceptance
1,3 -0.002376 0.001173 8,21 -0,002223 0.001028
1,4 . 0.010104 -0.010808 9,10 0.000608 -0.001607
1,7 -0.008648 -0.004200 9,12 0.000027 -0.000210
1,15 0.002555 0.002178 9,14 0.000317 -0.000005
2,10 0.000003 -0.000012 11,14 0.000613 0.000060
2,13 -0.000020 0.000118 11,22 - 0.000078 0.000041
2,18 -0.000086 -0.000019 12,26 0.000176 -0.000384
3,24 -0.003026 -0.020474 13,26 -0.000010 0.000006
4,21 0.035965 0.020076 15,20 -0.057363 -0.020671
5,21 -0.000077 0 16,23 0 0
5,25 -0.000588 0 16,26 0 0
6,7 0.011300 0.012125 17,21 -0.002783 0.000932
6,19 0.001619 0.001199 17,22 -0.001031 0.000329
6,26 -0.001991 -0.002051 19,26 0.000187 - =0.000392
7,19 0.027808 0.025084 20,21 -0.016253 0.020141
8,11 -0.001495 0.001177 23,26 0 0
TABLE XIVb
SENSITIVITIES OF Q20 W.R.T. LOAD BUS CONTROL VARIABLES
Total Derivatives Total Derivatives
Bus Bus
Real Reactive Real Reactive
Power Power Power Power
1 -0. 125585 -0.559026 10 0.001950 0.000439
2 0.001636 0.000271 11 0.044075 -0.001175
3 -0. 147778 -0.447971 12 0.005091 0.000094
4 -0.047999 -0.303855 13 0.000273 0.000053
5 0.058835 0 14 0.026398 -0.000988
6 -0.016361 -0.043250 15 -0.090397 -0.638373
7 -0, 143159 -0.412030 16 0 0
8 0.053568 -0.001794 17 0.054084 -0.000749
9 0.011301 -0.000578
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TABLE XIVe

SENSITIVITIES OF Q,y W.R.T. GENERATOR BUS CONTROL VARIABLES

Total Derivatives

Total Derivatives

Bus Bus

Voltage Real Voltage Real

Magnitude Power Magnitude Power
18 0.005083 ~0.001504 22 -0.010581 0.050687
19 -1.198785 ~ -0.004018 23 0 0
20 41,0672 0.075446 24 -1.329069 -0. 150827
21 -35.1499 0.058835 25 0 0.058835

TABLE XVa
SENSITIVITIES OF 620 W.R.T. LINE CONTROL VARIABLES
Total Derivatives Total Derivatives

Line Line

Conductance Susceptance Conductance Susceptance
1,3 —0;000192 0.000016 8,21 -0.011203 0.005182
1,4 0.000448 0.000296 9,10 0.003064 -0.008097
1,7 -0.002295 0.002933 9,12 0.000136 -0.001057
1,15 -0.002164 -0.000038 9,14 0.001597 -0.000024
2,10 '0.000016 -0.000062 11,14~ 0.003089 0.000301
2,13 -0.000102 - .0.000594 11,22 0.000393 0.000206
2,18 -0.000436 -0.000098 12,26 0.000889 -0.001936
3,24 -0.000572 -0.000283 13,26  -0.000048 0.000032
4,21 -0.005019 0.000829 15,20 -0.007868 0.004280
5,21 -0.000388 0 16,23 0 0
5,25 ~0.002964 0 16,26 0 0
6,7 0.002757 -0.005050 17,21 -0.014022 0.004697
6,19 -0.000122 0.000023 17,22 =0.005194 0.001658
6,26 -0.002147 0.004467 19,26 -0.003739 0.007844
7,19 0.004441 -0.010616 20,21 0.000016 0.000179
8,11 -0.007536 0.005931 23,26 0 0
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TABLE XVb

SENSITIVITIES OF 620 W.R.T. LOAD BUS CONTROL VARIABLES

Total Derivatives Total Derivatives
Bus Bus
Real Reactive Real Reactive
Power Power Power Power
1 0.267581 -0.007722 10 0.009824 0.002211
2 0.008245 0.001363 11 0.222100 -0.005921
3 0.267275 ‘ -0.006188 12 0.025652 0.000475
4 0.290383 -0.002045 13 0.001374 0.000267
5 - 0.296479 : 0 14 0.133023 -0.004979
6 0.080168 -0.000773 15 0.276482 -0.005600
7 0.216789 -0.004509 16 0 0
8 0.269938 -0.009039 17 0.272539 -0.003772
9 0.056949 -0.002912
TABLE XVe
SENSITIVITIES OF 620 W.R.T. GENERATOR BUS CONTROL VARIABLES
Total Derivatives Total Derivatives
Bus . Bus
Voltage Real Voltage Real
Magnitude Power Magnitude Power
18 0.025614 0.007581 22 -0.053318 0.255422
19 -0.039806 0.080415 23 0 0
20 -0.354038 0.307280 24 -0.045456 0.267232

21 -0.219182 0.296479 25 0 0.296479
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TABLE XVI

CONTINGENCY RESULTS FOR STATES OF 26-BUS POWER SYSTEM

Line Outage State Variable Calculated Change Exact Change

Important Line

2,13 |V6| -0.000 -0.000

Gu 0.008 - ' 0.067

on 0.002 . 0.018

6 ° g L] O

20 0.009 » 0.07

Normal Line

6,7 Ve | 0.002 0.003
64 -0.016 -0.031

Q20 0.024 0.037

§ -0.015 -0.030
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Fig. 1b Modelling of generator branch connected to P, V-type bus
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Fig. 2 Modelling of transformers with complex turns ratio
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