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Abstract

This paper deals with fault isolation in linear analog circuits
with design tolerances on nonfaulty elements and inaccurate measurements
taken into account. Using a single current excitation and corresponding
voltage measurements a system of linear equations is constructed. This
underdetermined system of linear equations is solved using optimization
to find the most 1likely faulty elements. Then, algebraic invariant
equations associated with the estimated faulty set are constructed to

verify the results obtained.
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I. INTRODUCTION

Fault diagnosis of analog circuits [1-15] has received much
attention in recent years. The question of fault location arises when a
circuit, which has already been manufactured, does not satisfy
performance specifications.

There are four main approaches to the problem: constructing a fault
dictionary [2,3], identifying all component values [4-7], constructing
and checking invariants of an assumed faulty set [8-12], and using
estimation criteria [14,15]. The first approach requires the simulation
of different possible faults and storing the results as a dictionary.
It fits in well with the needs of catastrophic fault location. However,
it is unsuitable for multiple soft fault detection. The second approach
requires most nodes of the circuit to be accessible. It cannot,
therefore, be used under the constraint of limited measurements. The
last two approaches are suitable for soft fault location with limited
measurements, but they require most of the circuit elements to be
nonfaulty. This paper addresses itself to these two approaches using a
single test with limited measurements, i.e., when an excitation is
applied and a number of simultaneous measurements are taken. We
consider a current excitation and voltage measurements at a single
frequency.

We present a unified formulation for both approaches. We propose
the use of 1linear programming to solve the resulting problems. In
particular, for the approach of invariants, we extend the method of
Biernacki and Bandler [8]. Their method was based on pre-test construc-
tion of certain algebraic invariants, each of them corresponding to

different combinations of elements suspected to be faulty and then



checking them using the measurements taken. They also provided
estimates when the nonfaulty elements vary inside the tolerance region.
The estimates, however, may be too wide. Here, we extend their
formulation by including tolerances in a more exact way.

For the estimation approach, we have extended and simplified the
method of Merrill [14]. We propose the use of the least one (least
absolute value) objective function and also, by appropriate choice of
error parameters, we obtain a linear relationship fér the constraints.

We are, consequently, able to formulate a linear programming problem.

II. PROBLEM FORMULATION
We consider a linear circuit in the steady state at a single
frequency and having p components. The circuit is excited by a current

source Ig at the input port and & corresponding independent voltages
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are measured.

A change of a component value w.r.t. the nominal can be represented
by a current or voltage source which is in parallel or in series,
respectively, with the element as is shown in Fig. 1. Thus, we have n

1

current sources
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where n s n, + n, is the total number of elements considered as
different from nominal. All other p-n elements assume their nominal
values. If we treat the additional sources §x and Yy as external to the
circuit, as is shown in Fig. 2, then the interior of the circuit is

known, since it consists of nominal components only. Therefore, based

on the principle of superposition we can write the linear relationship
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where the matrix ?m is known and can efficiently be calculated by means
of the adjoint network approach (see Appendix). This is the basic
system of equations which has to be satisfied by the faulty circuit.
Dependently on the number & of voltages measured and the number n of
additional sources considered, the system (4) may be underdetermined,
determined or overdetermined. Because of their essential difference, we
have to treat the latter two cases separately from the first one. If
(4) is determined or overdetermined we can only check whether it is
consistent or not. In particular, we can check if the value of Ig
calculated from the equations is the same as that which was applied. If
it is inconsistent it means that our selection of n elements is not the
proper one., That is why this approach will be called a verification
method.

If the system (4) is underdetermined a solution always exists. It
is our choice to select a solution which could be reasonable from the

point of view of fault location. That is why this approach will be

called an approximate method.



III. THE APPROXIMATE METHOD
In the approximate method we typically consider all the circuit
elements as different from the nominals, most of them being within their

tolerances and some of them far from the assigned tolerances. So we

assume n=p. In order to eliminate Ig, which is always possible, we

consider the nominal measurements which would appear if the network

elements did not deviate from the nominals, i.e.,
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These nominal voltages can be calculated. Now, subtracting (5) from (4)

we get
¥ ¥
- A= |
vt - [H H 2 H . (6)
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In order to find a reasonable solution to the system (6) we propose
to use an optimization technique where the sum of absolute values of
error functions is to be minimized. Such an objective function (least
one approximation) tends to select the minimal number of errors dif-
ferent from zero. This, in turn, corresponds to a reasonable assumption
that there are few faulty elements in the circuit.

Perhaps, the best choice for the error parameters would be to take
direct chahges of the components. However, this would create a non-
linear relationship in (6) and additional variables in the form of
unknown voltages and currents would appear in the problem. Therefore,

taking advantage of the dependence of the additional sources ¥ and vy



on the component value changes we propose to define the error parameters

as
A €1
e = R . (7
- ~2
where
¥ *
A - -
e, = Re and e, = Im . (8)
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Hence, the optimization problem can be stated as follows.

2n
Minimize I |e, | (9)
i=1

subject to the linear equality constraints

m _ = .
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The optimization problem can easily be converted to the regular linear
programming form by an apropriate transformation of the variables.

In (4) it is assumed that the actual values of the voltages
measured are known exactly. However, due to measurement errors the
actual voltage vector which should appear on the left hand side of (4)

differs from V" by a vector
A T
p = [p1 Py o pl] 1)
if p represents the absolute errors, or by

diag (V™) (12)

if p represents the relative errors. Incorporating the measurement

errors, for instance in the form of (11), the constraints (10) become
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which are again linear w.r.t. the variables e and P.

Typically the measurement errors are small and their bounds are
usually known. However, the impact of the exact bounds does not seem to
be very important, at least from the point of view of the approximate
approach. Therefore, for the purpose of the linear programming
formulation we may consider bounds on the real and imaginary parts of P

as
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and so the optimization problem can be stated as solving (9) subject to
the linear equality constraints (13) and the linear inequality
constraints (14).

The optimization problem proposed does not account for chain-
faults, fault correlation or knowledge of the most 1likely areas of
faults. However, this can be done by using appropriate weighting
factors based on the experience and knowledge of the particular circuit

under test.

IV, THE VERIFICATION METHOD
In the verification method we select n elements, n<&, in order to
obtain a determined or overdetermined system of equations (4) and then
we check whether the system is consistent or not.
Assume, for the time being, n=%-1 and gm to be a square nonsingular

matrix. Calculating I8 from (4) we get
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where Ai is the cofactor of the element (i,1) of Hm and A denotes its

1

determinant. The coefficients di1 E Ai1/A can efficiently be
calculated by means of the adjoint network approach (see Appendix). On

the other hand, the applied value of the excitation Ig can be expressed

in terms of nominal "measurements" as

% 0
18- 5 v™Wgq, (16)
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and the consistency of both the expressions (15) and (16) should be

checked.

The exact consistency, however, can appear only if the measurements

v are exact and if all the other p-n elements assume exact nominal

values. Thus, we have to incorporate the measurement error p and the

actual changes 6i1 of the coefficients di1 which are due to the

variation of the p-n elements within their tolerances. So, taking for

instance (11), we have
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instead of (15), with unknown values of oy and Gi The tolerance

1‘
region of the elements supposed to be nonfaulty is defined by

-, < A

i <e ,ieI , (18)
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4 ¢; - ¢g is the change of the ith element value w.r.t. its

where A¢i
nominal, ei is its associated tolerance and I€ denotes the set of

indices of the p-n nonfaulty elements.



Now the consistency of the expressions (16) and (17) requires oy

and 611' i=1,2,...,%, satisfying (14) and (18) such that both the

expressions are equal. It should be noted that although (17) gives the
exact relationship it is a nonlinear function in the unknown variables.
However, for a small tolerance region and reasonably good measurement
accuracy wWe can use the first-order approximation and substantially
reduce the computational effort required. We obtain

g % m m adi1
I® = .Z (Vi di1 + di1 py + Vi .Z 29
i=1 JeIE J

A¢j) . (19

Comparing (16) and (19), after some manipulations, we get

2
2 d,. p. + I a.ap. = b, (20)
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and
2
b= 3 9 - yMya, . (22)
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The sensitivities which appear in (21) can also be calculated using the
adjoint network approach (see Appendix). After separating real and

imaginary parts of (20) we obtain

T

31f'b1

cT - b ’ (23)
2~ 2

where the vector x comprises real and imaginary parts of p and all A¢j

and consists of n+p+2 components.
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If the system (4) is overdetermined, i.e., & > n+1, we proceed
similarly for all independent combinations of n+1 equations to formulate
equations of the form of (23). Putting all the equations into one

matrix equation we get

[N o]

x =B . (2u)

The equation (24) together with (14) and (18) determine the consistency
in question. In other words, if a feasible solution exists we consider
(4) as consistent and simultaneously we verify the n selected elements
as a possibly faulty set. If no feasible solution exists we can be sure
that one or more faulty elements exist besides those selected.

In order to find a meaningful feasible solution, we propose to use

a linear programming formulation of the form

minimize f(x) (25)

subject to the linear equality constraints (24) and linear inequality

constraints (14) and (18), where f(x) is a suitable linear function of

X.
V. CALCULATION OF FAULTY ELEMENT VALUES
After solving (9) by the approximate method or (25) by the
verification method we may be interested in calculating the component
values corresponding to the solution obtained.
The solution of (9) gives us the vectors I* and V' of the addi-

~

tional sources. Simulating the nominal circuit with I* and V’ together
with Ig we calculate all the voltages and currents which appear in ¥
and Vy (see Fig. 1). Then, we can easily calculate the change A¢j of

every component and check it against its tolerance. If the change
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violates the tolerance, we consider the corresponding element as faulty.
If the value calculated is within the tolerance then the element is
treated as nonfaulty. However, if the tolerance is slightly violated,
we decide whether or not to apply the verification method. If the
decision is sufficiently sharp we do not need to verify the combination
selected.

The verification method does not supply the vectors }x and Vy.
They can be calculated from (4) after correcting AYm by P and

recalculating Hm taking into account the changes A¢j obtained from (25).

VI. EXAMPLES
Example 1
Consider the ladder network shown in Fig. 3 with nominal values of
elements Gi = 1 and tolerances e, = *0.05, i =1, 2,... ,5. Assume that
the network is excited at the port 11' and voltage measurements are
taken at the ports 11', 22' and 33'. For Ig = 1A the nominal responses
0 0 0

are V11, = 0.625V, V22, = 0.25V and V33, = 0.125V.

1. The Approximate Method

Using the three available measurements we have three equations in
five unknowns. We solve this underdetermined system by the optimization
formulation proposed in (9) and (10). We have taken the network

elements to be G, = 1.02, G, = 0.5, G, = 0.98, G = 0.95.

1 2 3 4 5
It is clear that element 2 is faulty and all other elements are within

= 0.98 and G

tolerances. Exciting the network at port 11' with Ig = 1A , we obtain

the measured values V11' = 0.718V, V22' = 0.183V and V33' = 0.093V. The

linear program gives the changes AG1 = 0.0, AG2 = -0.473, AG3 = 0.0331,

AGU = 0.03 and AG5 = 0.0. It is clear that the change in the second
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element violates the corresponding tolerance and we consider it faulty,
which is a correct conclusion.

2. The Verification Method

The approximate method detects G2 as faulty. We have applied the
verification algorithm with a single fault hypothesis. From the three
measurements, two equality constraints are constructed. Using the
optimization formulation (24) and (25) with p =0 and f(f) = ij |A¢j|’

€
we first check whether G2 is faulty. The linear program gives a
feasible solution. We have also checked the single fault hypothesis for
the remaining 4 elements. No feasible solution was found. This
confirms that the second element as detected by the approximate method
is really faulty.

Carrying out the proposed calculations for obtaining the faulty
element value, we find that G2 = 0.532, which is very close to the

actual value. The values differ because the feasible tolerance vector

found by the linear program is not the actual one.

Example 2

Consider the active filter shown in Fig. 4 with the nominal element
values G1 = G2 = 1, C1 = C2 = 1 and K = 1. Also, we assume that the
amplifier has an output conductance Gout = 1. All elements are assumed
to have design tolerances of 15%. We excite the network by a current
source Ig = 1A and its source resistance is assumed to be fault free, Rg

= 1. We take ports 11', 22' and 33' as our ports of measurement.

1. The Approximate Method

In this example we have five sources of error. We have available,

in general, three complex measurements. Following our formulation, we
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have 6 equations in 10 variables. We considered G1 = 0.5, G2 = 1.02, C

= 0.98, C2 = 0.5 and for the amplifier K = 1.02 and Gou

following changes in the elements are given by the linear program:

1

£ = 0.98. The

| AG 0.5, |4AG 0.0185, [4C.| = 0.039, |AC 0.487, |AG

b= ol = ol = out !

0.081 and |&K| = 0.0.

The changes 1in C2 and G1 substantially violate the design

tolerances so we assume them faulty. Also, the change in Gout is

slightly 1larger than the assigned tolerance so we are not certain

whether or not it is faulty.

2. The Verification Method

We have applied the verification method to check whether or not G1
and C2 are faulty. We have three measurements (complex), therefore we
have four equality constraints. Using the same approach as in Example
1, the program gives a feasible solution corresponding to the
combination of G1 and C2. This confirms that they are faulty and we can

exclude G0 from being faulty. We have checked the remaining 9

ut
combinations for the double fault hypothesis and no feasible solution
was detected. The calculated element values are G1 = 0.5 and C2 =

0.488, which are very close to the exact values.

VII. CONCLUSION
We have presented a method for fault location in linear analog
circuits taking into consideration the tolerances on the nonfaulty
elements and the inaccuracy in the performed measurements.
An underdetermined system of linear equations is constructed. This
system of equations relates the change in the performed voltage

measurements to an appropriate set of error parameters. Each error
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parameter 1is related to the deviation of a corresponding network
element. Under the assumption that only few network elements are
faulty, we utilize linear programming for solving the underdetermined
system of equations. The objective function is the sum of the absolute
values of the error parameters. This least-one objective function tends
to single out very few error parameters with larger values compared to
the other parameters, which agrees with our physically realistic
assumption.

The results obtained from the linear program indicate whether or
not we need to consider the verification phase of the method, where we
construct algebraic equations invariant on the faulty set. We extended
the formulation of Biernacki and Bandler [8] to consider the effects of
nonzero tolerances on the nonfaculty elements and imprecise values of
the performed measurements. We compensate for the uncertainty caused by
the aforementioned effects by constructing as many independent algebraic
invariant equations as possible from the available voltage measurements.
First-order changes caused by these effects are considered in the
algebraic invariants. This yields a system of linear equations. Linear
programming is utilized to solve this system of equations subject to
feasibility conditions on the tolerances and the measurement errors.

Utilizing the approximate method to locate the most likely faulty
elements and then verifying the results when they are not sharp enough,
we have, in general, enhanced the reliability of the approximate method

and reduced the computational burden of the verification approach.
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APPENDIX

The adjoint network concept is utilized to compute the required

coefficients to construct equations (4), (15) and (19). wWith I®z0, 1%:0

and vW=0 the adjoint equations to (4) are given by

oA r
g W T )
v g
vl el | ™-8 1™, (A1)
~ ~mXx ~ ~Mmoo
-1 BT
L - J L ~my J

Connecting a current source to the ith measurement port and

~

Vx and the currents Iy, we get the elements

of the ith columnh of the matrices HT , HT and HT .
~mg .mx ~my

calculating the voltages Vg,

Repeating for all

measurement ports, all coefficients of (4) are directly obtained.

In general, H
m

~

is a nonsingular square matrix. Solving (A1) for

the ith measurement current IT we get

n.+1
I, =d,, V> + I d.. (v, ) + b d,. (- I% .) . (A2)
i 11 j=2 Jjiv j-1 jen. +2 ji J-1

1

Applying 2%=n+1 independent excitations to the measurement ports of

the adjoint network we get

PER M~ )
“m1 g1 "x1.T Sy1.T | D
Ii v [Y 17 [- E ] d1i
. =1{. . . . (A3)
1 || vet XA o VAT .
1 ~ ~ i
L J L JU J

or, more compactly,

(A4)

H

1]
1=
Q)
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where the superscripts 1 to & stand for the & independent excitations.
Since di1 = 811 , di1 can be computed by solving (A3). For different
values of i, the g matrix will be the same and only the LHS of (A3) will
change. Using the appropriate LHS in (A3) all the coefficients of (15)
can be computed.

The sensitivities of di i=1,24y...,%, relative to the nonfaulty

1 9
circuit elements are evaluated by computing the sensitivities of the
elements of the matrix R w.r.t. the nonfaulty elements. These

sensitivities are directly obtained using the adjoint network concept.
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Fig.l An equivalent representation for changes in element values.
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