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Abstract

This papen deals with the postproduction tuning assignment problem

for electrical circuiits.

utilize sensitivity data is presented.
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Finally, we test three of the algonithms

considened by examining their performance in tuning an active
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1. INTRODUCTION

Postproduction tuning is often essential in the
manufacturing of electrical circuits. Tolerances
on the circuit components, parasitic effects and
uncertainties in the circuit model cause deviations
in the manufactured circuit performance, and
violation of the design specifications may result.
Therefore, postproduction tuning is included in the
final stages of the production process to readjust
the network performance in an effort to meet the
specifications.

Computer-aided designers have approached the tuning
problem in two ways, each emphasizing one distinct
facet . Before production, at the time of
designing a circuit, one can consider tuning as an
integral part of the design process [1,2]1, the
objective being to relax the tolerances on the
circuit components and compensate for the
uncertainties in the model parameters. The
integral design problem is formulated and solved
using optimization such that the essential demand
of production cost reduction is optimally met. The
solution of the design problem provides the manu-
facturer with the allowed design tolerances and the
tunable parameters.

In_ the final production stages, the manufactured
circuit is usually tested to check whether or not
it meets design specifications. Tuning is usually
needed and the tuning assignment problem arises.
Here, it is required to find the necessary changes
in the tunable parameters to adjust the manufac-
tured circuit to satisfy the design requirements.
Computer-aided designers contributed to this
problem by proposing a number of algorithms [3-14].
Most of these algorithms wutilize network
sensitivities and first-order approximations.

This paper mainly reviews the basic tuning
assignment methods with emphasis on algorithms
which employ network sensitivities. We first start
by considering the relevant fundamental definitions
and concepts together with the points under which
the methods could be categorized. In practice, one
of two classes of methods for tuning is usually
employed. We devote Section 3 to functional tuning
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algorithms, where a very recent algorithm developed
by the authors [14] is also presented. In Section
4 we discuss deterministic tuning algorithms. A
practical active filter example is considered in
Section 5, where we put under test three of the
recently developed algorithms.

2. FUNDAMENTAL CONCEPTS

The manufactured circuit is characterized by the
actual design parameter values which are given by
a a a a,T
¢ = Loy o, e o s (@D)]
where Pqgr bor eeen O denote the n design
parameters. f%e parasitic effects associated with

the produced circuit can be represented by the
additional variables

A T
gp = [¢n+1 Ppep * o ¢p] . (2)

A subset of the design' parameters is used for
tuning. Let
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represent the tunable circuit parameters and let
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designate the nontunable parameters.

A set of performance functions of gt’ Qr and ¢
given by P
A T

[§3 f, ... £17, (5)
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are usually monitored during the tuning process.
These functions may or may not be related directly
to the circuit design specifications.

The objective of the tuning assignment problem is
to find the required changes in the tunable
parameters, namely ¢, such that the performance
functions f satisfy tﬁe designer requirements.

Since the changes in the tunable parameters are
predicted to be small, the first-order
approximation is utilized in most tuning algorithms
to estimate the changes in the error functions and
to provide the required tuning amounts A¢ . The
first-order change in the functions f is given by
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where 3 defines the sensitivity matrix whose (i,jJ)
element is given by

A X af‘i
5., % ¢, — (7
ij 3 20y

and is computed for a suitable network model (gt.
g:. g:). % 1s the vector of the relative change in

the tunable parameters A¢j/¢§_

Several criteria have to be considered to form a
basis for categorizing methods for tuning. Without
being exhaustive one may list the following points.
Either the network response is employed directly or
auxilliary functions are considered instead. This
determines a possible choice for the performance
functions. In computing the amount of tuning
either a point matching problem is solved or an
iterative optimization procedure is carried out.
The extent of the information available about the
circuit to be tuned, namely, the circuit model and
the circuit parameter values must be considered.
One distinguishes at this time between functional
and deterministic tuning. The way in which the
sensitivity matrix S is to be evaluated needs
consideration. Either partial derivatives,
incremental sensitivities or approximate
derivatives are employed.

The categories that emerge from the foregoing
points are related to each other. It has been
customary, however, to distinguish the methods
principally according to whether or not the circuit
parameters are known. We adopt the same philosophy
by considering in the next two sections functional
tuning and deterministic tuning methods.

3. FUNCTIONAL TUNING APPROACH

Functional tuning is the traditional way of tuning
electrical circuits. After manufacturing and
assembling, the circuit performance specifications
are checked. If tuning is necessary a sequence of
tunable parameter adjustments is carried out until
the specifications are met. In functional tuning
methods the network elements are generally assumed

unknown, for example, it may be difficult to
measure or identify the actual circuit element
values.

Functional tuning is obviously suitable when the
sensitivity matrix S is diagonal [9]. For every
performance function there is a separate tunable
parameter for its adjustment. The tuning process
is noniterative, very fast and does not need a
skillful operator. Normally, S is not diagonal,
but if it can be arranged to be triangular or
diagonally dominant [9], then the tuning process is
carried out in a certain specified sequence to
reduce the iterative adjustment of the tuning
elements. The reported success of this method is
consequently confined to small and simple circuits,
and when the circuit design is specifically chosen
with appropriate tuning in mind.

Shockley et al. [10] proposed the evaluation of the
tuning amounts by the direct inversion of the
sensitivity matrix. The tuning amounts are

directly given by
x =8 af. (8)

In their implementation for tuning an active filter
they used the zeros, poles and the gain factor of
the transfer function as performance functions.
From the measurement of the transfer function at a
number of critical frequencies, equal to the number
of poles and zeros plus one, the coefficients of
the transfer function are evaluated. Then, a root
finding routine is used to find the actual values
of the zeros and the poles. The variation of these
values from nominal define the vector Af and the
nominal sensitivities could be used to construct
the matrix §. Although the method is simple, it
suffers from ill-conditioning due to the
inaccuracies encountered in computing the poles and
Zeros. Also, as reported in [10], the method
completely fails when the changes in the
manufactured elements are not small enough to
permit the use of the differential sensitivities.

To overcome the drawbacks of the previous method
Adams et al. [11] and Miller [12] suggested the use
of auxilliary functions which are almost linear in
the tunable parameters. The suggestion is quite
important, but it is difficult to determine these
functions for a general design. Also, on the
assumption that the number of tunable parameters is
less than the available measurable performance
functions, they have used the linear least squares
optimization for estimating the tuning amounts.
This provides a closed form solution which is given

by
% = 8" af, 9

where §+ is the pseudoinverse matrix defined by

*eisTart st (10)
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and the rank of S is assumed to be equal to the
cardinality of the vector Xx.

The method is usually applied iteratively [11, 12]
and is reported to have very fast convergence.
But, as pointed out in [13], the unconstrained
solution often requires an adjustment which is
infeasible either in magnitude or direction. The
least squares solution should then be constrained
and gradient search techniques employed to
determined the best constrained solution.

Very recently, another approach which utilizes the
response measurements as well as the simulated
network sensitivities has been developed [14]. The
method is based on formulating the tuning process
as a linear minimax optimization problem. If we
assume that the performance functions f represent a
set of error functions the tuning problem can be
recast as

Minimize Xy 1 (11a)

subject to
k X afi
f + 3 ¢.——‘X.<x ,i=1, ..., m, (11b)
i . 3¢ . = Ak+1
J=1 J ¢J J
Ej < X < Ej, =1, o, k, (11e)
where is an additional variable. The linear

constraints (11c) define the limits on the tuning



amounts in size and direction. They play a very
important role here since they guarantee the
validity of the linear approximation and the use of
the partial derivatives. The functions f, are
obtained by directly measuring the response, ‘and a
new set of the measurements is needed for a
subsequent iteration. The direct measurement of
the functions f. compensates for the deviations
resulting from the inaccurate adjustment of tunable
elements and the utilization of the approximate
partial derivatives. The network sensitivities are
evaluated yusing a good approximate model of the
network ¢ , and they can be updated after each
iteration using the Broyden rank one updating
formula [15]. The linear program (11) is solved
for the amounts of tuning required. The tunable
elements are adjusted by that amount to the extent
possible. The iterative tuning procedure is
carried out until an optimum is reached or the
amounts of tuning for all elements cannot be
implemented practically. The method optimally
utilizes the measurements and the simulated network
sensitivities during the tuning process, and it
converges in few iterations [14].

In general, functional tuning methods are not fast.
Deterministic tuning methods are considerably
faster although they require much more information.
In the next section we examine quite closely the
deterministic methods of tuning.

4, DETERMINISTIC TUNING APPROACH

Deterministic tuning is primarily proposed to
simplify the tuning assignment problem and
eliminate the iterations needed in the functional
tuning approach. It is usually carried out by
measuring all the parameters of the manufactured
network and the possible parasitic effects. Then,
a matching procedure is carried out, where it is
required to match the performance functions by
varying the tunable parameter values. A system of
nonlinear equations usually results and for special
simple problems [7] a closed form of the required
tuning amounts can be obtained.

In general, a closed form expression of the
required tunable amounts is usually not available
and even if it does exist it needs a formidable
algebraic manipulation task [7]. Most of the
recently developed deterministic tuning algorithms

utilize network sensitivities and first-order
approximations.

Deterministic tuning suffers from the need of
supporting hardware for measuring the components
and the parasitic effects. Also, the network model
used should quite closely simulate the actual
performance of the manufactured circuit and this
necessitates the consideration of all possible
parasitic effects, which is impossible. So
functional tuning is usually utilized after the
network is deterministically tuned to improve the
circuit performance [81].

As a matching problem, the tuning assignment
problem is not well posed, i.e., a solution may or
may not exist using the set of the tunable
parameters chosen and if it exists it may not be
unique. The problem of uniqueness is usually less
important than the problem of existence. Lopresti
[4] eliminated the problem of existence by
formulating the problem using discrete optimal
control theory. The algorithm was originally
considered for the tuning of hybrid active filters,

but it can be applicable to any filter with the
appropriate choice of performance functions. In
his implementation of the algorithm for the active
filter case he used the transfer function
coefficients as his performance functions to be
matched. Recalling equation (6) the deviation of
the performance functions after tuning from their
nominal values is given by

o o k of b9,
sf=f- £ (2 - 10 4+ 1 o - (12
~T R~ ~ ~ ~ . j3g. .x

j=1 J ¢j

where go represents the nominal values of the
transfer function coefficients and ga gives the
actual values of the coefficients before tuning.
The above differential function can be rewritten as

X . = X, S. X:e J =1, «oey k, 13a)
Xy =33 % %5 %50 d “3
x, = £ - 10 (130)
where
« 28
S, = ¢, — . (13c
2579 3 3 3e)

The partial derivatives are evaluated for the
nominal circuit and Xj is defined as before.

The tuning problem can now be stated as a quadratic

optimal control problem as follows. Minimize
k
T 2
Bear S X ¥ LR aw

subject to (13). The second part of the objective
function penalizes the excessive tuning amounts and
guarantees the uniqueness of the solution.

A closed form solution is obtained using the
Riccati equation [4]. If a solution to the
deterministic tuning problem exists the objective
function will have a zero value. Otherwise, it
will approach zero as closely as possible. The
process could be performed sequentially by
measuring the tunable elements after adjustment and
recalculating the new values of the tuning amounts
accordingly. This will partially compensate for
inaccurate element adjustment and an imprecise
circuit model. The matrix Q plays a very important
role in this process and an intelligent choice of
its elements will be important for the success of
this approach. In our implementation of the
process, which will be reported on in the next
section, different matrices were tried before a
reasonable solution was obtained.

Another quite successful deterministic tuning
algorithm has been proposed in [5], which is based
on the observation that the first-order
approximation which utilizes differential
sensitivities is not always reliable. It utilizes
Tellegen's theorem to derive a large change
sensitivity expression, relating large changes in
the tuning elements to the desired changes in the
performance functions in the manufactured circuit.
The response of the filter is matched to within a
multiplicative constant. Both the multiplicative
constant and the tuning amounts are obtained
through solving a system of linear equations.
Recalling (6), this system of equations is given by

0

Sx=cf -f2, (15a)
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where f£ represents the nominal output voltages, £
the actual measured values defined at a set of
eritical frequencies and c¢ is the unknown

multiplicative constant. The matrix 3 should be
nonsingular and this will restrict the number of
the tunable elements and the number of independent

performance functions £ needed.

The matrix S is constructed such that its elements
approximate the large change sensitivities. Since
the initial state of the circuit is known from the
direct measurements of the circuit parameters and
the final desired state is almost known (approxi-
mately it could be considered the nominal state),
an approximate expression of the incremental
sensitivities can be easily derived [5]. In
general, the algorithm seems to be very efficient
and very simple at the same time. But it has the
disadvantage of any matching technique, where there
is no control over the tuning amounts, hence
infeasible tuning amounts may result. In the
examples considered [61, the algorithm performed
quite well and the author came to the conclusion
that the use of the large change sensitivity
expressions together with the appropriate choice of
tunable elements are the principal reasons for
their success.

5. EXAMPLE

The two deterministic tuning algorithms we have
reviewed and our newly developed functional tuning
algorithm are tested by applying them to the same
network example which originally appeared in [61.
The highpass notch circuit is shown in Fig. 1. The
nominal circuit component values and the actual
circuit values are given in Table I.

Fig. 1 The highpass notch filter circuit

We first applied the deterministic tuning algorithm
proposed by Alajajian [6]. Four resistor elements
are chosen as the tunable parameters, namely R»
R, R6 and R_., To construct equation (15), the
ogtput voltage of the filter is considered at three
eritical frequencies 450.38, 636.94 and 676.75 Hz.
Using Tellegen's theorem (15) can be rewritten as

3 X . oA . .

i i i =i i
z AV ' G -c¢cV = =V 6
o= (Vy + l) g b 27 ¢ Yout out”’ (16)
where i = 1, 2, 3, correspond to the three

considered critical frequencies. Vl and V, are the
branch voltage of the tunable parameters in the

TABLE I
ELEMENT VALUES

Percentage
Element Nominal Value Actual Value Deviation
R1 (k<) 13.260 13.260 0.0
R2 (k) 93.0 93.0 0.0
R3 (k) 214.0 192.6 -10.0
R‘4 (kQ) 2.0 2.0 0.0
Ry (ki) 2.0 1.8 -10.0
R6 (k) 12.467 11.221 -10.0
R7 (k) 10.00 9.00 -10.0
C, (k) 0.01 0.00973 -2.07
C2 (uF) 0.01 0.00965 -3.35
A 10000.0 10000.0 0.0

original circuit and its adjoint before tuning,
respectively. V and V are the actual and the
desired output V%T%ages, 9espective1y. Vl + AV, is
the tunable branch voltage after tuning which can
be approximated by the nominal branch voltage.
Solving (16) we get the required changes in the
tunable parameters and the factor c. After three
jterations the tuned response approached the
nominal response very closely. The responses
before and after tuning are shown in Fig. 2.

201
nominal response
-eoo- bafore tuning
joF =~ after tuning

voltage gain dB

~60 500 600 700 800

1 1
300 400

frequency Hz

Fig. 2 The responses for the Alajajian algorithm
(Method 1)

Secondly, we considered the other deterministic
tuning algorithm proposed by Lopresti [4]. The



transfer function of the filter considered is given
by

a7

0.5, b, = 0.0, b, = Ux106, a
6 1 0 1
16x10°.

and a_ = Due to the wide variation in the
tunabge parameters frequency scaling was necessary.
With § = 1000s the coefficients will become b2 =
0.5, b, = 0.0, b_ = 4, a 0.5 and a, = 16.0. To

1 0 1
. T
construct (13) we define f [a1 a; b, b, bO] , and

we need to find the corresponding sensitivities.
We followed an approach other than the one proposed
in [4]. Equation (17) can be rewritten as

where b2 = = 500.0

np> "

s2 —b,s - b, = -s°T(s). (18)

a1sT(s) + aoT(s) - b2 1 0

We use (18) to find the transfer function
coefficients by evaluating T(s) at five independent
frequencies. Also, by differentiating both sides
of (18) w.r.t. the tunable parameter ¢j we get

da da ab
1 0 2 2
s T(s) — + T(8) — - 8" —
3¢ . . 3¢ .
'y 395 05
ab ab
1 0 2 9T (s)
-8 T -7 2z==(s + a,s + a,) —— (19)
. . 1 07 3¢,
35 99y ¢
which is wused in finding the coefficient

sensitivities, or the vector s. defined in (13c).
The sensitivities are evaluated using the actual
circuit parameter values. This improved the
performance of the algorithm. As was pointed out
before, the algorithm is sequential in nature:
after adjusting every tunable element we
recalculate the sensitivities and find the newly
required tuning amounts using the Riccati equation
[u]. The weighting factors considered in the
objective function need careful choice to emphasize
the effect of the different transfer function
coefficients. In our implementation we took Q =

diag {4.0, 0.04, 4.0, 10'%, 0.0625} and v, = 0.001.

The results of applying this algorithm to the same
circuit which is considered before and using the
same tunable parameters is shown in Fig. 3. The
tuned response approaches the nominal response and
yields acceptable results. The algorithm can be
applied iteratively and an improved response may
result.

Finally, we tested the functional tuning approach
proposed by us [14]. To construct the optimization
problem defined in (11) we defined the functions f,
as the absolute deviation of the output voltag
from its nominal value at 20 frequencies defined in
the interval 410-505 Hz, where the notch lies. The
limits given in (11c¢) are restricted to be bj = -aj
= 0.02. After 11 iterations the tuned responses
very closely approached the nominal response, as
shown in Fig. 4. The sensitivities are updated
after every iteration using the Broyden formula and
the initial sensitivities are computed with the
components at the nominal starting values. A
tunable amount less than 0.1 percent is assumed to
be infeasible and no adjustment is carried out for
the corresponding tunable parameter.

The final values for the four tunable resistors for
the three tuning algorithms are given in Table II.

nominal response
......... before tuning
|Of ———- after tuning

voltage gain dB

-60

300 400 500 600 700 800
frequency Hz

Fig. 3 The responses for the modified Lopresti
algorithm (Method 2)

20~
nominal response
-------- before tuning
10 ——— after tuning

dB

voltage gain

n

800

~60— 3650 300 500 600 700

frequency Hz

Fig. 4 The responses for our algorithm
(Method 3)

Method 1 is our implementation of Alajajian et al.
[5]. Method 2 is our modification of Lopresti's
method [4]. Method 3 is our approach [14].

6. DISCUSSION

The results of the example have affirmed and
clarified a number of important points. As was



TABLE II
RESULTS OF TUNING

Tuned Method 1 Method 2 Method 3

Element (5] [u4] [14]
R3 192.94 184,487 201.952
R5 2.2459 2.241 2.115
R6 13.892 13,747 13.061
R7 1.006 0.9993 0.9730

first pointed out by Pinel [16], network

sensitivities can provide a valuable tool for
network tuning. Deterministic tuning methods that
utilize network sensitivities are normally superior
to functional tuning methods. The more information
we have about the network to be tuned the more
efficient the functional tuning methods will be.
We have utilized this fact in our functional tuning
algorithms. We have assumed that a good starting
approximate model for the circuit is available to
derive the network sensitivities. Updating those
sensitivities during the tuning process improves
the initial assumed values, and a better
approximation of the actual sensitivities is
obtained after each iteration. The results
indicate how the algorithm converges to the optimal
solution, but the number of iterations are greater
than for the other two deterministic approaches.

Lopresti's original algorithm suffers from two
drawbacks which we have eliminated during our
implementation of his algorithm. We used another
more efficient and easily programmable algorithm
for obtaining the transfer function coefficients
and their sensitivities. Instead of using the
nominal sensitivities, the actual sensitivities are
utilized since the network element values are all
known . Also, we update the sensitivities after
each parameter adjustment and recalculate the
required tuning amounts using the Riccati formula.
The results obtained using the nominal sensitivi-
ties showed inferior performance compared with the
results obtained using the modifications.

Large change sensitivities seem more promising than
the differential sensitivities for deterministic
tuning methods. This appears very clearly in the
results obtained by Alajajian and in our implemen-
tation of his algorithm. The formulation of the
tuning problem as an optimization problem provides
a means for employing the different physical
circuit constraints directly, especially for the
functional tuning methods. The point matching
scheme seems adequate for deterministic tuning
methods .
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