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Abstract

This paper neviews i{mportant approaches to sensitivity caleulations

in power system analysis and design probLems.

We employ a undfdied

notation to classify, describe and compare methods of evaluating
finst-onder changes and reduced gradients of functions of {nterest
with nespect to power Aystem control and design variables. The
contribution of these methods to sofving some practical probfems (s

- als0 outlined.

1. INTRODUCTION

In the context of steady-state computer-aided power
system analysis and planning, functions of system
variables are routinely defined in various studies
to incorporate cost criteria, security assessment,
reliability indices, etc. The system variables are
related through a set of equality constraints
representing, for example, power flow equations.
Inequality constraints may also be defined to
indicate, for example, physical limitations on
practical variables.

The ratio between a small change Af in a function f
which may denote a dependent variable and a related
small change Au, in an independent variable u,
indicates [1] thd sensitivity of f with respect td
u,. This ratio is generally a function of other
system variables. It is very valuable in numerous
power system analysis and planning problems [2].
Using the Taylor series expansion, which relates Af
to increasing powers of Au., the change in f may be
calculated to any degree of accuracy.

First-order changes of functions of interest play a
very important role in sensitivity calculations not
only because they are relatively easy to calculate
but also due to their direct contribution to
gradient evaluations required by most optimization
techniques used in different planning studies [3].

The use of second-order sensitivities, although
requiring more elaborate calculation, also finds
applications in investigations of the sensitivity
of a function w.r.t. certain variables at an
optimal soluticn represented by a stationary point
of the function w.r.t. these variables.

In this paper, important methods of sensitivity
analysis and reduced gradient evaluation in power
system operation and planning problems are
classified and described in general. The notation
used and the modes of formulation which contribute
to developing a successful sensitivity approach are
presented. Applications to some practical power
system problems are also discussed.
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Engineering Research Council of Canada under Grant
AT7239.
¥M.A. El-Kady is now with Ontario Hydro, Toronto,
Canada.

Due to the inherently large size of power networks,
with various branch types, simplicity of derivation
and formulation, flexibility in modelling different
components of the power system and efficiency in
computations represent basic requirements for a
successful sensitivity approach.

Some techniques [4-7] address the previous
requirements by approximating the a.c. load flow
model describing the steady-state behaviour of the
power system. Other methods [8-10] employ the
exact a.c. load flow model. In some applications
[11] both exact and approximated models have been
used. The elements of the Jacobian matrix of the
load flow solution are exploited in some approaches
[8,10,12] while the flexibility in modelling
different power system elements provided by using
suitable network theorems is gained in others

[3,61.

2. NOTATION

The different interpretation of the variables used
to describe various power system components in
equations poses a difficulty in choosing a suitable
notation which facilitates the derivation and
subsequent formulation of equations and expressions
employed [11].

2.1 State Variable Notation

The most successful notation used in describing the
power flow equations and other physical constraints
and interpreting the relationships between
different variables is the state variable notation

[1,12,13] commonly used in control theory.
Throughout the paper this notation, which
contributes significantly to an easier

understanding of the equations, will be used.

The control or design variables are denoted by the
column vector u of n_ components. We also denote
by the n_ - component vector x the state variables
or the dependent variables to be determined by
solving the set of equality constraints, denoted by
h(x,u) = 0, describing the steady-state behaviour
of “a particular power system.

2.2 Classification of Independent Variables
In the 1literature, the vector u may be either

classified further [3] into subvectors associated
with different bus and line branches in the power



network or restricted [8] to represent only the
practically controllable variables, e.g., the real
power at a generator bus while some other
variable%, called fixed parameters, are assigned
other symbols.

In general, we shall use u to denote the
independent variables to be specified in the
equations describing a particular system. We may
classify u and x, Wwhenever necessary, into
appropriate subvectors associated with different
power system steady-state component models [14].

3. GENERAL FORMULATION
3.1 Power Flow Equations

Most of the literature in the area of power system
analysis and design employs the real mode of
formulation to describe the power flow equations
and to derive, subsequently, the sensitivity
expressions required in a particular study.

The power flow equations [15] are basically
expressed in the complex form

n
vm f:] (Ymi Vm) = Sm'

1

where Vrrl is the mth bus voltage, Ymi is an element

of the bus admittance matrix [14], Sm = Pm + ij is

the mth bus power, Pm and Qm denoting, respec-

tively, the injected real and reactive powers, j =
V=T, n denotes the number of buses and ¥* denotes
the complex conjugate.

The variables in (1) are, generally speaking,
functions of the state x and control u variables of
the system. Equations (1), whether written in the
rectangular or in the polar form [15] are usually
separated into real and imaginary parts in solving
the load flow problem.

3.2 The Real Mode of Formulaticn

The real mode of formulation has been suggested
upon the application [15,16] of the well-known
Newton-Raphson method, which is superior in its
quadratic convergence and ability to solve
ill-conditioned problems, to the solution of the
load flow problem. The reason [17] is that the
Newton-Raphson method is a derivative-based method
and, mathematically speaking, the complex load flow
equations are nonanalytic and cannot be differen-
tiated in complex form. In this respect, it has
recently been shown [3,18] that the Newton-Raphson
method can also be applied to the compact complex
form of power flow equations.

The subsequent sensitivity calculations have been
automatically performed in most of the literature
in the same real mode.

3.3 First-Order Changes of Functions and
Constraints

In general, we write the first-order change of a
continuous function f in the form

. n
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where § denotes first - order change, Xy is the ith
state variable and u,_ is the kth control variable.
We also write the first-order changes of the set of
equality constraints h(x,u) = 0 in the form

Oy en, "y an,
sh, = I (Tlsx.) + I ( ET{J su) =0, (3)
N T L T R Y "

j =Ty eeey nx,

where hj denotes the jth equality constraint.

The basic forms (2) and (3) are essential for the
techniques employed to evaluate total derivatives
of f w.r.t. u by expressing &f solely in terms of

the suk.

4, METHODS OF SENSITIVITY CALCULATIONS

Excluding the method based on approximate explicit
expression of x in terms of u [19], there are
basically three methods for eliminating 8x from (2)
and (3): the sensitivity matrix method, the adjoint
or Lagrange multiplier method and the method based
on Tellegen's theorem [20,21].

4,1 The Sensitivity Matrix Method

In the sensitivity matrix method [1,8], *the
sensitivity matrix S is defined by
R an' L -1 oan'
§:-[(BT)] (aT'), ()

where (aQT/ag)T and (anT/ag)T are the Jacobian
matrices of h w.r.t. x and u, respectively. Hence,
from (3)

§x = S &u, (5)

where §x and §u are column vectors of éx; and 6u ,
respectively, of (2).. Substituting (5) "into (2'5‘.

we get
af T af T
6f=[—a-a'+§ B_X] Gl:l.. 6)
from which
df af T af
ﬁ = T + S . 7)

The application of the sensitivity matrix method
requires n__ repeat solutions of a system of linear
equations formed from (4) for the elements of S.
This task usually makes this method less preferable
[8] unless the sensitivity matrix is needed for

other purposes.
4.2 The Method of Lagrange Multipliers

The method of Lagrange multipliers [8,13] is the
most common one not only because it requires only
one solution of a set of linear adjoint equations
(as compared with the sensitivity matrix method)
but also because it wutilizes, in various
applications, the elements of the Jacobian matrix
available from the basic load flow solution.

The Lagrange multiplier method is commonly referred
to for a general set of equality constraints [22].
When the equality constraints represent power flow



equations,

the method may be interpreted as an
adjoint network method [23].
The Lagrange multipliers are defined by
T
ah” -1
A - af
} = ( T ) X ° (8)
hence, from (2) and (3)
T
3h
sr= 2L (=) T 9
T T au 3u - o
from which
T
ar _ar B

= . (10)

In practice, the set of linear equations formed by
(8) is solved for the Lagrange multipliers ) and
the first-order change and total derivatives of f
are then calculated from (9) and (10),
respectively.

When the set of equality constraints h(x,u) = 0
represents the power flow equations (1), the 2n X
2n matrix of coefficients (3h /3x) of (8) may
constitute the transpose of the Jacobian matrix of
the load flow solution by the Newton-Raphson
method. The exploitation of this fact necessitates
expressing f in terms of X which, in this case,
represents 2n bus quantities (the unknown variables
in power flow equations). Transformations are
required to handle functions of other variables,
e.g., line variables.

We remark that an extended vector x which contains
all variables of interest can be defined [22] so
that general functions of line quantities may be
directly handled. In this case, the size of the
matrix of coefficients in (8) is determined by the
total number of states considered.

4,3 Method Based on Tellegen's Theorem

The method based on Tellegen's theorem exploits the
powerful features of the theorem to achieve both
the compactness of the adjoint system of equations
to be solved and the flexibility in handling line
quantities.

Tellegen's theorem, which depends solely upon

Kirchhoff's laws and the topology of the network,
states that

EIbe=0andEVbIb=0. 11
b b

where Ib and Vb are, respectively, the current and
voltage of branch b of the network and distin-
guishes the corresponding variables associated with
the topologically similar adjoint network. The
summations in (11) are taken over all branches. In
addition to the current and voltage variables, the
inclusion of the power variables is required to

accommodate the power flow model. Hence, we may
use

*
Sb = Vb Ib. 12)

Tellegen's theorem has been successfully applied to
power system analysis and design problems since
1972 [4]. In the beginning, the approximated d.c.

requiring a

load flow model was used. This found applications
in transmission system planning problems in which
the d.c. model may be considered of sufficient
accuracy. The d.c. load flow model is, however,
characterized by the restrictive assumptions of
neglecting transmission losses, excluding reactive
power flows and considering flat voltage profiles
which make it inadequate [24] for other studies
more accurate model and more
information.

Different versions of improved, approximate a.c.
load flow models have been successively developed
for application to different power system studies.
The relatively difficult steady-state component
models in power networks impose an observed
difficulty in applying Tellegen's theorem to the
exact a.c. load flow model. A proper methodology
has been required [3,9,25-28] to overcome this
difficulty.

In general, a method of sensitivity calculations
based on Tellegen's theorem incorporates the
following steps. A perturbed Tellegen sum is
formulated as

A

AT T
n 6): + su = 0, (13)

where the state x and control u variables are
defined in accordance with the power flow model
considered and the vectors f and f are, in
general, linear functions of the formula%‘ed adjoint
network current and voltage variables. Hence, the
A and §i of (13) are related through Kirchhoff's
c{(xrrent and voltage laws formulating a set of
linear network equations to be solved for the
unknown adjoint variables. The adjoint network is
defined by setting

N,
Ex—axv (1u)

hence, from (2) and (13), we get

_ af AT
§f = ('"—au'L‘u) su, (15)
from which
df af *
d_ = 3_U - L]u. (16)

In practice, the adjoint network is defined for a
given function by (14) and solved for the variables
ﬁu which are then substituted into (15) and (16) to
obtain first-order changes and total derivatives of
f w.r.t. control variables.

The matrix of coefficients of the adjoint system of
equations has to be calculated at a base-case
point. The LU factors of this matrix may be stored
and different functions can be treated by repeat
forward and backward substitutions.

4.4 Discussion

Based upon the foregoing description, we may
conclude that the Tellegen theorem-based method has
the advantage over the method of Lagrange
multipliers regarding the flexibility of modelling
the different elements of the network. It has,
however, the disadvantage that the adjeint matrix
of coefficients has to be calculated at a load flow
solution [3,291].

It is important to notice that when optimal



solutions are required upon altering one or more
system parameters from the base-case point, the
adjoint matrix of coefficients in both methods has
to be calculated at different iterations of the
load flow solution included in each of the main
optimization iterations towards the optimum.

The choice of a suitable method for sensitivity
calculations depends on various factors such as the
kind of application considered, the types of
elements defined in the power system and the
available storage and facilities in computations.

5. APPLICATIONS

Efficient sensitivity calculations may be performed
to evaluate first-order changes of functions of
interest corresponding to certain variations in the
control variables defined in a particular study.
These first-order changes are valuable in
estimating the effects of transmission system
contingencies and ranking them [30], generation
outages, device malfunctions and other defects
expected in power systems operation which may
result in subsequent service deterioration.

In contingency analysis the changes in system
per formance, upon sustaining some of the above
contingencies, are calculated using the d.c., the
approximate a.c. or the exact a.c. load flow mecdel.
As illustrated before, the a.c. load flow models
have the advantage of both accurate contingency
evaluation and inclusion of the reactive power
flows. Fig. 1 [31] illustrates the contingency
evaluation for line or generator loss.

- A
o0 ¥R
Vo +AV,
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S,+AS,
V3 +AVy
S3
Qso NS
) S5tASg
V, AV, Vo+av,
Sg+ASs| Sg+AS,
S48,
V3 +AV, VatAVy
Sa S3
Fig. 1 1Illustration of contingency evaluation

As stated before, sensitivity calculations are
per formed tc evaluate gradients of functions of
interest subject to equality constraints relating

the state and control variables of the system.
These gradients may be supplied to optimization
routines employed in different power system design
problems.

In practice, functional inequality constraints as
well as upper and lower limits on the control
variables must be considered in optimization to
reflect the physical limitations on different
system components.

5.1 Power System Design Problem

A typical power system design problem may be stated
as the general nonlinear programming problem

Minimize f(x, u) amn
u o
subject to
h(x, u) =0 (18)
and
g(x, u) >0, (19)

where the column vector

g(x,u) represents n
inequality constraints. - g

Considering the general formulation of the problem
(17)-(19) with continuous real variables and
assuming proper convexity, the Kuhn-Tucker
relations [32] provide a set of necessary
conditions which the solution must satisfy at the
minimum of f. Techniques of constrained
optimization [33] are employed.

A wide variety of problems in computerized
operation and planning of power systems falls into
the form (17)-(19). The type of the objective
function f as well as the existence and the nature
of both equality and inequality constraints depend
on the study performed.

Several approaches have been described and
successfully applied to handle functional
inequality constraints in many power system
problems. For example, some of the approaches [34]
utilize the generalized reduced gradient (GRG)
method. Others [35] employ penalty function
methods.

In these approaches, the total derivatives (called
the reduced gradient) of a formulated objective
function w.r.t. control variables may be evaluated
by methods of sensitivity calculations described
before.

5.2 The Optimal Load Flow Problem

In the optimal power flow problem [8] a feasible
power flow solution w.r.t. constraints on both
control and state variables is found which
minimizes some cost criterion.

In general, the adjustable control variables
assigned include the real power P_ from generating
plants available for adjustable gispatch, voltage
magnitude |V_| at P, V-buses, tap transformer and
phase shif‘t%r ratios and parameters of shunt
control elements.

Some of the inequality constraints represent limits
on the capability of adjustable control devices,
e.g., real and imaginary transformer tap ratios,
and other equipment capacities such as the
generating capacity. The others represent the



system security requirements which include 1line
flow current and power constraints under normal and
contingency conditions. The violation of
inequality constraints may lead to inadequate
service due to component outages.

A number of problems can be defined by a different
choice of the objective function of (17) and
constraints (18) and (19). The economic dispatch
and minimum loss problems [8], optimal 1load
curtailment under emergency conditions [36] and VAR
flow control [37] are examples.

5.3 Power System Planning Studies

Many power system planning problems can be
formulated as nonlinear programming problems in the
form (17)-(19). The objective function f, the
design variables and the constraints are defined in
a particular planning study to reflect economy,
reliability, security and efficiency requirements.

The power flow model which simulates the
steady-state power flows and voltages in the
network under planning considerations is described
either exactly or approximately according to
accuracy requirements.

In automated power network design problems [4,22]
for example, the objective function f may be
formulated to represent 1line overloading. The
control variables to be adjusted are 1line
admittances representing the required additions to
support the existing transmission capacity. The
inclusien of inequality constraints imposed on the
design variables by, for example, the right-of-ways
may be included.

A contingency analysis may be required after
designing a nominal network. In this kind of
study, first-order changes of functions of interest
simulating 1line overlcading due to assigned
parameter changes and line or generator outages are
employed in the adequacy checks.

Many other applications of the methods of
sensitivity evaluation described before can be
identified in which either first-order changes or
total derivatives of functions of interest are
concerned .

6. CONCLUSIONS

In this paper, important approaches to sensitivity
analysis and reduced gradient evaluation in power
system problems have been classified and generally
described. Two of these approaches, namely the
Lagrange multiplier approach and the Tellegen's
theorem approach, represent the most efficient
techniques currently available for sensitivity
calculations in power networks. The merits and
drawbacks of the two approaches when applied to the
approximate or to the exact a.c. power model have
been 1illustrated. Their contribution to solving
some power system analysis and optimization
problems has also been discussed.
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