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Abstract

A novel approach for analyzing large electrical networks 1is
presented in which the network is decomposed into subnetworks in a
hierarchical manner by removing few interconnections. These subnetworks
are solved separately. The results are then interconnected at a number

of computing levels. The solution of the original network is thereby

obtained.
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I. INTRODUCTION

Recently, much effort has been devoted to decompostion methods for
the analysis of large networks. The idea of decomposition or tearing
was originated by Kron [1,2], in which a part of a given network is torn
away so that the remaining subnetworks can be analyzed independently.
The solutions of the separate subnetworks are then combined and modified
to take the part torn away into consideration and thus the solution of
the original network is obtained at two levels [3]. Happ [2,4] has
expanded the theory and applications along the same lines. Chua and
Chen [5], and Wu [6] have generalized the concept of tearing. Happ [7]
has generalized the two-level computation into a multilevel computation
process. However, the calculation at the levels except for the first
can not be carried out in parallel and thus this method may not be
suitable for analyzing large scale networks.

In this paper, a method is presented to solve a large scale network
by decomposing it in a hierarchical manner. The network is decomposed
into subnetworks and blocks by removing few interconnections and
applying arbitrary current sources at the terminals created by removal
of interconnections. As the decomposition imposes a hierarchical
structure on the computations, the calculation at each level can be done

in parallel.

II. NOTATION
N a subnetwork of the original network, which is denoted N1.
Nk a subnetwork made up of equivalent multipoles of divisions of
subnetwork Nk‘

Tij a set of interconnection nodes common to subnetworks Ni and Nj'
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the nodal admittance matrix of subnetwork Nk'

-1
Lk

a column vector of voltages on the external terminals of

subnetwork Nk incident to subnetwork Ng'

a column vector of arbitrary impressed currents applied at the
external terminals of subnetwork Nk which were connected to

Tkz‘

column vectors of voltages and currents, respectively, on the

internal nodes of subnetwrok Nk‘

column vectors of voltages and currents, respectively, on
external nodes of subnetwork Nk'

nodal voltage vector of subnetwork Nk'

current excitation vector of subnetwork Nk'

column vectors of voltages and currents, respectively, on the

1
nodes which are external to subnetwork Nk and internal to
1 1 L! 1 L-1"
subnetwork N_, where N, ¢ Q and N € Q .
m k m
column vectors of voltages and currents, respectively, on the

1
nodes which are external to subnetwork Nk and external to

' 1 L' ' L=1"!
subnetwork N , where N, € Q and N € Q .
m k m
- i i [
!Rk sz if le exists and Nk’ Nz Nm‘

a set of subnetworks at decomposition level L.

a set of subnetworks made up of multipoles at decomposition

level L.

III. NETWORK DECOMPOSITION

Let us decompose N, into subnetworks

1° 1

ooy Ni connected by a small number of interconnections. Each



T

of them can be still too large for direct analysis so we decompose N2,
ooy Ni into smaller subnetworks and continue this process until we
reach sufficiently small subnetworks. The last ones, which are not

further divided, we call blocks. This decomposition procedure gives us

a hierarchical structure of subnetworks as illustrated in Fig. 1.

Subnetworks Ni and Nk are connected by Tik interconnection nodes (see

Fig. 1(a)). The network is decomposed, such that no mutual coupling is
present between blocks. For simplicity, it is assumed that each block
contains a common ground node. When some blocks do not contain a common
ground, the analysis can be performed in the same way after slight
modification of these blocks. Modification of ungrounded blocks 1is

discussed in Section VI.

IV. ANALYSIS OF BLOCKS

Let us assume that the circuit N1 is linear. For simplicity,

assume that every block can be described by nodal equations. In order

to decompose network N_ into subnetworks, we apply the arbitrary current

1

sdurces to all the interconnection nodes as shown in Fig. 2 and compute
voltages on them. The network with added current sources will be
equivalent to the orignal one when voltages on these sources will be
zero. We obtain the conditions on node to datum voltages as

Vv =V

Lo = Yegr ¥ T

jk* QP

Every block is now separated from the rest of the network by the set of
added current sources which can be treated as external excitations. We

solve them separately and obtain

-1
v = 171 (2)

k k

for all blocks, where Ik is the nodal admittance matrix of the kth
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block. Equation (2) can be written as

I I .10 I
Yl 1A k& I .
) IR 3 G o - 3
Ik Ly A ik

If we assume current excitations ;8 for all blocks of added sources
arbitrarily and solve (3), then the outside voltages Xg may not satisfy
the condition (1). Therefore, our aim is to correct Lg by an amount A;ﬁ
to satisfy condition (1). From (3)

1
VI VI ZIO
o I s k1A (%)
oL I I A O S
~K ~k ~K
where changes in outside voltages
0 00 ,.0
A = A
U =2, AL (5)
should satisfy the conditions
AVps = 8V = Vi = Vsw  k #1L (6)
Let us denote
Eki = Mik - !ki’ k £ i, (7

. 0 .
To find the corrections Alk for all blocks we can put correction voltage

and calculate Alo for

sources (7) in place of added current sources [ K

ki
blocks removing all other internal energy sources. The problem of
network analysis has been reduced to determining Alﬁ flowing through
interconnections. Blocks can now be represented by multipoles for which
the matrix description is known (from (5)). For a large scale network,
however, even this reduced network description, which contains
multipoles and correction voltage sources Eki’ may still be too large

for direct analysis. This is the reason for developing a hierarchical

decomposition approach.
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ANALYSIS OF SUBNETWORKS

In this section we will discuss the hierarchical analysis of the

network which is decomposed into subnetworks and blocks in a manner in

which,

into two

at each 1level of decomposition,

smaller subnetworks only.

each subnetwork is decomposed

This type of decomposition is

general enough to represent any type of network partitioning into

blocks, and can be used in an effective way for computer programming.

Now we will discuss the way of connecting two subnetworks described

by equations of the form (5).

1
of QL , being 1linked by correction voltage sources Em.

difference between the original subnetworks Nk’ N

1

N

1]
Equations of subnetwork N, € Q

Consider multipoles Nk

L-1"

1]
which consists of Nk

obtained in the following way (see Fig. 3).

1
1. Present (5) for Nk and N

AVI

~tm

av©

~tm

]
2. The nodal equations of subnetwork Nm can be written as

(—éII
~Kkm
0I
zkm

0

0

where

10
gkm

00
ka

0

0

1

L

I1

~tm

OI

~tm

IT
~Lm
0I
~{m

in the

10
étm
00
Z4:m

-

I0
~4m
00
~%m

I
Alkm =

-AT

form

I
A'I"t,m

0
A~I4:m

1]
Ag-km

0
Ar:Ekm
I

Alzm

A1®

~4m
.

I
~m’

-

L

(1)
I
Azkm
0
A!km

I
szm

av©

L A

1
and N , elements

2
The only

1
and subnetworks Nk'

% is that the latter do not contain independent sources inside them.

1
and N2 are

) (9)

(10)
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avi o - avl o= M
~Km ~2m ~

3. With the help of (10) and (11), (9) is reduced to

II  _II .IO 10 I m
Zygm * gzm ka _éim Agfkm E
oI 00 0 0
Zym Lem 2 ALym| = | AVm
oI 00 0 0
“Zom S Ly Alom Ao

4,  Equation (12) can be written as

- ] 1
ZII ZIO AII Em
~m ~m ~mn _ ~
1 1 - L
ZOI ZOO AIO AVo
~m ~m ~m ~m
where
I I
A'Em - Azkm ’
- 0 "
0 A'I'km
Al = ,
~m AIO
L ~4m
s Oﬂ
0 A'Ykm
B =1 0
hAzsz
From (13) we have
I I1'.-1 m I0! 0
AL =1tz -1 [E -2~ ALl
1 (. 1 1 " '
AV0 - ZOI [ZII ] 1 M, [ZOO _ ZOI [ZII ] 1 ZIO
~mM ~m ~m ~ ~m ~m
. 0
Now adjust V  to
~m
o' _ .0 01! II'.-1 .m
!m = !m + zm [%m ] E".

Then (18) can be written as

(11)

(12)

(13)

(1)

(15)

(16)

(17

(18)

(19)
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'
o _ ZOI' [ZII ] 1 Em
~m ~m ~m ~

[ ' " _ '
= 720" _ Z01" 1171 S I0Yy .0 (20)
~m ~m ~m ~m ~m
or
0! 00 0
a0 = 290 a0, 21)

0
Again, to compute Azm we replace subnetworks from level L by
multipoles described by (21) and join them by correction voltage sources
1

and put L = L-1. If L > 1, the form of the subnetwork is similar to Nm

and equations (8)-(21) describing this subnetwork can be written and we

can go for the next lower 1level. If L = 1, we obtain a subnetwork
without outside current excitations and can determine Alf from (17),
which is reduced to

art = izt e, (22)

where Ali

Using (5)-(17), we return to the highest 1level determining all the

describes the change in current excitations at the 2nd level.

corrections in the arbitrary current sources and then the various node
voltages of the original network are calculated from (4). Note that in
the procedure described above only small interconnection matrices are to
be inverted. The computations can be carried out in series parallel as
shown in Fig. 1(b). 1In the above analysis, subnetwork N; consists of
only two multipoles (N; and N;).

The method can be extended to the case when on each 1level of
decomposition the subnetwork is partitioned into more than two smaller
subnetworks. However, the authors are convinced that such an extension
may change the computational efficiency slightly, with serious

complications to the algorithm and larger memory demands.
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VI. UNGROUNDED BLOCKS

In the case of ungrounded blocks, we cannot assume an independent
description nor can we apply independent current excitations. At least
three different approaches are possible in such a case. In the first we
calculate voltages in the ungrounded block with respect to one of its
interconnection nodes and the outside current source incident to this
node equals the sum of all other added current sources with the opposite
sign. This approach, however, requires a more complicated algorithm of
network analysis and more computer memory.

The second approach is illustrated with the help of equivalent
networks in Fig. 4. 1In this approach, ungrounded blocks (or all blocks
of the original network) are separated by applying the arbitrary voltage
sources in place of current sources and forcing the conditions (instead
of condition (1)) that current drawn from arbitrary voltage sources will
be zero, i.e.,

"I'ij + 'I'ji = 0. (23)
This approach 1is simple and does not require extra computational
effort. This concept is obtained from the node tearing approach [8].

The third approach is also simple and we describe it shortly. Fig.
5 1illustrates the way of proving this approach on the basis of
equivalent networks.

Finally, we can add current source I;j and admittances of value y
and -y as shown in Fig. 5 and obtain an equivalent network in which
blocks Ni and Nj are separated by current source I;j and both blocks are

1
grounded as shown in Fig. 6. It is clear that only one such source Iij

with admittances y and -y is to be added for every ungrounded block.
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The third method can be used directly in the method of hierarchical

analysis we have described.

VII. ALGORITHM
Let us consider a linear network decomposed into blocks with a
known structure of hierarchical decomposition. We write the steps of
the algorithm as follows.

Step 1 Assume ;O and solve the nodal equations for all blocks, i.e.,

K
vl JII 10 L
~ L R A& ~k N e ot
©1 |01 00 O Tk '
~k ko K -~k

1

!
Step 2 Set L « L-1 and calculate gm, YN e QL from (11).

Step 3 If L =1, go to Step 7.

I I0!

va A B L'

Step 4 Obtain matrices Z = oT" oor| » ¥ N, €Q
Lo I
with the help of (8) and (12).
[ v 1 1

Step 5 Adjust voltages VO < VO + ZOI [ZII ] ! Em, ¥ N e QL from
—_— ~m ~m ~m ~m ~ m

(19).

0 A 00! OoI! ' - ! !
4 7 IT 1 ZIO

Step 6 Calculate matrices ZO [z
—_— ~m ~m ~m ~m ~m m

1

QL and go to Step 2.

II 00 00 I
1 52 + 53 , calculate AE1

(10) we have A7, = AT and L3, = -AI7.; using (5) and (8) we

21

0 I 0 I
have AL, = A0L,, and A£3 = A£31.

Step 7 Set Z from (22). Using (14) and
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1 1
Step 8 Set L <« L+1, calculate A;i from (17), ¥ N, € QL .

St Use (14) and (15) to determine AIX and AIC , ¥ N ¢ Q-*''
ep 9 se an o de - Lem? K .

1 ]
Step 10 Determine A;E with the help of (5) and (8) ¥ N, ¢ Q1.

Step 11 If L+1 is not the highest level then go to Step 8.

0 AIO for all blocks and use (3) to find all

0
Step 12 Calculate Ek <« lk + I

nodal voltages.

VIII. EXAMPLE
A simple example of an analog linear network is considered to

illustrate the algorithm. Consider the network N1 in Fig. 7, which is

decomposed into two subnetworks N2 and N3 as shown in Fig. 8(a). Let us

assume that subnetworks N2 and N3 are not small enough. Subnetworks N

and N3 are, therefore, further decomposed into smaller subnetworks Nu,

2

N_ and N N_ as shown in Fig. 8(b). Further decomposition of N N

5 6" 7

N6, N7 is not needed and we call them blocks.

u’ 5’

Analysis of Blocks

Impedances of various elements of the network N1 are in ohms.

Z1 =1, 22 = 1, 23 =1, Z)4 = 0.5,
25 = 0.5, Z6 =1, 27 = 0.5, Z8 =1,
Z = 1, Z - 0.5, Z - 0.5, Z = 005
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and internal current excitations are Iﬁ = I1

I

10 A, I7

=I,=10A.

2

The solutions of the nodal equations for blocks NM’ N5, N6 and N7

have the form

Let us assume arbitrary current excitations in the

With the given

v

v

45

65

I

I

r—I -
vy (1)
I

v, (2)

Vys

VSM

V56

v
|57

45 = Loy

57 = ~I75

1.6 1
1 1
1.4 1
1.5 1
1 1.5
1 1
(1 1
1 2
1 1
1 1.5
0.5 0.5

5A’

54,

I

Te7

r“I’\
1.4 14
0
1.6 _I)45
I5U
I56
I
L SZJ
Tes
Te7
I
0.5 I7
0.5 175
0.5 I76

56 ~

excitations we solve (24)-(27)

2

0

2V, VSI4

Voo Vg

Analysis of Subnetworks

2.5V,

5.0V,

Now we combine blocks N , N

for subnetworks N

voltages

2

nd N_.
and %3

4

5

Vs

Ve

and N

6

5 =

61

7.

0

N

7

_165 = BA,
= -176 = GA.
to obtain
5%V, V57

v, Vv

76

= 5.0V,

(24)

(25)

(26)

27)

decomposed network

to obtain corrections AIg

Using equations (11) we calculate correction



3.1 1 -1 -1 2.5 | 1 -0.5
] i
1 ' -
A R e Lo 0
1 ]
-1 1 0.5 ! 0 1.5
. 0 0
From (19) adjusted voltages !2 and 23 are
o Veg ) 7.5 . 19.5/3.1) [ 13.7903
~2 - - ]
‘y57 5.0 19.5/3.1 | 11.2903
v 0 [ 5/2.5 (2.0
Eg _ 65| . . |
v 0 2.5/2.5 1.0
75 ‘ > .
From (20) and (21) we have
1.5 1 -1 1.1774  0.6774
2 - - (31770 [-1 -17 =
1 1 -1 0.6774 0.6774
1 0 1 0.6 0.2
00 -1
%3 = - [2.5] [1 -0.5] =
0 1.5 -0.5 0.2 1.4
L . A

Now to combine the subnetworks N2 and N3, using (11), we obtain the

correction voltage vector

-15.7903
51 - AMI _ AVI - [VI I 0 0

-V
23 32 32 ™23 -10.2903
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and from (8) and (12) we have

17774 0.8774

]
sz - Zgo . égo -
0.87T4 2.0774
then
-8.1346
]
orF = 2T g -
-1.5183
From (10) and (14) we have
I I I
Moy = -bl3q = 8,
then
0 I 0 I
A£2 = A£21 and A£3 = A£31.
Now we calculate A;% and Alﬁ from (17).
I -8.1346
AI2 = [1/3.11[-19.5 - [-1 =-1] ] = =9.4042
-1.5183
and
I
AI3 = -u . 95020
Using (14) and (15) we have
I _ I _ I _ I_ _
AIM2 = AI2 = =9.4042, AI63 = AI3 = -4,9502
-8.1346 a1 8.1346
0 0 * 63 0 :
ALSE = A£2 = . 0 = A£3 =
-1.5183 AT 1.5183
: 73
With the help of (5) and (8) we have
o 1 S 9.4042
AIu = AI42 = =9.4042, A£5 = 0 = -8.1346
AT -1.5183
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I I
AIO i AI63 i -4.9502 AIO i AI73 i 4,9502
~6 0 - Y U7 T 0 -
AI63 8.1346 AI73 ‘1.5183
. 0 0
At the last step of the algorithm, we correct Ek = Ek + Alk, k =4,
5, 6, 7 and obtain

145 = =4.,4042, IS6 = -3.1346, 157 = 3.4817, 167 = 0.0498.
Now, putting these values of 145’ I56' 157 and I67 into (24), (25),

(26) and (27), the node voltages obtained are

V, = 9.8341V, V2 = 5.5958V,

1 = 6.9533V, Vy = $.7513V,

Y3
V5 = 3.1840V, V6 = 3.2342v, V7 = 6.4934v,
IX. CONCLUSIONS

A hierarchical decomposition approach for simulating a large
network has been presented. The network is decomposed, by removing some
interconnections, into quite small subnetworks, then the network
analysis 1is realized in two stages. First, analysis of blocks is
performed and after this subnetworks are combined in a hierarchical
manner joining two subnetworks at any time. Thus, combining the
solution of the subnetworks can be performed in a series-parallel way.
The analysis of very large networks is possible, therefore, in a short
time. We have described the method for linear networks which can easily
be extended to the case of nonlinear networks. For the analysis of
nonlinear electronic circuits the modified Newton method [9] can be
used, which is comparatively efficient. It is recommended that for
analysis of nonlinear circuits, at each iteration of Newton's or the
modified Newton method, an incremental model of the network should be
used (instead of the companion model [10]) and solved for increments in

network variables. As the network is to be solved for increments in
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variables, round off errors will be less and also less computation time
will be required.

There is no efficient algorithm available for optimally decomposing
large networks. In this approach, however, it is possible to use an
efficient algorithm which gives suboptimal decomposiiton of large
networks because only the number of external nodes of the subnetworks is
important. Sparsity techniques at blocks or the subnetwork level can be

used in implementing the algorithm.
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Fig. 2 Network blocks with added current sources.
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