No. S0C-273

UPWARD TOPOLOGICAL ANALYSIS OF LARGE CIRCUITS

USING DIRECTED GRAPH REPRESENTATION

J.A. Starzyk and E. Sliwa

November 1981



UPWARD TOPOLOGICAL ANALYSIS OF LARGE CIRCUITS

USING DIRECTED GRAPH REPRESENTATION

J.A., Starzyk and E. Sliwa

Abstract

This paper presents the method of topological analysis of large LLS
networks with the use of hierarchical decomposition of the network
graph., It is assumed that the network is represented by a directed
graph. A new approach, using Coates signal-flow graphs, to the element
modelling is described.

An algorithm of upward hierarchical analysis of partitioned graph
is presented. The algorithm allows symbolic analysis of large networks
with the number of elements kept as symbols practically unlimited. The
computational time 1linearly depends on the network size. A computer

program using techniques described is also presented.
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I. INTRODUCTION

Among many methods of analysis of 1linear electronic circuits
topological methods are of particular interest because of the following
advantages:

(i) network functions can be obtained in symbolic form which is
convenient for further processing, e.g., optimisation or
statistical analysis,

(ii) accuracy gained is better than in most of other methods.

The major disadvantage of these methods, which has practically
limited their application to symbolic hand analysis of very small
circuits, lies in rapid increase of the number of terms in topological
formulas (approximately exponential w.r.t. number of network nodes) [1].
Computer programs based on direct topological analysis can handle in
practice networks having up to 10-15 nodes only.

To overcome computational difficulties a direct decomposition
method (Chen [2] for n-vertex bisection, and Konczykowska and Starzyk
[3] for the general case) was elaborated. This method enables us to
analyse networks having up to 30 nodes (program ADEN [4] written for
nullator-norator representation). Time of analysis, as determined for
this method, increases exponentially with the square root of the number
of network nodes. However, the method imposes some restrictions on the
network structure and can hardly be considered as convenient for the
user.

A turning point has been achieved when the method of analysis by
hierarchical decomposition [5] was introduced. Program HADEN [6] based
on so-called downward hierarchical analysis, makes analysis of networks

having more than 100 nodes possible. Moreover, time of analysis for the
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algorithm implemented is bounded by a polynomial of order, for typical
network structures, 2 to 3. This makes it competitive to other
numerical methods. However, the method has two major drawbacks:
(i) the number of elements kept in symbolic form is limited to a very
small number because of the rapid increase of storage requirements
(for example, HADEN evaluates network functions as rational
functions of complex frequency s only),
(ii) some parts of the network have to be analysed repeatedly.
The method presented in this paper, called upward hierarchical
analysis, enables us to overcome these drawbacks. It allows practically
all symbolic analysis of quite large networks having more than 100

nodes.

II. TERMINOLOGY
Here we briefly recall some basic notions which will be
subsequently used in the paper (see also, for example [5]). We shall
concentrate on such topological methods, which use a weighted, directed
graph as a network model. Symbolic network functions are obtained by
enumeration of multitrees of various types of the network graph [1].

Definition. By a directed k-tree tv (simply a k-tree) of graph G

with set of components V, where V is of the form

v ={(rvv% ,...,vlmR, cees (rk,vﬁ, cees vﬁk)} (1

we mean a subgraph of G having the following properties:
1 it contains no loops and n-k edges, where n is the number of graph

vertices,
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2) i-th component of tv contains vertices o vi s seey v:;.with ry
being the reference node of the component (i.e., for any tertex N
of the component, there exists a directed path from v to ri).

By a weight |t| of a k-tree t we mean

it = II v, (2)
eet

where ye is the weight of edge e of the k-tree t. For a k-tree
consisting of isolated vertices only we assume (t] = 1.

A weight function |T} of a set of k-trees T is defined as

ITH = ) it (3)
teT

Let graph G(V,E) be a directed graph which represents a LLS

circuit. Let us define the set B of block vertices of G as a set of

terminal vertices (for a two-port network there are four such vertices).

Let us suppose that G has been partitioned onto L subgraphs Gi(vi’ Ei)'

Ein E, = ﬂ,lJEi = E (only vertex decomposition is considered in this
1

J
paper; generalization for edge and mixed decomposition follows

immediately). Let S = {G1, ceey Gl}' By block vertices Bi of Gi we

mean the vertices of B and cut vertices, which belong to Vi' For every

graph Gi we define the substitute graph G?(Bi, Ei) as the complete graph

spanned over block vertices Bi' Union of all the substitute graphs G?

forms the substitute graph of decomposition G® (we assume that G° has

the same set of block vertices as G). An example of decomposition and

its substitute graph is shown in Fig. 1.

For substitute graphs we can introduce another useful notion.

Definition. A k-tree t, of a substitute graph G° is called a

\
proper k-tree if there is no directed path of the length greater than 1

in any subgraph tVI1E§.



-5 -

1)
For example, in Fig. 1 the tree t1 = {bu, Cqo 04} is a proper tree,

3 " o 3 " - 3
while the tree t1 = {bu, b5, cu} is not because t141E2 = {bu, b5} which
is a directed path of length 2.

Any of graphs Gi’ which is too large to be analysed directly, may

J o= 1, ceey L and a

be further partitioned onto graphs Gi . i
9,

J’
substitute graph for this decomposition can be set up. Such a
procedure, called hierarchical decomposition, can be continued until

sufficiently small graphs are obtained. The process of decomposition

can be illustrated by so-called the tree of decomposition. Vertices of

this tree are assigned to graphs (both substitute graphs of

decomposition and proper blocks - i.e. unpartitioned parts of network

graph) . Fig, 2 shows an example of such a tree. Graph G was

partitioned first onto G1, G2 and G3; G1 and G3 were further
onto G

partitioned: G and G1 onto G1 1 and G1 o0 G1’2

3,1 U3,20 03,3 . .
and G1

3

was finally partitioned onto G1

'2'1 ’2’2'

ITI. ELEMENT MODELS

One of possible ways of solving the system of linear equations

Ax =F €))

~ ~

is to evaluate the determinant and cofactors of the matrix é. If, for
example, (4) is the set of node equations and A is admittance matrix, we

can write

T
A = X1 Yb AZ (5)

~ ~ ~ o~

where ). is basis incidence matrix of network unistor graph, 52 is

1

obtained from )\, after setting all elements -1 to 0. Y 1is diagonal

1 b

matrix of edge admittances.
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The determinant of é is equal to the weight function of the set of
all directed trees of the unistor graph [1]. Similar formulas for the
cofactors of A are known [1].

If in (5) ), is replaced by incidence matrix A1, the indefinite

1

admittance matrix (IAM) is obtained

AEMnY Ag (6

Similar formulas are known for other topological representations of the

network (e.g. for Chen digraph, signal flow graphs, etc). In the paper

we shall consider only directed graphs, i.e., Mason unistor graph and

Chen digraph [1]. Because the first representation can be obtained

simply by changing directions of the edges of the second one, we shall

further concern the unistor graphs only. Edges of such graphs, called
unistors, can be interpreted as current sources controlled by one of
node voltages.

A network unistor graph can be obtained in two ways:

(1) from IAM éa = [aij] by representing every nondiagonal and nonzero
element aij by an unistor directed from vertex j to vertex i with
weight _aij '

(ii) Dby replacing all elements by their unistor models.

The unistor models of an element can be obtained directly from IAM

of the element. If an element has no admittance description, so-called

a formal unistor model (FUM) can be introduced. Having element

equations, signal-flow graph (SFG) of the element can be obtained.

Vertices of that SFG represent element variables: node voltages and

optionally branch currents or voltages. By replacing edges of the SFG
of an element (edges of SFG will be called transitors) by appropriate

set of unistors we obtain autonomic FUM of the element. Unistors of
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such a model are called formal because they have different
interpretation from normal unistors; they cannot be treated as current
sources controlled by their node voltage. However, they can be treated
as normal unistors in topological formulas for network functions. Table
I shows examples of some autonomic FUM's. Theée models were obtained on
the basis of modified node equations of elements. It should be noted
that the internal nodes of such models correspond to variables, which do
not appear in normal node equations. Autonomic FUMs have two drawbacks:
(i) they introduce additional vertices to the network graph, and (ii)
some terms which can be cancelled may appear in symbolic network
functions.

(i) and partially (ii) may be avoided with the use of nonautonomic
models. Such models are obtained from modified SFG of elements, after
removing internal vertices. The procedure leads to the necessity of
changing the incidence of some graph edges in the neighbourhood of the
element. In fact, nonautonomic model should be considered as algorithm
of graph transformation rather than set of graph edges. Column 4 of
Table I contains examples of formal-nullator-norator (FNN) SFGs of some
elements. The FNN SFG describes algorithm mentioned. After all
elements of the network are replaced by their SFG models (autonomic
and/or FNN SFG), the following transformations have to be performed:

(1) transitors outgoing from one of the vertices of the nullator are
to be moved to the second vertex the nullator is incident with
(thus leaving the first vertex with zero outgoing degree).

(ii) transitors incoming to one vertex of the norator are to be moved
to the other vertex of the norator (leaving the first one with

zero incoming degree).
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(iii) every vertex having zero outgoing degree should be identified with
corresponding vertex of 2zero incoming degree. Note, the way the
FNN SFGs are formed provides that this is always possible.

Replacing every transistor by three unistors (see Table I) we
obtain the network unistor graph. This graph has fewer vertices and
edges then graph with autonomic FUMs. The drawback of nonautonomic
models lies in the fact, that SFG of the network has to be formed as
intermediate result.

The procedure described shows the direct correspondence between
network SFG and directed graph. Note, that formal unistors outgoing
from circuit "ground" can be observed. This seems to contradict the
unistor definition. However, the unistor graph origins from the IAM,
and any vertex (not necessarily ground) can be chosen as reference node.

Matrix Aa’ associated with network unistor graph Gu’ is the matrix

of the system of linear equations

Aa Xa = Ea (7
where
T T
X, = [x1. oo xn] ’ Fa = [f1, ooy fn]
[ n -
;22 3 a2 TN P
n
Aa = 32’1 "'2 ak,2 e e 0 az’n (8)
~ k=1
k#
n-1
L an’1 an,z LI 1':=1 ak,n 3}
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System (7) is linearly dependent. To solve this system, we remove
i-th equation and assume k-th node potential as reference. The
determinant of éik’ obtained from éa after removing i-th row and k-th
column can be evaluated as [1].

det Aik = !Tk!
where Tk is the set of all directed trees with the k-th vertex as
reference.

For simplicity, we assume i=k. Graph Gu may be extended taking
into account excitations, and adding auxiliary edges. Fig. 3 shows how
these edges can be added for the case of single excitation and single
response. Multiple excitations and responses can be taken into account

in a similar way.

The extended graph is associated with matrix

miL
P A (9)
U E
Whel"e ,I:,' = [11' ceey 1k—1' 1k+1’ se ey ln]
E = [f1, ceoey fk—1’ fk+1, ev ey fn]o

It can be proved [7] that if ﬁkk is nonsingular, then, for any xp € X,

n
Lof5 T s o

X = (10)

where T( is the set of 2-trees t, of Gu having the set of

pi), (k) v
components V = {(p,j), (k)}.

To allow internal excitations, formal unistor models of independent
sources can be introduced (Fig. 4).

Table II shows the set of formulas for basic network functions of a

two-port network shown in Fig. 5 [1].
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Table II

Topological Formulas

Function Unistor graph Chen digraph
, L Tir),(s)! Ty, (s)!
7 iy Tyl 1Tl
Lo® k-arbitrary
Y% T or),(as)' = Tary , (ps)’ Tirp), (s !~ Tera), (sp)!
R T HONOL ROGNOL
K.. = i& Tor) ,(a9) =M (gr), (ps)’ Terp), (s~ Tera), (sp)’
] Ty, (' Tipy (o)
o
, Y% Teory, as)=1T(ar), (ps)’ Tirp), s = T(ra), (sp) !
iu T, T ] T ]
1y =0 k k
o~ k—-arbitrary
, Ll T or),(a) =1 T(ar) , (o)’ Trp), s Tra) , (sp)'
iu 7 v D D
1 u =0
where D = 1T gy, (0,0 e, s (0 Trpy , (), (@) (e L (sp) s (!

IV. GRAPH DECOMPOSITION
Unistor graph of electronic network should be hierarchically
decomposed before run the analysis procedure. The decomposition of the
network graph should satisfy the following conditions:
(1) Successive partitions should introduce as few new block vertices
as possible (because the number of block vertices strongly
influences time of computation and computer storage used).

(ii) Proper blocks should be of the size near optimum (a graph should
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be partitioned only if it is worth to).

The decomposition can be made manually or automatically. A
heuristic algorithm satisfying these conditions was proposed in [8] and
implemented in a computer program described in section VII of the paper.

The time of partition linearly depends on the number of graph nodes.

V. ANALYSIS OF DECOMPOSED GRAPH
In this section we will present the method and the algorithm for

analysis of decomposed graph and its subgraphs.
Theorem 1

=1 I T (1)
taQV Giss t

where QV is the set of all proper k-trees of the substitute graph of

decomposition GS. I; is the set of all k-trees of graph Gi having set

t
. R t ALt S
of components Vt‘ Vt is determined as follows. Let Gi = Gi(Bi’Ei nt),

and let k be the number of components of Gg, where each of these

components is of the form of incoming star, following the definition of

proper k-tree. j-th component of Gg determines a component of Vt of the

form (ri, v%, ey v; ), where rj is the reference node of that
. h|

J

1

This theorem shows how the set TV of all k-trees tv of G can be

component, and v are remaining vertices of that component.
obtained on the basis of the sets of k-trees of the subgraphs Gi and the
structure of interconnections of these subgraph, i.e. on the substitute
graph of decomposition GS.
Remark:

(11) can be used recursively in the case any of graphs Gie S was

further partitioned.
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Direct application of the Theorem 1 and Remark for hierarchically
partitioned graphs 1leads to the algorithm of downward hierarchical
analysis described in [51].
However, better results can be obtained by means of upward analysis

described in what follows.

Definition. By the set PB of multitrees of graph G spanned over the set

B of block vertices we mean union

n>

P UT

B
A

\

where Tv is the set of all k-trees tv of G satisfying the condition
k k
; v oeeen TP s Vi eeey Vo } (12)

B = {r1, v:, ceey V
1 k

and summation is spreaded out over all possible V satisfying (12).
The following corollary follows immediately from Theorem 1 (cf.
[10D.

Corollary:
i
Pg= 1 [] - (13)
teRB G.eS V
i t

where RB is the set of proper multitrees of graph G> spanned over B.

i . .
T is as described in Theorem 1.

Vi

Note that T° is a subset of PE , where PlB is the set of all

'
multitrees of Gi gpanned over Bi' In conclusion, (13) allows us to

determine the set PB of graph G on the basis of the sets P;

GleS and on the structure of their interconnections GS. PB contains all

of graphs

information about graph considered as a n-pole network, where n = ﬁ, and
Wwill be called a description of G. The Remark can be applied to (13).
With above Corollary and remarks we can describe algorithm of upward

analysis as follows.
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Step 0. Decompose hierarchically the network graph; form the tree of
decomposition. Find sets of block vertices for all proper and
substitute graphs.

Step 1. Enumerate (directly) the set Pg of all multitrees of a proper
block Gk spanned over block vertices Bk' Repeat this step for
all proper blocks. Flag corresponding vertex in the tree of
decomposition.

Step 2. Find such a vertex j in the tree of decomposition that all
vertices originated from j (i.e. such vertices m, , that there
exists edge directed from j to mi) are flagged. Use formula
(13) to determine P% and flag vertex j. Repeat step 2 until
all vertices in the tree of decomposition are flagged.

Note, that descriptions of subgraphs of G has to be known before
the description of G can be determined. The analysis moves "up" the
tree of decomposition. This is opposite to the downward analysis, where
analysis began at substitute graph of first partition and then moved
"down" and "up" the tree of decomposition. Thus, upward analysis avoids
multiple enumeration of the same sets of k-trees.

Network functions can be easily obtained and expressed as quotients
of appropriate subsets of PB. For example, for unistor graph of
two-port network from Fig. 5 we have (compare Table II)

Tipry, (as) ~ T(ps), (ar)
*Tra), (sp)

k -

u " T(r‘),(qu) * T(r'p),(ssq) +T

(rpq),(s)

Because B = {r,p,s,q}, all sets: T(pr),(qs), T(ps),(qr), T(rp),(sq),

T(rq),(sp), T(r),(qu), T(rpq),(s) are subsets of PB.

Similar formulas for other network functions can be easily derived

on the basis of Table II.
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Suppose, that decomposition has resulted in b proper blocks and
assume for simplicity the case of hierarchical bisection. the number of
substitute graphs will be then b-1, and time of analysis Tt can be
estimated as
T = b-'rp + (b—T).TS = b('rp + TS) (1)
where T and T4 are average values of time needed for enumeration of
multitrees of proper block and substitute graph, respectively. Provided
that the graph has been partitioned onto blocks of similar size, (14)
shows linear dependence on network size. Similar dependence for

downward analysis was const.na, where n is number of network nodes and o

:2%3—Cf. [5].

VI. ENUMERATION OF MULTITREES
In the upward analysis of decomposed graph we have to enumerate the
sets of all multitrees spanned over block vertices for all proper blocks
and the sets of all proper multitrees spanned over block vertices for
substitute graphs. In this section, we propose an efficient algorithm,
based on a simple remark that the set of directed trees containing edge
e of a graph G can be obtained by enumeration of all directed trees of

G where G, is obtained from G by short-circuiting e. Similarly, the

1’ 1
set of trees of G not contaihing e is the same as the set of trees of

G2, obtained from G by removing e. Of course, the sets of G1 and G2 are

disjoint. The procedure can be applied recursively; it is finite
because in each step we have graphs with fewer edges.
Let us consider graph G(V,E) having n vertices. Let B be the set

of block vertices of G and B = n Vertices of G can be ordered as

Bo

follows
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h1.h2, A VisVos eee Vo (15)

€ B

e B, i=z1, ..., N

B
Definition. The structural matrix M(1) = [mij] of G is nxn matrix,

where hi eV-B, i=1, ..., €, vi

where mij is the set of edges outgoing from vertex i and incoming to j3;

m. . é @#. PRows and columns of M(”

i are enumerated according to (15).

Theorem 2

The set of all multitrees of G spanned over B can be obtained by

(n

iterative expansion of function T (M ), with

My = U m,oxT (D
YoM j
JeJi

™y -
where {@} denotes unity element of Wang algebra, mij € M(l), i=1, ..,

n and
{i+1, ..., n} for i < ¢

{n-nB +1, «eo, n} for i> ¢

M€1+1) is a matrix obtained from M(l) after adding i-th column of M(l)

to j-th column, and setting i-th column to zero (for i # j; for i = j,

M(i+1)
J
reference node i appeared.

- M(i)).

Extracting mii denotes, that new component with

The set of multitrees has no duplications.

VII. COMPUTER PROGRAM
In this section we give some remarks on computer implementation of
the algorithm of upward analysis.
The essential problem lies in data structures because of necessity
of storing all sets of multitrees in the computer memory. Any multitree

weight |t! can be written as
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N .
it! =C » st . I1 yfl (16)

i=1
where C is product of all nonsymbolic edge admittances of the multitree
t, yi are symbols, pi are exponents of symbols (we allow identifying
some network elements), and N is number of symbols. s 1is complex
frequency, M is the sum of powers of s of all edge admittances of t.
Because M and p, are small integers, they may be stored in a single
computer word in packed form. In addition, this word can be used as a
key to sort multitrees in order convenient for further processing.

The set PB of multitrees spanned over B is the set of sets TV'
Sets TV will be called records of PB. For example, a graph with three
block vertices: B = {a, b, c} has description PB consisting of ten

records:

T(abc)’ T(bac)’ T(cab)’ T(a),(bc)’ T(ac),(b)’ T(a),(cb)’ T(ab),(c)'

T(b),(ca)' T(ba),(c)’ T(a),(b),(c)'

This remark remains true for the set RB of proper multitrees of GS
spanned over B, The proper multitree of GS may be considered as
l-tuple of symbolic addresses pointing to appropriate records of
descriptions P% of subgraphs Gi’ i=1, ..., 1, of graph G. These
addresses can be evaluated during analysis of G° and stored in the place
of proper k-tree edges.

Final symbolic formula can be interpreted as sum of products with

hierarchical parenthesis:

LGOS SR B AT (17

Q1 S1 Qk Sk teT ect

Computing numerical values from (17) can be done without expanding

the formula, because intermediate results are stored, thus saving
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computer time. The form (17) is also convenient for sensitivity
analysis because parameters can be easily isolated (since any one of
them appears in one proper block only).

A computer program HADEN2 has been elaborated on the basis of
presented algorithms. The program assumes the hierarchical bisection
case only. This does not void loss of generality because any
hierarchical decomposition can be presented as hierarchical bisection
with the same proper blocks. The structure of the program is shown in
Fig. 6.

The program makes use of nonautonomic unistor models. It accepts
most of linear circuit elements. The network size which can be handled
by the program is limited by the size of computer storage available.
Program was tested for networks having up to 200 nodes. Fig. T7a shows
the dependence of the time of analysis w.r.t the number of network
nodes on the computer CDC-CYBERT73. It confirms the predicted 1linear
relationship.

The RC-ladder was chosen as test network due to its regular
structure. Half of the elements were kept in symbolic form. Tests were
peformed for partitions resulting in proper blocks as shown in Fig. T7b.
Fig. T7c shows how the time of analysis depends on the size of proper
blocks of the network. For large proper blocks, the time of their
analysis dominates over the time of analysis of interconnections. If
proper blocks are too small, the time of analysis of their
interconnections increases.

The time of a single graph bisection depends linearly on the graph
size. Thus, the time of hierarchical bisection is proportional to n

1og2n, when n is the number of network nodes. The time of decomposition
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for networks having up to 200 nodes is much smaller than the time of

hierarchical analysis.

VIII. EXAMPLES

To illustrate the method and show how it can be used in hand
calculations, the circuit shown in Fig. 8 was chosen [9].

The network has been partitioned first to two subnetworks through
the nodes 13-0, and each of these subnetworks was further partitioned as
is shown in Fig. 8. The tree of decomposition is shown in Fig. 9. Fig.
10 shows substitute graphs of decomposition.

First, description of proper blocks (G1 : G7) have to be
determined. They are presented in Table III. We shall explain details
on the example of blocks GZ'GM’Gé' The unistor graph of these blocks is
shown in Fig. 11. These blocks have the same structure and, therefore,

we can analyse only one of them. Because this is 2-pole, we have 3

possible types of k-trees (records): trees T(a and T and 2-trees

b) (ba)

T(a),(b)' Enumerating these sets we have

1 P | VoL i i i i _
'T(ab)' = 'T(ba)' = sC1[(gi + sC2)(-gi + g + sC3) + (-gi)(sC3 - gi)]-
2

i

3p1 AL Al i
SC1CZC3+SC1g
vt - i i i . i
iTeay,(oy! = 5C1(-8;y + 85 + 5 C3) + (sC; —gy)el-gy + g + sC3) +
i 2.i i 2., b 2
81(sCy + ;) = 8°C Cy + 87°C,0C + g

i

The description of graph G8(union of graphs G1%Gu) can be obtained
from formula (13) and is presented in Table IV. For example, the first
product of F15 can be obtained in the following way. The tree t =

{a1,au,b1,d1} of the substitute graph of decomposition of G8 is proper,
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TABLE III

ANALYSIS OF PROPER BLOCKS

Graph Type Function
1 1 1 2 2 2
F1-T (1)_T (0) =T (3) SZC C3g1/ﬁ + s C C3g /R + S C1C2
g1/R + S C1C2C3C,4/R1
=" =1 /R + 830, /R,
(1,3),00) (3, 1),(0) 27374
G, |F.=T' =1’ g7/R, + 7C.C.C,/R
1 37 (1,0),(03) (0, 1,(3) 173747
' 1 1 2 2 2
FM'T (3’0)'(1)-T 0,3),(1) 23g1/R +sC ng +sC C3g +
s C C3g + S C1C2C3Cu
1 2 2 2
F_=T 0), 1), (3) §/R + sC1g + SCZg + S C3Cu/R1 +
C C3C,4 + S C2C3C
G2 Remarks:
=t =7t 3¢tcict i=2,4 or 6
F6,i'T ()T (1) sC1g + S 1253 i=2,4 or
Gy
i 2 2,1 2 ii
F T (ay,(b) g, + s C1C3 02C3 = 3,8 or 13
G6 b= 8,13 0or 18
G F, =T, =T sClg2+sC g +s3clc 1 a2 8or 13
13 8 (a)~7(0) 1 3”1 1 3 -
i 2 2,1 .1 .
G5 F9.1-T (a),(0) gy + 8 C102 i=3o0rs5
Tl ol ol 2 2 2
FiotT (18)°T (20T (0) | SCaty/RprsCray/Ryrs Colyapes Cslysy
2 2.3 )
+S C7C8g7+s C506C7/R2+s C5C6C7C8




Table III (continued)

! -
F}1’T (18,21),(0)° > s
T (21, 18),(0) sCregq + s7C5CeCy
Gy
! -
F;z‘T (18,0),(21)7
T sC g2
(0,18),(21) 5°7
7! -
F%3'T (18),(21,0)7 , . ;
T (18),(0, 21) g7/R2 + sC8-g7 + S C5C6/R2 + s C5C6C8
' 2 2
[FuT 18y, 00,21 87 + 5 C5C
and t ¢ T?1 13,0)* The intersections of t and substitute graphs

representing successive proper blocks G1%GLl are: E?r1t = {a1.au}, Elet

= {b,}, FEnt = {8}, Ent = {d;}. Thus, we have following sets of

3 L
components for graphs G1, G2, G3 and Gu, respectively: Vﬁ = {(1,3,01},
Vy = 1(3,8)1, V5 = {(8),(0)}, Vi = {(8,13)} (as there is no edges of t

in Gz, all block vertices of G_ are isolated, and thus V; = {(8),0hH.

3

Remaining components in Table IV are obtained in the same way. The
procedure can be repeated to obtain the description of graph G9, (union
of graphs G5%G7), and then the description of graph G10 = G (union of
graphs G8 and Gg). Having the description of G, any network function

can be evaluated, for example:

Fa6 Fo6 + Fog
kK =g——5— I = ——=  etec.
26 * Fog 25

IX. CONCLUSIONS
This paper presents a method for topological analysis of large

linear networks which are represented by unistor graphs.
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TABLE IV

ANALYSIS OF SUBSTITUTE GRAPHS

Graph Type Function
F -T8 —T8 -T8 F,oF, oF_ _eF_  4F _¢F_, _oF oF +
1577 (™ (13)7 (0) 16,2 9,3 6,42 6,2 8,3 6,4
FiFr,27Fg,3F6,0 + F3°Fg,2°Fg,3°Fg,
F 8

é6=T (1,13),(0)°
T13,1),(0)

FyFg 2*Fg 3°Fg y

Gg F17=T8(1,0),(13)= FyFe,0°Fg,3°Fe, 4 + F1°Fq o°Fg 3°Fg 4
g + F1.F6,2.F9,3‘F7,u + F1.F7,2.F8,3.
To, 1),(13) Foou * F3Fg o0Fg 3tFpy +

ForFe,2°Fg,3'Fr y
F :T8 = F . oF F F + F F oF F
1877 (1), (13,0) 2'F7,27F8,3"Fe,u * Fy'Fy o°Fg 3°Fg y
5 *FoeFg o*Fg 3°Fg y + FyeFg o*Fg 3
T (1,00,13) Fe,u
F =T8 F . oF oF oF + F oF F oF
1977 (1), (0),(13) 2°Fg,2°Fg,3°Fp,u * FyFq oFg 3°Fq
*FgeFg 5oFg 32Fg y + FoeFy 5oFg 3
F6,4 + F2.F7,2.F8,3.F7’4 + FM'F7,2°
F9,3" F,u
F :T9 :T9 = F oF oF + F oF oF + F .
0™ (197 (0) 9,5 76,6710 * Fg,5°F7,6'F10 * Fg,5
T en Fe,6°F11 * Fg,5°Fg,6°F13
F =T9 = F oF oF
317 (13,21, 9,576,611
(21, 13),(0)
F. =T = F_ _oF, oF, + F, _oF. ,F.. + F
27 (13,0, @) 9,5°F6,6"T1u * Fg,5F7,6F12 * Fg 5
(0, 13),(21) “Fr6F11 *Fg,5°Fg 6°F 12
G




Table IV cont'd

- 9 - [ ] [ ] [ ] [ ]
ng'T(21,o>.(13)' Fo,5F6,6°F13 * Fg,5 *F7,6°F10
Tto,21),(13)

F. =T F. _oF, (oF, 4 F. _oF, .oF.. + F
247121y, (0), (13) 9,5°F6,6" 14 9,5°F7,6°F12 + Fg,5
‘Fo 6 F1n
070 =10
Fo5=T (1y=T 21T (0) F16°Fo0 * FpoFop * FygFoy + FygeFyg
10
F§8=T(1,21),(0)= Fi6°F 21
T21,1,00
G F._=T 0 - F. «F. 4 F, oF.. +F, eF.. +F, oF
10 | 2750 (1,00, 21" 15°Foy *+ FqpeFon + FupeFoy + FugeFoy
Teo, 1,21
F. =119 - F. oF.. + F, eFo. + F, oF.. +F,oeF
287 (D, 21,00 19°Foq *+ FgeFop + FgeFoq + FrgeF,,
Ty, 0,21
F, =T 10 F. oF. 4 FogeFo + F, oFo. + F,oF
29T (1, 21, (0) 16°Foy + FqgeFoy + FigeFoy + FygeFyy

The full symbolic analysis of large networks is efficiently
realized by this method. It was proved that the analysis time and
memory requirements linearly increase with the network size.

The method was programmed and computational results are in complete
agreement with the theory. Using this method topological analysis can
be applied to a various circuit design problems where it was previously

impossible.
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Fig. 1. Graph G and its trisection (a), and substitute

graph of decomposition c® (b).

G1,2,1 G1,2,2

Fig. 2. Example of the tree of decomposition.
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Fig. 3. Network with excitations and auxiliary edges.

BN
1
™
2=
i

Fig. 4. FUMs of current (a), and voltage (b) independent sources.

Io Tuo

"

Fig. 5. Two-port network.
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Fig. 6. Structure of HADEN2.
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Fig. 7(a). Dependency of time of analysis w.r.t. the number

of network nodes.
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Fig. 7(b). Proper blocks of ladder decomposition.
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Fig. 7(c). Dependency of time of analysis w.r.t. the

size of proper blocks.
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Gy G2 1Gs3 G4 Gs Gg Gy

Fig. 9. The tree of decomposition of network from Fig. 8.

Fig. 10. Substitute graphs of succesive decompositions.
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11. Unistor graph of blocks GZ,GA,and G6.

Fig.
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Element

SFG

Autonomic FUM

FNN flowgraph

Transitor =
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®
ccr
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@
Va-Vb:Q )
{'a=‘§b=ﬁ“a
ch-td-'-ia
cvr
@ .
to
{ zi
@ Vo~ Vb=0
iq=-1p=7F (Vc-Vq)
iC:- id = [0
Opamp
i
O

[q=ip=0 ig=-ig=ig

TABLE I. UNISTOR MODELS OF NETWORK ELEMENTS.
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