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Abstract

The multiple-fault location problem for analog circuits is treated
on the basis of the nodal equations. The availability of voltage
measurements‘ due to current excitations is assumed by the method.
Topological restrictions on the possibility of fault location for a
given set of measurements are formulated. Effects of tolerances and
measurement errors are discussed in the context of a practical example.
Coates flow-graph representation of a network is used for topological

considerations.
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I. INTRODUCTION

Testing of analog circuits with the aim of fault 1location is
important in network analysis. There are different approaches to the
problem depending on the information available from tests conducted on
the network. Generally, the network topology is known and we try to
identify the faulty elements and evaluate them. If the number of
measurements is large enough we can evaluate all elements and single out
the faulty ones [1,2]. However, when the number of measurements is
limited we can use various methods to predict regions where faults may
appear [3,4]. To verify whether a predicted region contains all the
faults, the multiple-fault 1location method based on the multiport
description of a network can be used [5].

In this paper we give a method based on the nodal equations which
extends the possibilities of the multiport method. Topological
restrictions on multiple-fault location are discussed. Some practical

remarks for effective calculations are given.

IT. MULTIPLE-FAULT VERIFICATION BY NODAL EQUATIONS
In this section we discuss the method of multiple fault location on
the basis of the nodal equations. The principal difference between the
nodal and the multiport approach is that in the multiport approach we
aim to find changes in element values whereas in the nodal method we
design the changes in nodal currents only. Changes in element values
can be computed by the nodal method after the network topology is

considered.



Nodal Equations for Faulty Network

Let us assume that the network has (n+1) nodes, m of them
accessible, and f < m is the number of faulty elements. The nodal
equations for the nominal values of the elements have the form

Yv=Jd. (M

For the faulty network, assuming the same excitations, we obtain

X +AY)(V + AY) = J. (2)

Thus
YAV = -AY V', (3)
V' = V + AV is the vector of nodal voltages in the faulty network. We

can compute AV assuming that Y is nonsingular and obtain
AV = - 3'1 AY V', ()

Let us denote AJ = - AY V', AJ represents changes in nodal

~

currents caused by faulty elements. The relation (4) becomes

AY = Y™ ag. (5)

~ ~

We can assume that a few elements are faulty, in which case AJ has the

form
9
ag = |agf | . (6)
Y
Assuming that the first m nodal voltages can be measured we obtain
sy 0
= 1'1 AgF . (7)
AXN_M 0

N indicates the set of all nodes, M the set of measurement nodes. Hence,

" =z ad", (8)

where



ZM1 gMF Z'M2
i = . (9
ZN—M,1 Z'N-M,F gN-M,2
Relation (8) has to be satisfied when the set F of network nodes

includes all nodes associated with faulty elements in the network.

Reduction of the Number of Equations

It is clear from relation (8) that in order to design AiF we must
have at least 1 + card F measurement nodes. This may cause some

redundancies in the case of isolated faults. If there is an isolated

fault in the network it causes changes in two elements of the AgF
vector. In the example shown in Fig. 1 we have AJE = - AYeU1 = - AJ?.

In such a case vector AgF will contain variables which are not
independent. We can transform the equation (8) to reduce the column

rank of the coefficient matrix 2 The reduction realized depends on

MF *
the location of different faults. Let us discuss the following two

cases.

1) The case of isolated faults

If an isolated fault appears between nodes k and j (see Fig. 1)

then equation (8) can be written in the form

M
AV = [51, ceer Bpr eees Bar eeey gf]

: (10)
J -AJ




or, after summing columns a and Ej and deleting column Ej’

k

F
- B 1 Byerr teer gf] AJJ._1 . n

2) The case of connected faults

If connected faults form a subtree in the network then the number
of variables in AgF can be reduced by one in similar way to Case 1. The
reduction holds for every connected subgraph formed by faulty elements.
If the subgraph contains a circuit then the number of variables can not
be reduced.

The method described has following advantages as compared with the
multiport methods [5].

1. Fault regions can be located even if fault elements form a circuit
or cutset.

2. We do not face the situation of block dependent systems when only
one element in a circuit or cutset is not faulty.

It should be noted that the identification of faulty elements on the

basis of changes in current excitations is not always possible. For

example, when only one element in a circuit is not faulty, then the

problem of identification is not solvable which is a simple consequence

of the transformation of current excitations (ef. [6]).



The nodal approach is restricted to two-terminal elements and
voltage controlled current sources only, but it can be extended to any

linear active network using the modified nodal description [T7].

ITII. TOPOLOGICAL RESTRICTIONS
In this section we will discuss the problem of the placement of
measurements in the network to make possible the indentification of a
certain set of faults, on the basis of network topology.
A necessary condition for solvability of equation (8) is full
column rank of matrix Z,., which is equivalent to the existence of a
square, nonsingular (card F) x (card F) submatrix of EMF'

Let Z.. denote a square submatrix of ZMF and Y (E|F) denote the

EF
submatrix of Y obtained by removing E rows and F columns; Using the
equivalence

det ZEF ¥ 0 <=>det Y (Ei{F) # O (12)
we can find topological restrictions for the fault location problem. We
can use the approach presented in [8]. Let us assume that the
topological equations for the nodal admittance matrix and Coates graph
representation of network are

Y=A_X A% (13)
where the element ij of A_ is equal to 1 if the jth edge is directed
towards the ith vertex, otherwise zero, and the element ij of &+ is
equal to 1 if the jth edge is directed away from the ith vertex,
otherwise zero and xe is a diagonal matrix of element admittances.
The submatrix Y (E{F) can be presented in the form [8]
\ T

YEIF) = A o Y A (14)



where A-E (A+F) is obtained from ) (A+) by removing rows E (F),
respectively.
Following Starzyk et al. [8] we can formulate the following

theorem.

Theorem 1
If det Y (EIF) % 0 then there exists at least one k-connection Cg
in the graph G(E|{F) obtained from Coates graph of the network after
deleting all the edges incoming to nodes E and all the edges outgoing
from nodes F, where
S = {(vg, ve); vy € En(N-F), Vo € Fn(N-E)}, (15)
card S = card (En(N-F)) = card (Fa(N-E)), (16)
(vs, ve) represents a path directed from the node Vg to the node Voo and
N is the set of all graph nodes.
The condition stated in Theorem 1 is sufficient almost everywhere.

As a consequence of Theorem 1 we have an important corollary.

Corollary 1

If det Y (EiF) #% 0 then after deleting all the edges outgoing from
nodes F and incoming to nodes E there are no isolated nodes in the set N
- (EnF).

To locate the faults of elements incident with nodes F such that
after deleting all the edges outgoing from nodes F some of them become
isolated, we must include all of these isolated nodes in the set E,
which means that all of them must be accessible nodes (i.e., the nodes
at which voltages can be measured).

Following the method described in [8] we can investigate the

problem of two subnetworks having c¢ common nodes when ¢ < card {F}. 1In



this case we can not identify the faults appearing in one of the
subnetworks by meaéuring the voltages in the second only (see Fig. 2)
because the k-connection required by Theorem 1 does not exist.

The restriction on the placement of measurement nodes appears also
in more complex cases when faults and measurements are in different
weakly connected subnetworks.

To obtain the overdetermined system of equations we should have at

least two nonsingular (card F) x (card F) submatrices of Zy..

Lemma 1

If ZEF is a nonsingular submatrix of Z, . and gg is a nonzero row of

MF

Z not belonging to Z then there exists a nonsingular submatrix of

~MF EF
. T
EMF that contains z,.
Proof
Since rank 5MF = rank ZEF the row gg is a linear combination of
T . T .
rows z. € ZEF’ i e I. If we remove row Z.» k ¢ I, then z, will be

linearly independent from the rows zg, i € I - {k}, and because of the
linear independency of rows gI will form a new set of 1linearly

independent rows {gg, gz tieI, i#Kkl.

Corollary 2

If gMF contains a zero row and the corresponding voltage AVM € AXM
is nonzero then AgF does not represent all the faults in the network,
therefore, other candidates for faults should be considered.

A simple topological interpretation can be given to illustrate

Lemma 1 and Corollary 2. Element zij € %MF is nonzero if and only if



det Y(iij) # 0 (i e M, j € F). This condition is topologically
equivalent to the existence of the 1-connection which contains the path
directed from node i to node j in the graph G(i}j).

Graph G(i}j) is obtained from the Coates graph of the network after
deleting all the edges incoming to the node i and all the edges outgoing
from the node j.

To fulfill the condition stated in the Lemma 1 it is sufficient
that there exists a node i € M-E which is the origin of a path incoming
to one of the F nodes, and if after deleting the edges incident to this
path the remaining graph contains at least one 0O-connection.

Element zij € gMF is zero when there is no path directed from the
node i to j or for every such path if I denotes the set of nodes

belonging to the path det Y(I|I) = 0. This case is rare in electronic

circuits.

Iv. NETWORK PARTITIONING INTO FAULT REGIONS
The main problem in multiple-fault location is to guess the set F
that contains all faulty elements but has a number of elements f < m.
We discuss how to choose this proper set of elements. The aim is to
improve efficiency of computations when no additional information about
possible faults exist.
Every set of w elements which contains all f faults (w > f) we call

The fault region can be predicted

a fault region and denote it by Fw £
or designed initially by the approximate fault isolation method
described in [9]. If we have no initial information about the system we

can try to guess the proper set F but then the probability of being

correct is low because the number of different combinations is equal to
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(g), where p denotes the number of elements (cf. [51). Below we
describe the algorithm which can be used to detect the fault region and
is very effective if the number of measurements is large.

It is evident that if we have m measurement ports then the maximum

fault region we can find may have at most w = m-1 elements.

Algorithm
Step 1

We divide arbitrarily the set of all elements on k distinct subsets
S1, . Sk’ each of them of cardinality equal to E(m%l). Of course, if
p/E(E%l) is not integer the last subset has less than E(m%l) elements.

so k > p/ECEZD).

Step 2

We can check every f from k subsets by examining the relation (8)
for all combinations of subsets. The number of these combinations (?)
is usually much less than (?) when (m-1) > 2f,

If the number of faulty elements is really f (or less) there always
exists such a combination of subsets for which the relation (8) is
fulfilled. The sum of the subsets of this combination is the first

fault region

Fw,f = U S “n
iel
m-1 . . . . . . .
where w = f.E(—?—), and I = {11, iy eees 1f}, 1< 1j <k, lj £ i, for j

£ 4.
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Step 3

In every next step of the algorithm we will find fault regions
containing all the f faults but having fewer elements in the following
way.

Divide the set Fw arbitrarily on (f+1) subsets and then check

o

which combination of f subsets contain all fault elements. 1In every

stage of such a procedure, after checking f+1 combinations, we can
W

eliminate at least E(?:I) elements as not belonging to the faults. We

obtain a new fault region F with w' < w, and repeat Step 3.

w',f
Step 4
The algorithm stops when w = f and when there is no (f-1) elements

in the F for which the relation (8) is fulfilled. If this is not the

£,f

case we set f €« f-1 and return to Step 3.

Example 1
Let us assume that a network under consideration has p = 76, m =

39, f = 2. Then realizing the algorithm we design:

1. k > P . 76 = 4, for example, k = U4,
Tel P
f
k L . . . .
2. We check (f) = (2) = 6 different combinations of elements, to find

the first fault region F38,2'

3. In every step of this stage of the algorithm we check 3
combinations obtaining successively the following fault regions:

F F

26,2’ 18,2’
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In this example, therefore, we have to check not more than 30
combinations instead of (72) = 2850, which is much easier in spite of

the higher ranks of the matrices to be computed.

Example 2
For a network having 100 elements and 4 faults, when we have 61
measurement ports, we can design all the faults by checking 112
100

combinations instead of ( 4 ) = 3921225 combinations, each of 4

elements.

V. SOME PRACTICAL REMARKS
Biernacki and Bandler [5] stated that condition (8) is satisfied if

and only if the following relation holds

- A -, (18)

where
-1 T

87 2t 7z 5y,

Zwr = Zwr “Aur Awp) Ewre (19)

Now wWe propose a simpler method which can be used to verify the
condition (8).
One can prove that the solution of the equation
Ax =D, (20)
where é is an (mxf) full column rank matrix (f < m), exists if and only

if it can be transformed to the form
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~ ~
1 b4 X
1 X )
° 21
0 1
____________ X =|-- 21
0 0
L ~ —J =" =

after row manipulation, where 21 is a column vector having f elements.
The form (21) is also more convenient to obtain the solution of the set

of equations.

Example 3
To compare the two methods let us solve the overdetermined system

of equations

1 2] R
3 4 X1 -1
= . (22)
4 3 x2 -6
We have
30 28 30 -28
T T =1 1
A ,-é" ,(A A) =116
28 30 -28 30

(38 50 -8 -20]

50 78 20 -8

|
"

g
~~

14

-20 -8 50 38
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~
17 PO’W
_ -1 0
(A—l) = .
-6 0
L_u—‘ L.O_J

Consequently, we have checked consistency using 83 multiplications
and divisions and still do not know the solution, while after

transforming the system to the form

(1 2] (1)
SR I I
X
0o 0 ) 0
0 0 Lo |

we can easily compute x1, x2 and\ we used 11 multiplications and
divisions only.

For ill-conditioned systems the method of Householder orthogonal
transformations can be used to reduce to zero the subdiagonal elements
of A [10].

For practical situations when both measurement errors and effects
of tolerances appear, the technique proposed by Bandler, Biernacki and
Salama [9] can be used. In the first stage of computation we solve
an optimization problem that can be stated as

o F F
Minimize 121 (IRe(ad )1 + IIm(ag;d D (23)
subject to linear equality constraints (8). Solution of this problem
gives us the most 1likely faulty elements. Then the verification

technique in the presence of tolerances can be used to check (8) in the

way described in [9].
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Example U4
Consider the network shown in Fig. 3 with nominal values of

elements Gi =1, 1i=0,1,2,3, C1 = C2 = 1, k = 1. All elements have

tolerances + 10%. The input current excitation Jg = 1A, Voltage

measurements for the faulty network (for which G2 = 0.5, C1 = 0.8, C, =

0.5) are taken as V1 = 0.712 - jo.o6us, V2 = 0.137 - j0.195, V3 = 0.147

- j0.0076, Vu = -0.0085 + j0.0819. The solution of the optimization

problem (23) gives us the following changes in nodal currents:

AJ1

AJ3 = =0.0407 + jO.0024, AJ4

This can be solved to obtain predicted changes in element values and we

0.0288 - j0.0654, AJ2 = -0.1114 + jO.0o049,

-0.1387 - j0.0709.

find three elements whose values violate the tolerances, namely G C

2' 1
C2. The verification technique confirms the assumption that GZ’ C1 and
C2 are faulty. We checked the remaining combinations for the triple
fault hypothesis and no feasible solution was detected.

Notice that in the present case of faults which were detected in

the network under test, the multiport method will not work because of

the cutset formed by the faulty elements.

VI. CONCLUSIONS
The method presented extends the possibilities of multiport methods
used for multiple-fault location. Topological restrictions discussed in
the paper show that in some cases faults cannot be identified if the
measurements are imposed in the wrong place. Multiple-fault location
analysis is necessary when we want to isolate faults inside a subnetwork
without a sufficient number of measurements to identify all subnetwork

components.
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The recommended approach to fault analysis would be realized by
employing the various techniques described here and elsewhere., First,
the identification of as many subnetworks or network elements as is
possible, using accurate and efficient techniques [1,2] is carried out
and then the further investigation of subnetworks found to be faulty may
be carried out, if necessary. The latter investigation should also be
performed in two stages: first predicting the faulty region using the
nodal approach we have presented employing linear programming
techniques, and then a more accurate localization of faults using the
verification method [9] together with network partitioning into fault
regions as described in Section IV.

The authors believe that their approach together with the practical
remarks presented allows more opportunities to effectively solve fault

location problems in linear networks.
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Fig. 1 Changes in nodal current caused by a single fault.
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Fig. 2 Illustration of necessary connections.
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