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Abstract

This paper deals with fault isolation in 1linear analog circuits
under an insufficient number of independent voltage measurements. The
L1 norm is wutilized in isolating the most 1likely faulty elements.
Earlier work is extended by allowing measurements to be taken for more
than a single excitation. An iterative procedure is followed in which
we utilize linear programming as a powerful tool in solving the problem.
Convergence is fast and the results of circuit examples subject to

practical tolerances on components are much sharper than in our earlier

method,
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I. INTRODUCTION

With a sufficient number of independent measurements fault
isolation is carried out by identifying all network components. There
is usually a trade-off between the computational effort required and the
number of accessible network nodes. When all the network nodes are
accessible the components are identified by solving a system of linear
equations [1,2]. If some of the network nodes are inaccessible a system
of nonlinear equations [3] is usually solved for identifying the network
components. Normally, not all the nodes are accessible and this will
make the problem of fault isolation by identifying all network
components computationally expensive and time consuming.

For a limited number of independent voltage measurements the
identification of all network components is impossible and fault
isolation is carried out by identifying the faulty components under the
assumption that the changes in all good components are within their
tolerances. Two approaches have been followed [4]. The first approach
utilizes the measurements in constructing algebraic equations which are
invariant on the changes in the faulty elements. The second approach
utilizes an estimation criterion in isolating the most likely faulty set
[4-61.

In this paper, we examine the use of the least-one-objective
function in estimating the faulty elements. Mainly, we extend our
previous study to the problem when more than one excitation is
performed. This relaxation permits us to use more measurements from the
available accessible nodes. An iterative procedure has to be followed,
however, to find the faulty elements. In every iteration a 1linear

programming problem is solved for the changes in the network components.



In what follows we present the formulation of the problem, the
description of the iterative procedure and some examples to demonstrate

the efficiency of this iterative approximate fault isolation method.

II. APPROXIMATE FAULT ISOLATION

Given a number of independent voltage measurements which is less
than the total number of the components of the faulty network, it is
required to estimate the most likely faulty elements. If we permit all
the network components to change the aforementioned problem will have an
infinite number of feasible solutions. Practically, the faulty
components are very few in number and the relative change in their
values is significantly larger than in the nonfaulty ones.

The change in a network component value from its nominal can be
represented by either a current source or a voltage source which is in
parallel or in series, with the component, respectively [41]. For a
single excitation, the change in the performed voltage measurements from
their nominal values due to the change in the values of the network
components is given by

ay" o= H" e, (1)
where e 2 [e1 e2 oo en]T is the vector of the assumed sources that
represent the changes in the n components from nominal and Em is the
hybrid matrix that relates the changes in the measured voltages to the
assumed sources e. Em is computed directly using the nominal component
values.

Every component of e has the form

(2)
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where ai = 0, 1 or -1 depending on the component type, Api is the change
in component value and xi is the actual controlling voltage or current
for the component depending on whether ei is a current or a voltage
source, respectively. Normally, xi is unknown unless a direct
measurement of its value has been carried out.

Equation (1) is an underdetermined system of linear equations in
the parameters ege. We construct the following linear optimization
problem which can be easily solved using linear programming to find the

most likely faulty components.

n
Minimize .§1 (Ie1i| + Ie2i|) (3a)
€1 & 1=
subject to
IVARER S CTRIN SO (3b)
where €4 and 32 are the real and imaginary part of the vector e,
respectively.

The result of the optimization problem will provide us with the
vector e. Then the network is simulated using the original excitation
and the vector e to find xi, i=1, ..., n. The change in every network
component can be easily computed using equation (2). Comparing the
change in every component with its allowed tolerance the faulty ones are
readily isolated.

The formulation of the optimization problem in (3) does not destroy
the linear relation in (1) and it does not create more unknowns since
the unknown network response X is included in the error parameter (2).
But, at the same time, for nonresistive networks it defines two error

parameters for every component which cannot be easily correlated. Also



the formulation is restricted to a single excitation at any time since
any new excitation will add 2n new error parameters.

Practically, we would like to have the system (1) less under-
determined. This is achieved if we increase the number of measurements
by exciting the network at more than one external node and/or using
excitations at different frequencies. We then consider Api as the error
parameter.

In order to preserve the linear system (1), the network responses
X., i=1, ..., n, have to be known. Hence, they are assumed and an
iterative procedure updates their values and at the same time computes
the changes in the component values.

For more than a single excitation, we consider the following
optimization problem instead of (3).

n

Minimize ) IApi/pgl (4a)
AR i=1 :
subject to
~ R ~ n
A2m1 Em1§m1gm1
Asz Em2§m2gm2
. = . Ap, (4b)
A!mk Emkzmkgmk
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where Ap é [Ap1 Ap2 oo Apn]T is the vector of the changes in components
from nominal values, and for the 2th excitation, Azml is the change in
the measured voltages from nominal, Emg is the hybrid matrix which
relates the measured voltages to the assumed sources,

m4 2 m& mL

A . m
X = dlag[x1 b Xy eeeey X 1, (5)

where x?g is the ith controlling branch voltage or current depending
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whether the assumed source is a current or a voltage source,
respectively, and
mL A . . ol . a2 . an _

U dlag[(meg) ) (meg) s eee (mez) 1, (6)
defines the frequency dependency of the components. The normalization
w.r.t. pg in (4a) is needed when the nominal values of the components
are varied over a wide range.

Optimization problem (4) can be modified by adding the following
inequality constraints
Ap, > -pr, iz 1 n (7
pl pll - 9 e ey ’
where pi is the value of network element after being updated. Initially
X . 0
p; is set to its nominal design value p; - These constraints are added
to prevent any nonphysical solutions.
We utilize the measurements together with an updated model of the
network to compute me and zmz’ £ =1, «.., k. The responses x?z, £ =
1, «eey kK, i =1, ..., n are functions of the nodal voltages. We update

only the values of the internal node voltages since the external node

voltages are known from measurements.

Algorithm

Step 1 Using the nominal component values construct the matrices
required by (4).

Step 2 Solve the 1linear optimization problem (4) and update the
network component values.

Step 3 If there is no appreciable change in the component values,
stop.

Step 4 Recompute the matrices required by (4) wusing the updated

network. Return to Step 2.



ITI. EXAMPLES

Example 1

Consider the resistive network shown in Fig. 1 with the nominal
values of elements Gi = 1 and tolerances € = + 0.05, i =1, 2, ..., 20.
All outside nodes are assumed to be accessible with node 12 taken as the
ground node. Nodes 4, 5, 8 and 9 are assumed internal where no
measurements can be performed.

Two faults are assumed in the network in elements G2 and G18' For
Case 1, we applied the fault isolation method with a single excitation
at node 1 and simulated the voltages at the nodes 1, 2, 3, 6, 7, 10 and
11. We solved the optimization problem (3) for the error parameters e.
Then, the changes in the component values were computed. For Case 2, we
considered two excitations applied at nodes 3 and 6 sequentially and
performed voltage simulations from all available external nodes. We
constructed optimization problem (4), and applied 3 iterations of our
iterative procedure. See Table I for the results.

Both methods have identified the actual faulty elements, but in
Case 2 the estimated changes in the faulty elements approach their true
values. Some of the changes in the nonfaulty components have slightly
exceeded their allowed tolerances, but these changes are small so we can

still consider them nonfaulty.

Example 2

Consider the one stage transistor amplifier in Fig. 2 with its
equivalent circuit in Fig. 3. This example was originally considered by
Chen and Saeks in [7]. The nominal component values together with the

actual values are listed in Table II. Three faults are assumed in the



network, namely, C1, rTT and 8y with all other elements within their
relative tolerances. We first applied optimization problem (3). A
single current excitation is applied at node 1 of angular frequency 0.01
rad/sec. Voltage measurements are simulated at the assumed accessible
nodes 1, 2, 4, 5 and 6. For optimization problem (4), we excited the
network twice at node 1 using two different frequencies, namely, 0.01
rad/sec and 0.0075 rad/sec, and voltage measurements are obtained from
the same accessible nodes. The results of both cases are given in Table
II. Convergence in Case 2 occurred after 5 iterations. It is clear
that the results of Case 2 are much sharper and they identify exactly

the faulty elements.

- IV. CONCLUSIONS

A method for approximate fault isolation is presented. We utilize
the properties of the L1 norm in isolating the most 1likely network
components which have exhibited large changes in their values. This
paper extends our earlier method [4] by allowing voltage measurements to
be performed for more than one excitation of the faulty network. This
obviously wutilizes the available external nodes by obtaining more
information about the network under test.

The formulation of the problem necessitates the application of an
iterative procedure for its solution. A linear programming problem is
solved in every iteration to provide us with the most likely changes in
the network components. Linear programming is very efficient and from
our experience with the proposed method the iterative procedure

converges rapidly.



By adding more information about the network the problem becomes
less underdetermined and the approximate fault isolation method 1is
expected to provide sharper results. This is easily seen from the
results of the examples considered in this paper.

Our approximate method can be used by itself for fault isolation,
or we could verify the obtained results by constructing algebraic
invariant equations corresponding to the detected faulty set as we did

in [4].
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TABLE I

RESULTS FOR EXAMPLE 1

Percentage Deviation

Element Nom. Value Act. Value

Actual Case 1 Case 2
G1 .0 0.98 -2.0 -4.15 - 2.20
G2 .0 0.50 -50.0 -50.42 -47.86
G3 .0 1.04 4,0 0.0 8.60
G4 .0 0.97 -3.0 0.0 -2.46
G5 .0 0.95 -5.0 0.0 -2.36
G6 .0 0.99 -1.0 0.0 -0.14
G7 .0 1.02 2.0 0.0 -2.49
G8 .0 1.05 5.0 0.0 0.39
G9 .0 1.02 2.0 0.0 0.84
G10 .0 0.98 -2.0 0.0 -1.28
G11 .0 1.04 4.0 0.0 0.0
G12 .0 1.01 1.0 -3.06 1.55
G13 .0 0.99 -1.0 0.0 0.0
G14 .0 0.98 -2.0 0.0 2.47
G15 .0 1.02 2.0 0.0 1.51
G16 .0 0.96 -4.0 -7.07 -6.69
G17 .0 1.02 2.0 0.0 1.91
G18 .0 0.50 -50.0 -40.1 -46.90
G19 .0 0.98 -2.0 -9.21 -3.38
G .0 0.96 -4.0 -6.81 -6.14

n
(@]
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TABLE II

RESULTS FOR EXAMPLE 2

Percentage Deviation

Element Nom. Value Act. Value

Actual Case 1 Case 2
4 20.0 10.0 -50.0 -48.68 -50.0
s 75.0 76.92 2.56 0.0 -3.04
ry 10.0 10.2 2.00 0.0 -2.06
ro 40.0 66.67 66.66 -12.93 53.36
. 15.0 14.0 -6.66 0.0 6.62
Cu 25.0 24.0 -4.00 -0.32 -4.12
& 10.0 5.0 -50.00 0.0% -46.21
Rc 10.0 9.8 -2.00 -1.36 2.55
C, 20.0 19.0 -5.00 -0.65 -5.59
RL 20.0 20.6 3.0 1.43 -3.44
Re 30.0 29.4 -1.96 h.97 1.37
Ce 10.0 9.5 -5.00 0.0 -5.01
R1 10.0 10.05 0.5 -1.43 -0.50

¥ A faulty element has not been detected
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Fig. 1 The resistive network.
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