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J.W. Bandler

Abstract

A brief review of major features of nonlinear programming methods
which employ Lagrangian functions is presented. Following statements
and discussion of necessary and sufficient conditions for a solution,
the augmented Lagrangian method is described. This method adds a
penalty term to permit a sequence unconstrained optimizations to be
applied. The motivation behind the formulation and a discussion of
Newton and quasi-Newton approaches is given. The Han-Powell algorithm
is subsequently presented. This algorithm employs a quadratic
approximation to the objective function, describes linearized
constraints which lead to a quadratic program to be solved. The results
. provide the next search direction and appropriate Lagrange multipliers.
After a one-dimensional search, the second derivative approximation is
updated by a BFGS formula, with steps taken to ensure positive

definiteness.
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The Problem

In this review, we address the problem of minimizing w.r.t. ¢ the
nonlinear differentiable function U(¢) subject to the nonlinear
differentiable constraints

0, i

1]

—
-

.

.

.
-

ct
-

c;(g)
cy(¢) 20, 1

(1)

t+1, «.., m.

Necessary Condition for a Solution

Theorem Let ¢ minimize U(¢) subject to (1) and assume the gradient

vectors gi(g) of active constraints ci(g) are linearly independent.

Then there exist real multipliers

Ai’ i 1, ooey m,
with

A, 20, 1= tel, ooy, : (2)

such that the gradient vector g(¢) of the objective function is given by

v m v
gg) = T 2 a.(e), (3)
i=1
with
Ay eg(9) =0, i=1, ...,m. (%)
If the constraints are linear, namely, if
T X
c (g) = aj ¢+b;, i=1, ...,m, (5)
where a i = 1, ..., m, are constant vectors, then the linear

independence condition on the constraint functions is unnecessary.
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Descent Direction for Linear Equality Constraints

Suppose the necessary condition for a problem with linear equality

constraints is not satisfied at some point ¢. Then

t
g(g) ¢V 4 {i§1 A2

A: € R}, (6)

R ]
it%i

where R denotes the set of real numbers. Consider a direction s such

that
ais=0, 1=1, ...,m (7)
Then
g's: (xvg-0' s
= ETg +(g-13)"s
=0 - §T§ <0, (8)
where we take
velV (9)
and
g =V +S, | (10)

implying that a descent direction exists.

Tmplication of the Necessary Condition for Linear Constraints

Suppose the first s constraints are active. Then

T .
gig+bi=0, i=1 ...y, 8,

T R
a; ¢ + bi >0, i=s+1, ..., m. 1)

Consider a feasible direction s such that U($ + ag) < U($) for small a >

0. Then

ceey by

n
—_
-

T .
gi(g + ag) + b, =0, i

ar(p +ag) +b; >0, 1=t+l, ..., s, (12)

This gives



~i§,=0’i=1’ y £y
T (13)
a; 8 > 0, i= t+1, ..., S.
A downhill direction satisfies
gT§<O. (1)
Let
s
g = ‘Z Ay 2o A{ 20 for i>t. (15)
i=1
Suppose s is feasible. Then
s s
gls = T A, a s= I A a 520 (16)
~ . 1 ~1 ~ . i~l~
i=1 i=t+1

Hence, no downhill direction exists, i.e., (14) cannot be satisfied when

(15) is satisfied.

Multiplier Signs for Inequality Constraints

Consider E to be a candidate for a minimizing point. Find the
active constraints s > t such that
T~ X
25 ¢ + bi = 0, i=1 ..., 8,
(17)

T~ X
24 ¢ + bi > 0, iz s+ly, ..., W,

Then g'must be a minimum w.r.t. g 'E +b, =0, 1i=1 ..., S, This

implies that

_ s
g(¢) = L A, a, (18)

i=p 77

using the theorem for equality constraints. We need to show in addition
that Ai >0, i=t+1, ..., m. Suppose, therefore, that Ak < 0 for k >

t. Let



ne>

1

s
{ T wu, a.lu: € R} (19)
ig

1
k

with a <oy By linearly independent. Then 2y g V. We now show that

1’

s exists which is downhill and feasible. Consider g such that

gIg 20 for t+1<ig<s,i4Kk (20)
and let
g =Y+ S (21)
where
vev. (22)
Then
g = (v+ g)T s = ng > 0. (23)

Hence, s is feasible since all constraints are satisfied. Now

S T T
g's= T X a;8=2x23 8<0 (24)
i=1

if Ak < 0, hence the direction s is also downhill. Therefore, xi ¢ 0,

i=t+1 ..., m if'E is a minimizing point.

Sufficient Condition for a Solution

Define the Lagrangian function
m
L(g,A) = U(g) - I Ay c;(9) (25)
i=1

and consider the first s constraints to be active.

Theorem Let

v m v .
g(o) = I A, a.(8), (26)
~ . 1 ~1
i=1
Xi >0, 1=¢%t+1, ..., 8,
(27)
A. =0, i=s+1, ..., m.



Let

sty vg L(g,M)] 8> 0 (28)

¢
for all g # Q satisfying

sa(g) =0, i=1, .0y s, (29)
and let gi(g), i=1 ..., s be linearly independent.

v

Then ¢ is a local minimum.

Example [1]

Consider the function of two variables

U(g) = 30, + 6 + &3
Then
T
Ip LU = T, (26, 3+ 2¢,]
2 0
o 2|

which is positive definite. Consider the inequality constraint

o(@) = 42 + (0, + 12 - 130.
Let
0
Q:
0

be a candidate for a solution. Here

roso ()[40

sin ©

Let

(cos 8) -1

and consider 6 = 0. Then



But
. 2 2
U(g) = 3((cos 8) - 1) + sin“8 + ((cos 8) - 1)
=3 cosH -3+ sinze + cosze - 2 coso + 1
= (cos 8) - 1.
Obviously, 6 = 0 does not provide the smallest value of the objective
function.

Consider

[2 0] 3[2 o
Tp Yy b = (o 2} -2 [o 2] '

This is not positive definite. This example shows that the curvature of
the Lagrangian needs to be considered.
Obviously, if all constraints are linear only the Hessian of U

needs to be examined.

The Augmented Lagrangian Method [3,5]

Algorithm for Equality Constraints

Consider
ci(g) = 0, i=1 .., t,
and let

t t
B¢, A, r) = U(4) - I A e (g) +r T HOP (30)
i=1 i=1

Step 1 Choose QO, set 51 €Q, ry© 1, Ky ¢ max lci($0)|, j<«o.
i

Step 2 Set j« j + 1. Minimize (g, A°, ry) w.r.t. ¢ yielding 97

Step 3 If max lc (7)1 2K, go to Step 6.
i



J
Step 4 Set Kj+1 < m?x Ici(g Yi. If K,

: +1 £ € stop.

Step 5 If (K, . <K/4) or At =2 and 3> 1)

~

set Aj+1 < Lj - g(gj)/(2rj), Pj+1 <« rj and go to Step 2.

) J+1 J '
Step 6 Set Kj+1 « K., A « Y, rj+1 « 10 rj. Go to Step 2.
Comment

The equation

t

Vyo=g- L A, a +r I 2,3 =0 (31)
Ni . ~

i=1 i=1

is a necessary condition for a minimum of ¢ w.r.t. ¢ for given values of

A and r. Consider the trajectory of

2Q) s.t. g,0 = Q. (32)

Here, we have expressed solution points in terms of A We aim to create

a sequence of points such that 3(&) >+ 0. Now, let

[+ 3]

30
ZAQ = EX— V¢<I> + ‘é‘;", (33)

where 3¢/3\ is defined as the gradient vector of % of (30) w.r.t. A and

~

V)% is defined as the gradient vector subject to (31). Since Z¢¢ =0
v,0 = %i = -c()). (3W)
Further, it can be shown that
7, U = -[a" g;' A (35)

where A contains the g,

j as appropriately ordered columns and

A g T
=V V..
Sy = Ty¥40 (36)



Furthermore, for large r
(A Ss A1 Zor 3. (37)
The iteration

ATt nTg e (38)
[

is a Newton step in the A parameters to a maximum of @(A), whereas the
iteration shown in Step 5 of the algorithm is a steepest ascent step
w.r.t. A

Obviously, second derivatives of & w.r.t. ¢ are needed for the true
Newton step, which is a disadvantage. However, quasi-Newton methods can
provide a good approximation to

-1 J
G, (@A)

Inequality Constraints

We let
t t 5
8(g,h,r) = U(R) = T A (@) +r I ci(g)
i=1 i=1
o ‘i T "
+r 2 (e () -3 - T (39)
iztel 20" Tyt T
where
A a if a < 0,
a_=min {0,a} = { , (40)
0 if a > 0.
In this case, at )\ = AJ, $ = QJ,
AJ
AP i
-c; if 1L torey - E;j,g 0, (41a)
3% . *
] 5 - .
3
—= otherwise. (41b)

2ri
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Then

G AT R 5 (42)

except that rows/columns in ¥, ZEQ associated with (41b) have nonzero

components only on the diagonal of value -1/(2rj).

Comment
To derive the form of (39) we have set, taking ¢ as k-dimensional,
Ci(i) = 0, i=1, ..., ¢t
ci+t(g) - ¢k+i =0, i=1, ..., m=t,
¢k+i'2 0, i=1, ..., m=t,

the latter being slack variables. It can be proved that

A
i+t}

byq = max{0, oy b =50

resulting in (39).

Discussion

It is well-known that a numerical solution of the necessary
conditions for optimality using, for example, the Newton method for
solving the resulting nonlinear equations, is not guaranteed to find a
minimum. This provides the motivation for searching for alternative
approaches.

Consider the penalty function

b2 - 2
®(g,r) = U(9) +r, I ci(g) +r T (e;(9))2
1 i 2 i
' i=1 i=t+1

minimized w.r.t. ¢ for increasing values of r,, r,, > ®. The features

of this approach can be illustrated by considering
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¢ 2
P(g,r) = U(g) +r I c5(9).

i=1
Now,
v - t v v
T,P(R) = o)+ 2r T ocy(e) a5(0)
- g(g) # 0.
This function will usually have an ill-conditioned Hessian. Consider
instead
t t

A eg(@) +r T o2y,

o(g,r) = U(Q) - I
=1 i=1

1

where )\ are the Lagrange multipliers at ¢. Then

v v t . v t v v
Tp2(gor) = B(g) - T Ay a,(¢) +2r I c.(9) a;(9)
i=1 i=1

= 0,

which is a desirable result for the application of unconstrained

minimization techniques.

The Han-Powell Algorithm [ 1- -
At Qj we consider the following quadratic approximation. We

minimize w.r.t. s the function

ad(s) 2 uted) + gTeds + 0.5 sT8Ts (43)
subject to
alghs v e e =0, 1=, e, i
gg(gj)g + ci(gj) >0, i=t+1, ..., nm,

where gJ is positive definite.
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Main Algorithm

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

(-1

Choose QO, set EP «1,3+«0, uy « 0, i« 1 ..., m,

s

Solve the quadratic program (43) - (44) w.r.t. s yielding EJ.
Solve for Lj the system
T J _ AT J
A, Ay A = A5 X als)), (45)

where As is the k x s matrix whose columns are the vectors

gi(gj) corresponding to the active constraints.
Find oY by the one-dimensional search algorithm which follows.
Set QJ+1 < QJ + a’ 53.

If

13adgh) - v+ 2 wdie e
Jjed

+ H*hy ) <., (46)

l(ci(g

NS xR

J=1
Jj€d

where J denotes the indices of the constraints found active by

the quadratic program, then stop.

Update BJ.

Comment See the section on updating gj.

Step 7

Set j ¢ j+1 and go to Step 2.
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Line Search Algorithm

Step 1 ad « 1.

Comment This usually turns out to be the final value for almost all j.

Step 2 If y(ad) < y(0) + 0.1 & o stop.

Comment See the definition of y(a) and A following this algorithm.

Step 3 Find the extreme point B8 of a quadratic approximation using
y(0), y7(0) « &, y(ad).

Step 4 Set ad « min {max{0.1 aj, g}, 0.9 aj}.

Step 5 Go to Step 2.

One-Dimensional Penalty Function

The function y(a) of Step 2 is given by

y(a) & ¥ + ash, (47)
where
X t . m ; ]
yI@) = (@) + T udleg(@)l + T wile (@)l (48)
i=1 izt+1
and
W= max (1)1, 0.5 @71 4 3. (49)

The expression (49) allows positive contributions to the objective
function of some inequality constraints that are inactive at the
solution to the quadratic program. The approximation to the gradient A
is given by the difference
A= 2(1) - 2(0), (50)
where 2(a) is the penalty function (48) when all functions are taken as
linear at gj. It can be shown that £(1) < £(0). This is because
@ ar(pd) g+ e (8h = 0, 121, couy b, (51)

min{0, o QE(Qj) S + ci(gj)} = 0, iz t+1, ..., m. (52)



for a = 1.

Update for BJ
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The BFGS (Broyden-Fletcher-Goldfarb-Shanno) formula

. 5T .T
. B’js’ls‘j Bj zsz
AR L Rk
s Bs a'z’ g’
is recommended, where
2 =6yl s -0) Bl agd, 0<e <,
sl 2o 8,
BRSNS O IS A @3, AN,
T R
ir ¥y a¢d > 0.2,
8 =
j T .
0.8 p’ i
L ir y3 aed < 0.2 pY,
pd - lj AiJ
and
A T, .

Discussion of 6=1

(53)

(54)

(55)

(56)

(57)

1r B is positive definite, B*' may not be positive definite for ©

= 1 because we are not certain that 13 §J > 0.

T :
< 1 when 13 AQJ is not sufficiently large.

Discussion of 0<1

When 8 = 0, we have

EJ = EJ AQ,:],

Hence, we allow 6 to be

(58)
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which gives

T, T T
23 apd = agd BI agd > 0.2 a7 B¢l (59)
Consider
T T
29 agd = 0.2 apY B Agd. o (60)
Then
. LT .
6y’ + (1-8) BY agd) agY = 0.2 pJ (61)
and
T T . .
oyl Y + aed B a9l(1-8) = 0.2 p’
or

T . .
oy’ agd - 6pY = -0.8 pY,

from which, finally,

J
o = 0.8 ; > 0, (62)

pd - ayd agd

since pJ > 0 and the denominator is positive.

Convergence

Superlinear convergence for the algorithm can be proved, namely,
TEALNPYIPEITS IS 41, where kJ > 0 as j > =.
Han proved global convergence if
’ My 2 |A£|, i=z1, ..., m. (63)
Powell relaxed this requirement in his implementation, because he
regarded this as inefficient in that the My may become too large. To

much effort then goes into satisfying the constraints.
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