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Abstract

This paper presents the theoretical background and resulting
algorithm for generating tests which are topologically sufficient for
identification of parameter values in linear circuits. Voltage
measurements at all the nodes are assumed. The main thrust of this
paper is to minimize the number of necessary measurements at different
current excitations. Coates flow-graph representation of a network is

used.
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I. INTRODUCTION

Fault diagnosis and automatic testing techniques for analog
circuits often require parameter identification. Recent papers on the
subject [1-11] present different techniques of parameter indentification
involving the solution of linear equations. Most of the authors assume
voltage measurements, which are more convenient in practice, and
consider only current excitations.

A central problem is the formulation of a sufficient number of
independent equations subject to a specified number of excitations or
voltage measurements. In this paper, we assume that all the nodes in
the network are accessible. In particular cases, this assumption may
not be necessary. Ozawa [2] has shown how such particular cases can be
handled by network transformations.

The principal aim of this paper is to develop general sufficient
conditions for the parameter identification problem as well as proposing
a strategy for choosing a reasonably small number of excitations and,
thereby, a small number of measurements.

The paper extends the results presented in [1] and proposes an
efficient algorithm for test generation. The results obtained are of a
topological nature. The Coates flow graph representation of network

elements is used.

II. GENERAL SUFFICIENT CONDITIONS
Consider a 1linear network which can be described by nodal
equations. Tests under consideration consist of nodal voltage measure-
ments when different current excitations are applied and are assumed to

be performed at a single frequency. Mathematically, the ith test is,



defined as a vector V; of all measured nodal voltages due to the current

. . i .
excitation vector J. Equation

ogt (1)

~n .n o
can be written for every test i = 1, 2, ..., each time with the same
matrix Y- Although we concentrate our discussion on the nodal

equations, it 1is applicable to any other description based on an
independent set of cut-sets (see [1]).

Taking N tests, we can write a matrix equation

I Ve = g (2)
where the square matrix
1 2 N
Yt - [Yn Yn T Yn] (3)

is said to be the matrix of voltage tests, N is the number of rows and

columns of ¥n’ and the square matrix

J.=w g2 ... N )

is the matrix of consecutive test excitations. From (2), we find the

unknown matrix Y as

(5)

provided that Yt is nonsingular. As a consequence of equations (2) and
(5), the following result provides sufficient conditions for the
identification.

Result 1 [1]

If a given linear network can be described by the nodal equation
(1) and the test excitations are chosen in such a way that gt is a non-

singular matrix, then yt is also nonsingular and the solution (5)



exists.

Proof of this result follows from equation (2) since N = rank Qt <
rank Yt'S N.

Thus, in order to identify the values of all elements of gn, we
arrange for N independent current excitations, measure all nodal
voltages and then apply equation (5).

One possible choice of the independent excitations is to apply a
unit current successively to all N nodes, i.e., we may consider

gt = 1 . (6)

In such a case, the ith vector Y; is measured with the current
excitation applied between the datum and the ith node, which we call the
test node. So, on the basis of (5), we obtain the very important

relation

Y o= v, (M

which imposes constraints on the elements of the matrix Yt' For
instance, if Xn is symmetrical (as for reciprocal networks), then yt is
also symmetrical. In general, Xn has a particular, usually sparse, form

corresponding to the known network topology: hence, there are certain

constraints on the elements of the inverse. For example,

yij =0 (or Aji = 0) (8)
for nonincident nodes (Aij denotes the appropriate minor of Yt and yij
is an element of Y ),

Vis = V.. (or A.. = A..) (9)

1] J1i J1 1]

for reciprocal branches.
In order to perform the least number of tests, we must eliminate

whole columns of Yt‘ We propose a systematic way which enables us to



identify tests sufficient for component evaluation. The method is based
on the assumption that all voltages measured as well as all components

have nonzero values.

ITI. CONDITIONS FOR SUFFICIENT TESTS

Equation (7) can be rewritten in the form

T T
Yt Xn - 1 : (10)

Consider the product of VT and the jth column of Yg. We have

[. ‘]T F T o 1
Y Y 51 0
T
2
Vo Y52 0
T .
Yt y; = . . = 1 « jth row (11)
. . 0
T
N
7
-n V3N | 0 ]
b - — -

Let the unknown elements of yj be identified by the set of second
indices Bj = {j1, e jk}. We denote the set of elements yji’ i€ Bj a

reduced cut-set. Transferring the known terms from the left-hand side

to the right-hand side of (11), we rewrite the equation as



_ B - ] _ ]
Ya 0 I 51
T .
2
Vi . 30
. 0 .
T
V' y = . Ve = . (12)
~t ~Bj JJ1
. Vs
33,
T )
N
Yn J 0 i JJn i

In order to determine the elements y.. , ..., y.. , we can solve a
JJ1 JIy

subsystem of (12) given by

[ y.. ] . ]
JJ1 311
T
V_,[A. | B, . = . (13)
Tethy 1By ]
V.. J..
33y | N
- - =

where the k equations are chosen from (12) in such a way that the square
submatrix YE[Aj | Bj], is obtained as the intersection of rows Aj = {i,,
oo ik} and columns Bj’ is nonsingular. See Fig. 1 for illustration.
According to relationship (7), the matrix YE[Aj | Bj] is nonsingular iff

J

submatrix of Yn obtained by removing rows Aj and columns Bj (see

the matrix Yn(Aj | Bj) is also nonsingular where Y (A, | Bj) denotes the

Fig. 1).
Consider a sequence of sets Bj’ j = j1. ooy jN which corresponds

to a sequence of reduced cut-sets of the current graph of the network.




Based on (7) and (13), the following result can be summarized.

Result 2 [1]

Test excitations at the subset of nodes A C {1, 2, ..., N} are
sufficient for the identification of all elements of ¥n if and only if
B. A. A. .
VJHJCA det Y (A; | By 40, (11)
where
card A, = card B,.. (15)
J J
As a consequence of (18), we have the following corollary.
Corollary 1

card A > max card Bj . (16)
J
It is seen from (16) that the choice of the sequence of Bj is crucial
for the minimization of the number of sufficient tests.
Now, in order to characterize tests Aj feasible for a given Bj' we

consider topological equations for the nodal admittance matrix.

Y = A_YA, (17)

~ ~ o~

where the element ij of A_ is equal to 1 if the jth edge is directed
towards the ith node, otherwise zero; and the element ij of fL is equal
to 1 if the jth edge is directed away from the ith node, otherwise zero;
Y is a diagonal matrix of element admittances.

The submatrix of ¥n obtained by removing columns Bj can be

expressed as

'T
Y1 B) =A_YA, (18)

!
where A+ is obtained from ﬁ+ by removing rows B In the Coates graph,
b vd

j°
this corresponds to deleting all the edges outgoing from nodes Bj‘
Similarly,

fahy 13 = ALYAT (9



1
where A is obtained from’é by removing rows Aj' In the Coates graph,
~— -

this corresponds to deleting all the edges incoming to nodes Aj'

Let us consider the Coates graph G obtained from the graph

(Aj | Bj)
of the given network after deleting all the edges incoming to nodes Aj
and all the edges outgoing from nodes Bj‘ The -following theorem can be
proved on the basis of the Cauchy-Binet theorem [12] and the concept of
the k-connection [13].

Theorem 1

If det Yn(Aj | Bj) # 0, there exists in G at least one k-

(A, | B,)
J J
connection cp (see Fig. 2), where

P

{(vs, v) | vy € Aj n (N - Bj), v, € Bj n (N - Aj)} (20)

k

card P = card (Aj Nn (N - Bj)) = card (Bj n (N - Aj)) (21)
(vs, ve) represents a path directed from the node vS to the node Vs and
N denotes all nodes of the graph. The condition stated in the theorem
is sufficient almost everywhere.
Proof
According to the Cauchy-Binet theorem and relation (19), we have
det Y (As | Bj) = 1 det CTedet g* , (22)
where C  is a major submatrix of‘é:‘z with order equal to (N - card Aj)
and qf is the corresponding major submatrix oflé;T. If det Yn(Aj | Bj)
# 0, then there exists at least one pair of corresponding determinants,
both different from zero. A major determinant of fi'g is different from
zero if there exists one nonzero element in every row of the chosen sub-
matrix (chosen set of columns). This corresponds to the set of (N -
card Aj) edges, such that every edge has a different endpoint, belonging

to the set of nodes (N - Aj)° The corresponding submatrix is different

from zero if the same edges have different origins, belonging to the



same set of nodes (N - Bj)' Now it is easy to check that these edges
form a k-connection, as stated in the theorem. The determinant of
¥n(Aj | Bj) equals zero, in spite of having nonzero components in (22),
only when particular values of elements are chosen.

As a consequence of Theorem 1, we have an important corollary.
Corollary 2

To satisfy (14), we should find a set Aj such that, after deleting
all the edges outgoing from nodes Bj and after deleting all the edges
incoming to nodes Aj’ there are no isolated nodes in the set
N -(Aj N Bj).

Theorem 1 does not guarantee that Yn(A. | Bj) is nonsingular. It

J
may, however, be singular for particular element values only. If we
know the nominal values of the elements, then we can easily check
whether the tests Aj chosen are sufficient for the solution.

Definition

A node is said to be a corner if there exists a complete subgraph
containing all the edges incoming to the vertex and all the edges having
the same weight.

It follows that there may exist edges outgoing from a corner to
other parts of the graph. Also, the order of the complete graph is not
defined. 1In particular, it may be a complete graph of zero order (see
Fig. 3a).

Based on Corollary 2, the following theorem can be proved.

Theorem 2

Sufficient tests must include excitations at all the corners.
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Proof

Assume that there is no excitation in the corner. If we identify
an edge incident to the corner, then every reduced cut-set containing
the edge must contain all the nodes of the complete subgraph. After
deleting all the edges outgoing from the nodes of this reduced cut-set,
the corner will be an isolated node, and if it is not a test node, we
obtain an isolated node in the set N - (Ajrﬂ Bj) and a contradiction to
Corollary 2.

Thus, the number of corners estimates the minimal cardinality of A.
In order to further estimate this, the following remarks may be helpful.
Remark 1 card A > order of the maximal complete subgraph.
Remark 2 card A > minimal incoming degree in the remaining graph after

deleting all corners with incident edges.

The incoming degree of a vertex is the number of edges incoming to this
vertex.

The number of voltages measured in every test is not necessarily
equal to the number of nodes. We can suggest a simple strategy for

reducing the number of voltage measurements.

Let
B. = {B. B. 2
and
Abj = {Aj | det lfn(Aj | Bj) £ 0} . (24)
For every Bj € BV, we should choose Ajo € Abj to minimize the set
vv=B gB Ajo - (25)
J v

Vv represents the set of excitations that require the voltage at node v
to be measured. It is evident from (25) that the minimum number of

voltage measurements at the node v is not less than the cardinality of
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the maximum reduced cut-set which is incident to that node. Minimiza-

tion of sets VV can easily be done during the algorithm described.

IV. THE ALGORITHM STRATEGY

An optimal selection of tests could be done in a combinatorial way,
where different sets of reduced cut-sets are considered and then
different combinations of test nodes are checked. However, for large
networks, it may be quite tedious to check the conditions of Theorem 1,
even if reduced cut-sets and a set A are known,

A reasonable approach should select tests likely to be sufficient
for the identification and consisting of the necessary number of test
nodes for a given set of reduced cut-sets. Such a number can be
determined by some necessary conditions. Then, at the end, the
algorithm should check the conditions of Theorem 1 and, if necessary,
add some extra test nodes. The algorithm should simultaneously select a
set of cut-sets.

The algorithm proposed is heuristic and is based on the so-called

greedy strategy described, for example, in [14]. It does not pretend to

provide the best possible solution. However, our goal is to find a set
of tests of a reasonably small cardinality. Simultaneously, the reduced
cut-sets and test nodes are designed.

Main Concepts of the Algorithms

1. The Coates signal-flow graph representation is used to describe the
network topology. An efficient way of representing any linear active
network is discussed, for example, in [15].

One of the corners, or if there are no corners, a node j of maximum

distance dj(G) from the graph nodes, is taken as the starting point of
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the algorithm, where

d.(G) = max card (p(i + j)) (26)
J ieN

and p(i + j) is the shortest path directed from i to j.

2. We realize the greedy strategy for contour nodes of minimum
incoming degree. At step i, contour C(i) is defined w.r.t. C(i - 1) by
substituting for the node of minimum incoming degree, which is placed

into the set of internal nodes, In(i), the initial nodes of the incoming

edge(s). These incoming edges form the ith reduced cut-set and are
deleted from the graph. Also deleted are edges having the same weight.
Contour C(0) contains only the starting point. See Fig. 4.

If there are no contour nodes with nonzero incoming degree and
C(i) U In(i) does not contain all the nodes, then the flow-graph
contains so-called weakly connected components, i.e., the signal flows
from one part to another one in one direction only (see Fig. 5). 1In
such a case, we choose another starting point and continue the procedure
described. This greedy strategy allows us to find reduced cut-sets of
reasonably small cardinality.
3. To explain the way of searching for the set of test nodes T, we
need some additional definitions.

Every internal node is called open if there exists an edge outgoing
from it. The node is called active if it is the terminal node of a
deleted edge. Fig. 6 illustrates the sets of nodes being defined and
possible edge connections between them.

In every step of the algorithm, we check whether the node moved
from the contour C(i) into the set of internal nodes In(i) is active.

If not, we must add this node to test nodes. So, in order to have a
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small number of test nodes, we prefer to choose active nodes from the
actual contour unless their incoming degrees are greater than the number
of tests required.

The nodes added to the contour influence the strategy of test
searching. If some of the nodes are not active, then we should have at
least the same number of test nodes placed in the set N- [In(i)-Op(i)],
where Op(i) denotes the set of open nodes.

If the maximum number of nodes nc(i) in the reduced cut-set is
greater than the cardinality of the actual contour card (C(i)), then we
should have at least nc(i) - card (C(i)) tests included in the actual
set In(i).

Fig. 7 illustrates the possible paths from the test nodes to nodes
of the reduced cut-set in such a case. Not all the test nodes included
in In(i) can be accessible from the nodes of the given reduced cut-set.
The number of these nodes is bounded by cardinality of the set of active
nodes A(b) in bottleneck positions, as illustrated in Fig. 8.

All of the foregoing remarks influence the algorithm strategy and
should be considered in choosing the test nodes. For the sake of
compactness we will 1let |A| denote card (A) in the algorithm
description. The following steps set the algorithm out in sufficient
detail.

Algorithm

Step 1 Set LS « 1, I « @, to(1) « 0.

Remark LS denotes the index of a weakly connected subgraph, I denotes
the set of all internal nodes in all subgraphs considered, and

to is the number of test nodes which should be placed outside.



Step 2

Remark

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9
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Choose a starting point. »Set Max « max(1) « b « 0, i « 1,
TI(1) « T(LS) « A(0) « 4.

TI denotes the set of test nodes within internal nodes, Max is
the number of nodes in the maximum reduced cut-set in the
network and max(i) since 1last bottleneck position,
respectively, i denotes iteration number, b is the last
bottleneck position.

Design In(i), C(i), A(i), Op(i), nc(i). If the node placed in
In(i) was not active or it was a corner, add it to the set
TI(i) and set to(i) « to(i) - 1.

If max(i) < nc(i), then set max(i) <« nc(i).

If Max < nc(i), then set Max <« nc(i).

If to(i) > |C(i)|, then go to Step 4,

otherwise, set to(i + 1) « to(i) and go to Step 5.

Add st =t (i) - |C(i) | nodes from the set In(i) - A(b) - TI(i)
to the set TI(i), and set to(i + 1) « |C(i)].

If max(i) 5-‘TI(1)| + |C(i)|, then go to Step 7.

Add At = max(i) - |TI(i)| - |C(i)]| nodes from the set In(i) -
A(b) - TI(i) to the set TI(i).

Set TI(i + 1) « TI(i), to(i + 1) « max(i) - |TI(i + D,

max(i + 1) « max(i), T(LS) <« T(LS) U T (1).

If |TI(i + 1| < |A(i) - In(i)], then go to Step 9.

Set b « i, max(i + 1) « 0, remove At = |TI(i + 1) - |A(D) -
In(i)| nodes from TI(i + 1.

If C(i) - Op(i) # 0, then choose the next node from C(i) -

Op(i), set 1 « i + 1, and go to Step 3.
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Step 10 Add At = Max - |T(LS)| nodes from the last available C(j) -
T(LS), j=n-1,n-2, ..., nodes to the set T(LS), set I « Iy
In(i).
LS
If T = N, then set T « U t(i), stop.
i=1
Otherwise, set LS « LS + 1 and go to Step 2.
Remark Each reduced cut-set Bj has nc(j) = IBjI nodes. The subset Aj
can be chosen by taking to(j) test nodes from the last

available TI(i) - TI(j), i=gj+1,j+2, ... nodes and At =

nc(J) - to(j) nodes from TI(J).

Discussion

In particular cases, when the number of paths between two sub-
networks is low, a small modification of the algorithm described would
be very helpful. We can simply add some known branches to the existing
network to increase the number of necessary paths and so decrease the
number of necessary tests. This is also applicable when we have too
many corners in the network. If the number of corners is greater than
the maximal order of complete subgraph in the network, it can be reduced
by adding new branches; consequently, we can reduce the number of

sufficient tests.

V. EXAMPLES
The following examples explain how to use the results obtained from

the test finding algorithm to identify all network elements.
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Example 1

The network whose parameters we want to design and its Coates graph
are shown in Fig. 9 (node 0 is chosen as the reference node). There are
3 corners in this network - nodes 1, 6 and 7. We choose node 1 as a
starting point. The algorithm is illustrated step by step in Table I.
The 3z in a column denotes that to obtain the set in the ith step we add

all the elements of the column up to the ith row.

TABLE I

EXAMPLE ILLUSTRATING THE ALGORITHM

Itera—-| In| C(i)| A | Op(i)| Nodes nc(i) TI(i) T to(i) max(i)| b
tion i| Z z in z
reduced
cut-set
0 a 1 ) ") ) 0 ) ) 0 0 0
1 1 2 (1,2 @ 1,2 2 1 -1 2
2 2 | 3,4|3,40 @ 2,3,4 3 1 1 3
3 4 13,6| 6 2 3,4,6 3 1 2 3
4 6 3 6 3,6 2 1,6 | 6 1 3 y
5 3 5 5 6 3,5 2 1 2
6 517,8|7,8] 6 5,7,8 3 6 1 3
7 T 8 6 7,8 2 6,7 7 1 3
8 8 6 6 6,8 2 7 1 2 8

So, for identification of network elements, we should apply excitations
at nodes 1, 6 and 7. The nodal voltages measured with unit excitations

at different nodes are shown in Table II.
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TABLE II

NODAL VOLTAGES FOR EXAMPLE 1

Voltage at the Node No.

Excitation
at the 1 2 3 4 5 6 7 8
Node No.
1 .T76U4 .3293 |- .006648 . 1426 -.5715 | .03842 | =-.9163 —, 02094
-.3878 |-1.163 =U4,657 -1.47 -15.75 .8996 |-22.76 -50.34
7 .01617 .04852 . 1753 .07647 L4752 | .09138 4,531 -2.126

Now we formulate equations

compute element

61

and we obtain Y

The second

\

11 v

12

\

v 62

61

\Y \

T 72

can be transformed,

v

v 13

12

\Y v

62 63

v

72 V

73

or

(13)

for successive reduced cut-sets and

2

values. The first equation is as follows:

*+ ¥, ] 1 . 0.7764  0.3293 Yo+ Y, ] [1
- 1, 0 -0.3878 -1.163 -1, 0

=1, Y2 = 0.5.

equation

13 iy -1 0

63 V6N Y2 + Y3 + YN + Y5 = 0

73 V71 - Y5 0

L - Y,4 J
because Y2 is now known, to
10 Y3 + Yu + Y5 (V11 - V12) Y2
64 - Y5 = | Wy = Vgp) Y
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0.3293 -0.00648 0.1426 | Y3 + Y, + YS‘ 0.2236
-1.163 -4,657 -1.47 - Y5 =| 0.3876
0.04852 -1.753 0.07647 || - Y, -0.01618

and we obtain Y3 = 0.3333, Y,4 = 0.25, Y5 = 0.2.

Continuing the procedure we design all the other network elements

as
Y6 = 0.1667, Y7 = 0.1429, Y8 = 0.125, Y9 = 0.111, Y1O = 0.1,
Y11 = 0.0909, Y12 = 0.0833, Y13 = 0.07692, Y14 = 0.07143,
Y15 = 0.06667, Y16 = 0.0625, Y17 = 0.05882, g, = 8.5.
Example 2

We apply the algorithm proposed to the passive grid circuit shown
in Fig. 10. In such circuits, the number of nodes n = k2 and number of
passive elements e = 2k2 - 2k, where k = 2, 3, ... We assume that the
voltage at each node can be measured. Using the algorithm described we
find that no matter what the size of the grids three tests are
sufficient for determining all the element values from voltage

measurements at a single frequency.

VI. CONCLUSIONS
The method presented enables us to find a reasonably small number
of tests which are topologically sufficient for the identification of
all component values of linear analog circuits. This has been achieved
due to searching for a "good" sequence of reduced cut-sets, whose
elements are consecutively determined from (13). The notion of corner
is particularly important, since it determines necessary tests indepen-

dently of a sequence of cut-sets. The method is easy to program and
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gives a linear dependence of computational effort on the size of the

network.

The method could be used to isolate the faulty subnetworks of the

network when there are inaccessible nodes in the subnetworks. Further

studies of the application of the method described to fault diagnosis

are currently being concentrated on development of an efficient strategy

for fault analysis of large networks with a reasonable number of voltage

measurements and excitation nodes.
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FIGURE CAPTIONS

Illustrations of equation (13) and Result 2.
Example of required 3-connections.

Examples of corners. Corners are denoted by v.
Formation of contours.

Partition of a graph on weakly connected subgraphs.
Set of nodes and connections.

Illustration of the contour restriction case.
Illustration of the bottleneck restriction case.
9(a) Network. 9(b) Coates graph.

Grid circuit.
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