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Abstract

This paper applies the compact, complex notation introduced by
Bandler and El-Kady to the practical solution of the power flow
equations. The solution of the complex linearized power flow equations,
which is required by the iterative Newton-Raphson method, is obtained by
a direct method. The method, fully and exactly, incorporates generator
buses as well as dummy load buses. An elimination scheme is applied to
diagonalize the conjugate tableau, which contains the complex
coefficients associated with the conjugate of the perturbed bus
voltages. This conjugate tableau is then eliminated, simultaneously
reducing the basic tableau, which contains the complex coefficients
associated with the perturbed bus voltages, to upper triangular form.
Alternatively, the conjugate tableau is explicitly eliminated, exposing
a set of 1linear, complex equations in the perturbed complex bus
voltages. The theoretical results are illustrated by solving the load

flow equations for a 6-bus, a 23-bus and a 26-bus system.
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I. INTRODUCTION

Bandler and El-Kady [1-4] demonstrated the application of a
compact, complex notation to power system simulation [2-4] <through
solution techniques for the ubiquitous power flow equations [5] and
sensitivities of system states w.r.t. control or design variables. They
presented a new technique for solving the power flow equations, which
automatically supplies power network sensitivities, employing the
concept of the adjoint network simulation in the context of Tellegen's
theorem [6]. This particular method, while using the compact, complex
notation, does not employ it in the numerical analysis. It exploits
simple network properties, however, of the corresponding exact,
approximate and decoupled versions, while the exact version enjoys the
same rate of convergence as the Newton Raphson method [7,8].

Bandler and El-Kady have investigated the principle of retaining
the compact, complex form of the perturbed (or 1linearized) 1load flow
equations and have derived a suitable elimination technique, which deals
directly with the linear complex equations expressed in terms of a set
of complex variables and their complex conjugate [3]. The authors
departed from the conventional approach to the Newton-Raphson method,
which employs the real mode, and invoked the formal interpretation in
terms of first-order changes of problem complex variables [2,4]. They
discussed not only the appropriate linearized, complex equations for
buses of the load bus type but also showed how their approach could
handle generator type buses in a direct manner. While some remarks were
made about sparsity considerations, their derivation of the algorithm
did not permit a simple exposition of structurally determined sparsity

in the complex equations.



The present paper has a number of objectives. Firstly, we explain
the steps of the complex elimination scheme in simple, matrix form which
exposes the sparsity structure more explicitly. Secondly, we introduce
generator-type buses into the tableau from the beginning and handle
dummy loads, which may be present in the system in an explicit manner.
Thirdly, we elaborate on the elimination of blocks of the conjugate
tableau which exploits its sparsity. Finally, we illustrate the results
of a computer program, written to implement Newton's method in the

complex mode, on a 6-bus, a 23-bus and a 26-bus system.

II. COMPLEX FORMULATION OF LINEARIZED LOAD FLOW EQUATIONS
The power network performance equations [9] are written, using the

bus frame of reference in the admittance form

where XT is the complex bus admittance matrix of the network, XM is a

column vector of the complex bus voltages and £M is the corresponding
column vector of the complex injected bus currents.

The bus loading equations are written in the matrix form
# *

EM EM = §Mv (2)

where
E, = diag !M’ (3)
s. £p 4 j0 ()

~M - ~M ~M

and ¥ denotes the complex conjugate. From (4)

(5)
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Substituting (1) into (2) we obtain the system of complex nonlinear

equations

*
=3 (7

E*
~M !

~M lI'T !M

representing the typical load flow problem.

Load Buses
A typical equation fitting into the system (7) corresponding to a

load bus is expressed as

s vt yTy I (8)
g = Vg Xy Yy eI

where
I8, 2, o, n, (9)

T
Ly is an appropriate row of XT and nL is the number of such buses. For

load buses, the real power Pz and reactive power Ql are specified, hence
the modelling (8) is in an appropriate form, with

A .
Sy = P, + 3Q, L e IL' (10)

The perturbed form of (8) corresponding to first-order changes in

states and controls is, for a given network,

§s: = v oyl s Ty sv',
Sy = Vo g %y *+ g Yy OV, ¢ 1,. (1)

We distinguish, in this paper, dummy load buses which are described

by equations corresponding to (8) in the form

S o=V yly del
=9 =Yy ¥y w €

d (12)

D'
where

A
I, = {nL+1, eeey N

D +nD}, (13)

L



Xg is an appropriate row of xT and nn is the number of dummy load buses.

Therefore, the perturbed form becomes, using (12)

ST = vyl sV delI
= Y9 g °Im €

q QR

Dt

Generator Buses

For generator buses, being voltage-controlled, the modulus of the
voltage and the active power are specified. These constraints do not

fit conveniently into (7), so they have to be manipulated accordingly.

We let [1-4]
A .
Sg = Pg + JIVg|
1 * * ® 1/2
==(VI +VI)+ j(vv)
2 g¢g g 8 J g 8
1 *¥T #* ¥ T . ®¥ 1/2
= 2(Vg Xg !M + Vg xg KM) + J(ngg) , £ € IG’ (15)
where
.2 +n+1 n-1} (16)
G - L p* 1y «een n=11,

Xg is an appropriate row of I and n is the number of buses including

T

the slack bus. We write the perturbed form for generator buses as

v *T V* *T V* v
ng 6~M+Xg NMG

265 vyl sy Ty v
g g " g Yg Om * Lg w °Yg

. 17

#* *
J(V 8V + V8V )/CIV 1), I
* IV + VSV /YD, g e T

We group the terms of (17) as



263 = Vh yT sV + (YL Ve & VIV )6V
g = 'g g It g T ITg g0,

* *
+ V. y T sV

T . * :
* (g Yy + WV DSV, ie T

Power Flow Equations: General Form

It is clear from the foregoing discussion that the power flow
equations can be expressed as

*
S = £(Y¢4’ EM)’ (19)

* *
where S includes 52. Sd and Sg as already defined. Thus, the complex

perturbed form can be written as

— *
Kol *+ Kgudly = R (20)

NM ’

where the complex matrices of coefficients K, and K are explicitly

SM SM

available from (11), (14) and (18), and

*
b, £ 85, LeI, (21)
b, & ss I
4= 884 d e D’ (22)
A
bg = GSg, g e IG’ (23)

Newton-Raphson: jth Iteration

In the jth iteration of the complex mode Newton-Raphson method we

solve the system (20) for 62& given

b = S - eyl v (21)
~M - ~(scheduled) ~TMt M
using (19). We let
J*1 _ 3 J
!M = !M + 6EM (25)

and continue in this manner until an appropriate criterion for 62& and

Rﬂ has been satisfied.



III. COMPLEX TABLEAU FOR
While properly accounting fo
power flow equations (7), and del

equations (20) we can write

Kx
where
X. é §v,, i
i i
and where an equation of (20) has
ki %+
This is equivalent to
—%
k.T X +
X X

We define coefficients of X
%
coefficients of X

and (29) can be represented in ta

Original Tableau: ith Row

to comprise the conjugate tableau.

LINEARIZED POWER FLOW EQUATIONS
r the equation for the slack bus in the

eting it from the rest of the perturbed

— %

+Kx =D, (26)

e {1, 2, ..., n-1} 27)

the form

T % _

£i X = bi' (28)
* *

KoL ox% = b, (29)

~i o~ i

to comprise the basic tableau and

Equations (28)

bleau form as follows.

T s *T .
X (basic) x ~(conjugate) b(RHS)
T . =T
[ ks i K 110 b, ] (30)

Taking the complex conjugate and

the basic and conjugate tableaus,

Consistent Tableau: ith Row
_*
[k

interchanging storage locations between

we obtain the following.

*
kT ]

t (31



The complex tableau as it stands at this stage in our presentation
can be set out as follows, where the conjugate coefficients associated
with the load buses have been normalized (the 2th equation (11) is

multiplied by 1/(x§ !M), L e IL‘

Initial Complex Tableau

. r “n; > | “ny> l “n.> “n; > | “np> ' “n.> _
(o) ') Y (0) ! ! (0)
n K00 kK 1 [ T B b
WLo| ALy LD L LG ~ |~ = L
* b o) ‘ ‘ 0)
no | kT kg o L o ! 9 b (32)
> DL, SDD | *DG : : D
+ 1 ] ] 1
(0 1 (@ ' (0 | =0 ' (0 ! —(0) (0)
e i Ko | Ko 1 Ko R | Koo 1 Ko 2 ]
] ] ] ]

In the tableau, ] denotes the square unit matrix of appropriate
dimensions and 0 is the null matrix. We remark here that, in practice,

n, is expected to be quite small as is n in comparison with n

G’ L’
Obviously, retaining the complex form of these 1linearized equations
results in immediate savings in computer storage [10]. To prepare the
tableau for subsequent conjugate elimination we diagonalize the

conjugate tableau in the following way, noting that the storage

locations reserved for X+ X pn» Ki6r KoL Eoor Xnee Kort Xope Koo' Xer

b b, and EG are used for intermediate computations.

Kop* Xsar 200 Bp

Transformation of gDD

. s (0)
Diagonalizing §DD

and transferring it to the conjugate tableau by

invoking the consistent form (31) we have



ST
oA K b K o e RL

' 5 i NN Lo | ()

2]) 9 ; 9 ; 9 EDL ; 1 =' gDG RD » (33)
* @ @t | = o I 0 (0)

e i KoL ; Kap ; e KoL ; Kap ; KaG L )

where superscripts 0 identify no changes in the tableau from the initial

form, while K {10, g (1) *(

Ko v Bpg  and B

represent appropriate changes in the

consistent tableau associated with dummy loads and are stored in gDL,

EDG and ED locations without confusion.

Reduction of %GD

Note that in the forward reduction process for ECD’ rows nL+1, ooy

nL+nD of the basic tableau are zero, therefore the basic tableau for

rows nL + nD + 1, ..., n=1 is unchanged. The new tableau is, using the

unit KDD matrix,

\ _ +nL-> ' +nD+ ' +nG+ <—nL—> . <—nD-> | <—nG+ -
(0)y ' _(0) | _(0) : \ (0)
A DA S S oo 82 =)
] 1 ] [}
* ‘ ‘ (1) | bow(1) (1)
1 ] * 1
ﬁD 9 ; Y ; 9 KPL ; 1 ; KpG by . (38)
* ! _(0) (1) ! b1 (1)
1 ] 1 1
e Koo ' Rep 1 Koo Ko 1 2 1 K 26 |
L ] 1 [} ]
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Reduction of %GL

Using the unit KLL matrix we have

“n. > “n_-»> “n > “n, > “n_-> “n >

t[ (B) i (g) | (8) g | b, G 0 )

oL KL | KD | KiG 1 | 0 g 0 b

. E i (1) E E %(1) *(1)

4D 9 ! 9 | Y B | 1 | Kng By , (35)
oy | kD1 R D | b | @

EG ! KoL ; Xep ; Kse Y ; 0 ; Kig Bg J

where we note no changes to the conjugate tableau in its columns nL+1,

eeey N=1,

Diagonalization of EGG

QD)

We diagonalize E affecting only rows n +n_+1, ..., n-1 and

GG * L*"p
obtain
\ _ +nL+ . +nD+ ' enG+ +nL+ ' +nD+ . +nG+
(0) , _(0) , _(0) : : (0)
ool R K b K O )
1 ] ] 1
* ‘ ‘ (1) | Lo | ()
1 1 * 1 1
1)) 9 ! Y ! 9 K51 ! 1 ! RO ED . (36)
4' 1 | 1 1
* @ ! @ @ ‘ ‘ (3)
] ] [} 1
e Koo ' Xop ! Koo 22 ] L
L I I ] 1 J
Reduction OQAEDL and EDG

Using the unit matrices KLL and EGG we carry out a simultaneous

reduction process which affects only rows nL+1, eeey, N_#N This gives

L D’
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+nL+ “np> ne> “n; > “np> “ne>

+ 1 1 ] :
(0) | (0) , (0) X X (0)
oL Ko ' Ko 1 K U b
] ] ] 1
* @ @ ’ i *(2)
] 1 1 1
p | RoL | pp | G 2 ; 1 ; 2 ®p » (3T
* @ @ (@2 ’ ’ (3)
K2 ! A R b
% | ~or | Rep ! Xao S G
(. ) 1 ] ]
where we see the second change to the storage locations for EDL and 5DG

and the first to EDD'

Final Complex Tableau

The final complex tableau, in which the conjugate tableau has been
diagonalized and exhibiting explicitly the changes by computation

necessary to achieve this is

— 1 | | ' 7
0) , L0, _(0) : | (0)
Kot Ep b K 1o 8 )
] ] ] ]
@b oot o i E *(2)
o Pk ke | e bor e | @ e
1 ] ]
@ b2 ’, E (3)
K" | Xeop' T Koo g 8 1 s
L 1 i | 1

It is important to note that no changes have been made in the tableau
associated with the load buses, which are usually in the majority, while
relatively few rows, namely those associated with dummy 1loads and
generators have undergone changes and, in general, fill-ins in the

sparseness.
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We summarize the tableau at the present stage as
tk@ 111 @, (39)

Conjugate reduction combined with forward Gaussian elimination is
employed in the manner presented by Bandler and El-Kady for a power
system consisting only of load buses [3]. The ith step of the process

is illustrated as follows. We write the consistent form (31) for the

present situation as

* i *®¥(5-
ul o TdE=n o, AT

where Ei is a unit vector with ith element of unity. Now the remaining
rows i, i+1, ..., n-1 are used from the current original tableau to
first eliminate the conjugate part of this consistent form resulting in
the ith row

S SAL I IS 1)

The ith row is now used in a Gaussian forward reduction on the ith

column, the result of which is

B )
5?(1) | 0 : bg1)
T(2) E | (2)
k, | 9 | b,
. ] . ] .
] 1
. [} . ] .
. : L] : .
T(i) | | (i)
ks | 0 i b,
-—- —|, w2
1 1
T(i) ! T H (i)
i1 : Ri+1 : Pi41
. ] . ] .
. H . H .
. H . 1 .
T(1) ‘ T ’ (i)
1 ]
S - ! ~n-1 ! Ppot

where we have created elements

kii) =0, r>s, s<i. (43)
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Backward substitution gives the desired solution.

Succinetly, the equations may be written as
*
Kx+x =b (1)
with accompanying consistent form

* % *
x+Kx =

(45)

1{=2

yielding

* * *
(1-K K)x=b -Kob, (46)

~

which can alternatively be solved by standard techniques.

IV. APPLICATION TO TEST POWER SYSTEMS

In this paper we consider three power systems (6-bus [11,12],
23-bus [13] and 26-bus [6,14] to illustrate general computational
aspects of the algorithm presented. The detailed data of the 6-bus,
23-bus and 26-bus power systems are tabulated by Tables I-VI. The
structure and line diagrams of these power systems are shown in Figs.
1-3, respectively. All the values shown are in per unit. The algorithm
is programmed using rectangular coordinates. For determining the
solution of the load flow problems of the systems, flat voltage profiles
have been used as starting points. The computations have been performed
on a CYBER 170 computer.

Tables VII, VIII and IX show the solutions of the 1load flow
problems for the 6-bus, the 23-bus and the 26~bus power systems,
respectively. Solutions are obtained in 5 iterations. The detailed
iterative solutions in the rectangular coordinates, with starting flat
voltage profiles for the 6-bus, the 23-bus and the 26-bus power systems

are tabulated in Tables X, XI and XII, respectively.
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V. CONCLUSIONS

The direct solution of the complex linearized power flow equations,
required at the Jjth iteration of a complex Netwon-Raphson method, has
been described in this paper. By synthesis of complex variables
consisting of the adjustable variables associated with voltage-
controlled buses, we fully incorporate generators. The practical
solution of large power systems has been emphasized. We have presented
our algorithm in a tableau form which exposes the sparsity structure of
the matrix of coefficients, and preserves the sparsity of the
coefficients associated with the load buses until the conjugate tableau
has been diagonalized. Subsequent elimination schemes to solve for the

perturbed complex bus voltages are described.
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TABLE I

LINE DATA FOR 6-BUS POWER SYSTEM

Line Terminal Resistance Reactance Number of
No. Buses Rt (pu) Xt (pu) Lines
1 1,4 0.05 0.20 1
2 1,5 0.025 0.10 2
3 2,3 0.10 0.40 1
y 2,4 0.10 0.40 1
5 2,5 0.05 0.20 1
6 2,6 0.01875 0.075 4
7 3,4 0.15 0.60 1
8 3,6 0.0375 0.15 2

TABLE II

BUS DATA FOR 6-BUS POWER SYSTEM

Bus “n % V120

No. Bus Type (pu) (pu) (pu)
1 load -2.40 0 - /=
2 load -2.40 0 - /=
3 load -1.60 -0.40 - /-
4 generator -0.30 - 1.02 /-
5 generator 1.25 - 1.04 /-

6 slack - - 1.04 /-
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TABLE III

LINE DATA FOR 23-BUS POWER SYSTEM

Line Terminal Resistance Reactance 1/2 Shunt
No. Buses Rt (pu) Xt (pu) Susceptance
1 23,1 0.0242 0.0540 0.00590
2 23,2 0.0309 0.0693 0.00755
3 18,3 0.0404 0.0888 0.00985
y 6,3 0.0325 0.0709 0.00785
5 18,5 0.0615 0.1620 0.01710
6 1,4 0.0576 0.1520 0.01600
7 2,7 0.0266 0.0700 0.00740
8 7,5 0.0229 0.0504 0.00560
9 6,4 0.0446 0.1003 0.01090
10 19,8 0.0233 0.0514 0.02280
11 6,8 0.0597 0.1315 0.01455
12 7,8 0.0597 0.1315 0.01455
13 10,20 0.0043 0.0351 0.11865
14 20,9 0.0043 0.0351 0.11865
15 11,9 0.0038 0.0307 0.10390
16 14,11 0.0035 0.0288 0.09755
17 22,10 0.0089 0.0726 0.24355
18 12,13 0.0010 0.0080 0.02715
19 13,14 0.0021 0.0167 0.05665
20 15,14 0.0016 0.0127 0.04310
21 21,15 0.0045 0.0362 0.12255
22 17,14 0.0024 0.0192 0.06490
23 21,16 0.0019 0.0156 0.05280
24 16,17 0.0014 0.0114 0.03850
25 22,12 0.0020 0.0164 0.05545
26 9,6 0.0023 0.0839 0.0
27 10,6 0.0023 0.0839 0.0
28 9,7 0.0019 0.1300 0.0
29 10,7 0.0023 0.0839 0.0
30 23,18 0.0025 0.2000 0.0
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TABLE IV

BUS DATA FOR 23-BUS POWER SYSTEM

Injected Power

Bus Voltage

Bus
No.
P W lvm‘ Sn
1 0.00 0.00 - -
2 -0.47 -0.12 - -
3 -0.51 -0.13 - -
y -0.41 -0.10 - -
5 -0.48 0.12 - -
6 -0.01 0.00 - -
T -1.50 -0.38 - -
8 =1.77 -0.44 - -
9 -0.06 0.00 - -
10 0.04 0.00 - -
11 -2.01 -0.50 - -
12 -1.32 -0.33 - -
13 -3.u44 -0.86 - -
14 -1.04 -0.26 - -
15 -3.76 -0.94 - -
16 -3.75 -0.94 - -
17 2.10 0.52 - -
18 0.26 - 1.03 -
19 0.89 - 1.05 -
20 0.20 - 1.05 -
21 9.03 - 1.05 -
22 9.23 - 1.05 -
23 - - 1.04 0.0
Transformer tap (qmm,) between buses m and m'
a9,6 = 1.04, 1.03, ag’7 a10,7 1.06
Bus Type
nL = 17, nG =
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TABLE V

LINE DATA FOR 26-BUS POWER SYSTEM

Line Terminal Resistance Reactance 1/2 Shunt
No. Buses Rt (pu) Xt (pu) Susceptance
1 13,26 0.0 0.0131 0.0
2 26,16 0.0 0.0392 0.0
3 16,23 0.0 0.4320 0.0
4 23,26 . 0.0 0.3140 0.0
5 2,10 0.0 0.0150 0.0
6 9,10 0.1494 0.3392 0.4120
7 9,12 0.0658 0.1494 0.0182
8 12,26 0.0533 0.1210 0.0147
9 9,14 0.0618 *0.2397 0.0319
10 11,14 0.0676 0.2620 0.0349
11 19,26 0.0610 0.2521 0.0295
12 6,26 0.0513 0.1986 0.0265
13 6,19 0.0129 0.0532 0.0074
14 7,19 0.0906 0.3742 0.0437
15 6,7 0.0921 0.3569 0.0475
16 11,22 0.0513 0.2118 0.0248
17 8,11 0.0865 0.3355 0.0447
18 17,22 0.0281 0.1869 0.0237
19 8,21 0.0735 0.2847 0.0379
20 17,21 0.0459 0.3055 0.0387
21 1,4 0.0619 0.2401 0.0319
22 4,21 0.0610 0.2365 0.0315
23 « 20,21 0.0 0.0305 0.0
24 15,1 0.0 0.0147 0.0
25 2,13 0.0086 0.0707 0.3017
26 1,7 0.0199 0.0785 0.0404
27 15,20 0.0107 0.0617 0.4471
28 2,18 0.0074 0.0608 0.2593
29 1,3 0.0 0.0392 0.0
30 24,3 0.0 0.1450 0.0
31 5,21 0.0 0.1750 0.0
32 5,25 0.0 0.154 0.0
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TABLE VI

BUS DATA FOR 26-BUS POWER SYSTEM

Injected Power

Bus Voltage

Bus
No.

Pm Qm IVmI 6m

1 -0.82 -0.21 - -
2 0.0 0.0 - -
3 -0.57 -0.17 - -
4 -0.48 -0.21 - -
5 -0.43 -0.11 - -
6 -0.40 -0.10 - -
7 -1.11 -0.27 - -
8 -0.23 -0.06 - -
9 -0.67 -0.21 - -
10 -1.02 -0.27 - -
11 -0.43 -0.14 - -
12 -0.43 -0.12 - -
13 0.0 0.0 - -
14 0.0 0.0 - -
15 0.0 0.0 - -
16 -1.31 -0.30 - -
17 -0.03 -0.01 - -
18 2.80 - 1.07 -
19 1.45 - 1.05 -
20 2.80 - 1.00 -
21 1.10 - 1.02 -
22 -0.56 - 0.89 -
23 -0.04 - 1.00 -
24 -0.05 - 1.00 -
25 0.63 - 1.00 -
26 0.0 - 1.01 0.0

Transformer tap (a ,) between buses m and m'
LI

813,26
320, 21

4,3

1.03,
0.97,
0.98,

Bus Type

nL = 17,

426,16

a5, 21

15,1

0.96, a2,10 = 1.03,
0.98, 31,3 = 0-98,
0.99, 85'25 = 1.03
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TABLE VII

LOAD FLOW SOLUTION OF 6-BUS POWER SYSTEM

Load Buses

V1 = 0.7730 - jO.6002

V2 = 0.9208 - j0.2826

V3 = 0.8619 - j0.2700
Generator Buses

Qu = 0.7866 Vu = 0.8660 - jO.5388

Q5 = 0.9780 V5 = 0.9253 - jO.4747
Slack Bus

P6 = 6.1298 Q6 = 1.3546
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TABLE VIII

LOAD FLOW SOLUTION OF 23-BUS POWER

SYSTEM

Load Buses

< RS ]SS ]S <
OW 0 N O Ul & W N =

Generator Buses

Slack Bus

Qg
Q

19

Q20
Q21
Q22

23

= 1.0314 + jO.0179 V1O =
= 1.0059 + j0.0263 V11 =
= 1.0040 + jO.0864 V12 =
= 1.0015 + j0.0670 V13 =
= 0.9974 + jO.0546 V14 =
= 1.0061 + jO.1406 V15 =
= 0.9897 + jO.0807 V16 =
= 0.9931 + jO.0414 V17 =
= 1.0112 + jO0.2137
= 0.4204 V18 =
= 0.7228 V19 =
= 0.4510 V20 =
= 1.9016 V21 =
= 1.2589 Vo, =
= -0.6839 Q) =

23

1.0123
0.9806
0.9430
0.9465
0.9529
0.9477
0.9408
0.9455

1.0282
1.0475
1.0233
0.9301
0.9340

0.8913

jo.2473
j0.2486
j0.3873
j0.3528
j0.3395
jo.3418
jo.4125
jo. 4007

jo.0615
jo.0722
j0.2351
jo.u873
JO.4T797




- 23 -
TABLE IX

LOAD FLOW SOLUTION OF 26-BUS POWER

SYSTEM

Load Buses

e R
O & N O Ul

Generator Buses

Slack Bus

Qg
%o
20
21
22
23
24

25

o O O O O DO

26

= 1.0328 + jO.0773 Vio =
= 1.0644 + jO.0943 V11 =
= 1.0424 + jO.0549 V12 =
= 0.9859 + j0.0979 V13 =
= 0.9741 + j0.2598 V14 =
= 1.0324 + j0.0554 V15 =
= 1.0132 + jO.0181 V16 =
= 0.9441 + j0.0403 Vi =
= 0.9614 - jO.1088
= -0.4004 V18 =
= 0.1872 V19 =
= 0.7795 Voo =
= -0.0294 V21 =
= -0.1775 V22 =
= -0.1144 V23 =
= -0.,1645 VZH =
= 0.1691 V25 =
= 0.1334 Q26 =

1.0370
0.8982
0.9670
1.0463
0.9388
0.9273
1.0353
0.9318

1.0397
1.0455
0.9706
0.9938
0.8856
0.9996
0.9989
0.9359

-0.0513

j0.0692
jo0.0992
jo.o741
jo.0157
jo.1071
j0.0970
Jjo.ouT1
jo.0278

jo0.2528
j0.0966
jo.2408
jo.2295
jo0.0885
jo.0265
jo.ous8
jo.3522
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TABLE X

DETAILED LOAD FLOW SOLUTION OF 6-BUS POWER SYSTEM

Quantity
Iteration
No.
by ey = max{|b, |, |b;,|} Vi e, = max{|&V,,|, |8V, ]}
) 1 -2 .
1 -0.247 + jO.117x10 -0.690x10"° - j0.584
2 0.295x10"" + 30.237 ~0.197 - 30.178x10™"
3 0.287x1072 + j0.521x10~2 ~0.225%x10"" + 30.157x102
-5 . =7 -3 . -4
Y -0.199x10" °~ - j0.831x10 -0.436x10"° + j0.886x10
5 -0.490x1o‘12 - jo.1uzx10°13 -0.181x1o"6 + j0.389x1o'7
e. 2 max {|b,. |, |b.,|} e £ max {jev, |, |6V, |}
b i1 W2 i1l j2

i,3

1,3

where subscript 1 denotes real part and subscript 2 denotes imaginary

part
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TABLE XI

DETAILED LOAD FLOW SOLUTION OF 23-BUS POWER SYSTEM

Quantity
Iteration
No.
b;: ey = max{|b |, |b;,|} §V;: e, = max{|eV, |, |8V,,5|}
1 -1
1 ~0.241x10" - j0.152 ~0.575x10" ' = 0.58U
2 0.681x10" " - j0.210 -0.123 - j0.902x10™ "
3 0.168x10™2 — jo.249x10™" 0.325x10™2 — j0.647x10™2
-7 . -7 TR -4
4y -0.285x10  + j0.765x10 -0.181x10 - j0.627x10
5 0.156x10" 12 - §0.750x10" 2  —0.745%10") - 30.238x10™°
e & max {|b, |, |b.,|} e. $max {)ov. |, |V, |}
p - max by 0 [Py y - max i1l 1855
i, i,j

where subscript 1 denotes real part and subscript 2 denotes imaginary
part
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TABLE XII

DETAILED LOAD FLOW SOLUTION OF 26-BUS POWER SYSTEM

Quantity
Iteration
No.
b;: ey = max{|bs4],|b;,|} §V;: e, = max{|8V; ]|, ]8V;,]}
+1 . -13 .
1 -0.122x10"  + j0.373 -0.299x10 + jO.402
2 0.680x10™" + §0.796x10™2 ~0.641x10"" - j0.494x10™"
3 0.179%x10™3 - j0.305x107° ~0.195x10™2 - 30.360x10™2
Y ~0.216x10"" - j0.124x10-u 0.131x1o'“ - j0.665x1o'5
5 -0.395x1o'7 - j0.425x10_7 -0.115x1o‘u - jo.519x1o‘5
e #max {|b, |, |b,.|} e Ymax {|&v. |, |V, |}
b ] i1 j2 i3 i1he j2

where subscript 1 denotes real part and subscript 2 denotes imaginary
part
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Fig. 1 6-bus power system
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Fig. 2 23-bus power system
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Fig. 3 26-bus power system
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