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Abstract

The multiple-fault location problem for analog circuits is treated
on the basis of the nodal equations. The availability of voltage
measurements due to current excitations 1is assumed by the method.
Topological restrictions on the possibility of fault location for a
given set of measurements are formulated. The emphasis in this paper is
on locating subnetworks or regions containing all the faults of the
network. Two algorithms are presented for this purpose. Coates
flow-graph representation of a network is used for topological

considerations.
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I. INTRODUCTION

Testing of analog circuits with the aim of fault location is
important in network analysis. There are different approaches to the
problem depending on the information available from tests conducted on
the network. Generally, the network topology is known and we try to
identify the faulty elements and evaluate them. If the number of
measurements is large enough we can evaluate all elements and single out
the faulty ones [1,2]. However, when the number of measurements is
limited we can use various methods to predict regions where faults may
appear [3,4]. To verify whether a predicted region contains all the
faults, the multiple-fault 1location method based on the multiport
description of a network can be used [5].

In this paper, we present a method based on the nodal equations
which extends the possibilities of the above-mentioned multiport method.
Topological restrictions on multiple-fault location are discussed.
These are effectively used to locate faulty regions. Some illustrative

examples and practical remarks for effective calculations are given.

II. MULTIPLE-FAULT VERIFICATION BY NODAL EQUATIONS
In this section we discuss the method of multiple fault location on
the basis of the nodal equations. The principal difference between the
nodal and the multiport approach is that in the multiport approach we
aim to find changes in element values whereas in the nodal method we
design the changes in nodal currents only. Changes in element values
can be computed by the nodal method after the network topology 1is

considered.



Nodal Equations for Faulty Network

Let us assume that the network has n+1 nodes, m of them accessible,
and f < m is the number of faulty elements. The nodal equations for the
nominal values of the elements have the form

Yv-=d. (1

For the faulty network, assuming the same excitations, we obtain

(Y + AY)(V + AV) = J. (2)

Thus
YAV = - AY VY, (3D
where V' = V + AV is the vector of nodal voltages in the faulty network.

We can compute AX assuming that z is nonsingular and obtain
AV = =Y  AY V', C))
Let us denote AJ = - AY V', AJ represents changes in nodal

~

currents caused by faulty elements. The relation (4) becomes
-1
A'Y =,¥, A’:]’. (5)
We can assume that a few elements are faulty, in which case Ag has the

form
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Assuming that the first m nodal voltages can be measured we obtain

— - -
Ay [ o
=y | adf |, (7)
ag" 0
L— B  — et

where N indicates the set of all nodes and M the set of measurement

nodes. Hence,

M F
AV = Zye A, (8)



where
1T 2
Zun w1 ILwr Iwo
1-1 = = . (9)
Iy, n | |EnM, 1 Enam,F Znw,2
—d . —d

Relation (8) has to be satisfied when the set F of network nodes

includes all nodes associated with faulty elements in the network.

Reduction of the Number of Equations

It is clear from relation (8) that in order to design AgF we must
have at least 1 + card F measurement nodes. This may cause some
redundancies in the case of isolated faults. If there is an isolated
fault in the network it causes changes in two elements of the AgF
vector. In the example shown in Fig. 1 we have AJE = - AYeU1 = - AJ?.
In such a case vector AgF will contain variables which are not indepen-
dent. We can transform the equation (8) to reduce the column rank of

the coefficient matrix %MF' The reduction realized depends on the

location of different faults. Let us discuss the following two cases.

1) The case of isolated faults

If an isolated fault appears between nodes k and j (see Fig. 1)

then equation (8) can be written in the form

2 st a Al . ad (10)

~k ~J




or, after summing columns 3y and aj and deleting column aj,

r -

M
A’Y =[31 LRI gk—a- LI g- . (11)

2) The case of connected faults

If connected faults form a subtree in the network then the number
of variables in AgF can be reduced by one in similar way to Case 1. The
reduction holds for every connected subgraph formed by faulty elements.
If the subgraph contains a circuit then the number of variables can not
be reduced.

The method described has the following advantages as compared with
the multiport methods [5].

1. Fault regions can be located even if fault elements form a circuit
or cutset.

2. We do not face the situation of block dependent systems when only
one element in a circuit or cutset is not faulty.

It should be noted, however, that the evaluation of faulty elements on

the basis of identified changes in current excitations representing the

faults is not always possible. For example, when only one element in a

circuit is not faulty, then the problem of identification is not

solvable, which is a simple consequence of the transformation of current

excitations (ef. [61).



The nodal approach is restricted to two-terminal elements and
voltage controlled current sources only, but it can be extended to any

linear active network using the modified nodal description [T7].

III. TOPOLOGICAL RESTRICTIONS
In this section we will discuss the problem of the placement of
measurements in the network to make possible the identification of a
certain set of faults on the basis of network topology.
Necessary conditions presented in [8] will be modified to
conditions which are almost sufficient for obtaining a unique solution

of equation (8). According to Corollary 2.1 and Lemma 2 of Liu, Lin and

Huang [9], if equation (8) is consistent, and rank gMX = f + 1 for any
set of columns X of ZMN such that card X = f + 1, then (8) has unique

solution AgF almost surely.
In practice, however, this requirement is too strong, especially if
we are interested in a certain set of faults F. We can formulate the

following result.

Result 1

If equation (8) is consistent and rank Z

MFx = f + 1, where Fx is

the set of columns of the matrix ZMN’

Fx =F U x, ¥ x € N-F

then (8) has a unique solution almost surely.

The condition stated in Result 1 is equivalent to the existence of
a square, nonsingular (f+1) x (f+1) submatrix of gMFx'

Let Z denote a square submatrix of Z

]
MFx and Y (Fx'E) denote the

EFx



submatrix of Y obtained by removing Fx rows and E columns. Using the
equivalence

det Z # 0 <=> det Y (inE) 0 (12)

EF
X

we can find topological restrictions for the fault location problem. We
can use the approach presented in [101]. Let us assume that the
topological equations for the nodal admittance matrix and the Coates
graph representation of the network are

Y= AT A, (13)
where the element ij of A_ is equal to 1 if the jth edge is directed
towards the ith vertex, otherwise =zero, and the element ij of 2\14_ is
equal to 1 if the Jjth edge is directed away from the ith vertex,
otherwise zero and Xe is a diagonal matrix of element admittances.

The submatrix Y (FX:E) can be presented in the form [8]

T

! -
YFAE) =2 o Yo A s (14)
where A-Fx (A+E) is obtained from ) _ (A+) by removing rows FX (E),
respectively.

Following Starzyk et al. [10] we can formulate the following

theorem.

Theorem 1

If det Y (FX}E) ¥ 0 then there exists at least one k-connection cq
in the graph G(FX:E) obtained from the Coates graph of the network after
deleting all the edges incoming to nodes Fx and all the edges outgoing
from nodes E, where

S={(v.,,v); v e F n(N-E), v € En(N-F )}, (15)
s’ e s X e X

card S = card (E n(N—FX)) = card (Fxr1(N-E)), (16)



where (vs, ve) represents a path directed from the node vs to the node

ve, and N is the set of all graph nodes.

The condition stated in Theorem 1 is sufficient almost everywhere.

As a consequence of Theorem 1 we have an important corollary.

Corollary 1
If det Y (FX:E) ¥ 0 then after deleting all the edges outgoing from
nodes E and incoming to nodes FX there are no isolated nodes in the set

N - (E an).

To locate the faults of elements incident with nodes F such that
after deleting all the edges incoming to nodes F some of them become
isolated, we must include all of these isolated nodes in the set E,
which means that all of them must be accessible nodes (i.e., the nodes
at which voltages can be measured).

Following the method described in [10] we can investigate the
problem of two subnetworks the graphs of which have ¢ common nodes when
¢ £ card F. In this case we can not identify uniquely the faults
appearing in one of the subnetworks by measuring the voltages in the
second only because the k-connection required by Theorem 1 does not
exist. But even in this case we still have the possibility of identi-
fying the faulty region, where we check whether or not the only faults
are included in a subgraph isolated from c+1 measurements by a ¢ common
nodes. This property is effectively used in Section IV. 1In the case
when f faults appear in a subgraph connected to the rest of the graph

through ¢ common nodes, we must have at least f-c+1 measurements inside



this subgraph to identify all these faults uniquely (see Fig. 2).

The restriction on the placement of measurement nodes appears also
in more complex cases when faults and measurements are in different
weakly connected subgraphs.

To ensure that the system of equations (8) is overdetermined we
should have at least two nonsingular (card F) x (card F) submatrices of
Eup -

Lemma 1

If ZEF is a nonsingular full column rank submatrix of EMF and Eg is
a nonzero row of EMF not belonging to gEF then there exists a
nonsingular submatrix of EMF that contains Eg‘
Proof

Since rank ZMF = rank ZEF the row gg is a linear combination of
rows 5I € gEF’ ie I. If we remove row Zyo k € I, then Eg will be
linearly independent from the rows zg, i € I - {k}, and because of the

linear independency of rows zg will form a new set of 1linearly

independent rows {Eg’ 55 :ieI, i#Kk}.

Corollary 2
If EMF contains a zero row and the corresponding voltage AVM € A!M
is nonzero then AgF does not represent all the faults in the network,

therefore, other candidates for faults should be considered.

A simple topological interpretation can be given to illustrate

Lemma 1 and Corollary 2. Element zij € ZMF is nonzero if and only if
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det Y(jii) #0 (i ¢ M, j € F). This condition is topologically equi-
valent to the existence of the 1-connection which contains the path
directed from node j to node i in the graph G(jii).

Graph G(jii) is obtained from the Coates graph of the network after
deleting all the edges incoming to the node j and all the edges outgoing
from the node i.

To fulfill the condition stated in the Lemma 1 it is sufficient
that there exists a node i € M-E which is the end of a path outgoing
from one of the F nodes, and if after deleting the edges incident to
this path the remaining graph contains at least one O-connection.

Element zij € éMF is zero when there is no path directed from the
node j to i or for every such path if I denotes the set of nodes

belonging to the path det X(I:I) = 0. The latter case is rare in

electronic circuits.

IV. NETWORK PARTITIONING INTO FAULT REGIONS
The main problem in multiple-fault location is to guess the set F
that contains all faulty elements but has a number of elements f < m.
We discuss how to choose this proper set of elements. The aim is to
improve efficiency of computations when no additional information about
possible faults exist.
Any set of w elements which contains all f faults (w > f) we call a

fault region and denote it by Fw The fault region can be predicted

of°

or designed initially by the approximate fault isolation method
described in [11]. If we have no initial information about the system
we can try to guess the proper set F but then the probability of being

correct is low because the number of different combinations is equal to
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(?), where p denotes the number of elements (ef. [51). Below we
describe two algorithms which can be used to detect the fault region and
are very effective if the number of measurements is large.

It is evident that if we have m measurement ports then the maximum
number of faulty elements we can identify uniquely is equal to w = m-1.
The first algorithm we present is based on logical and combinatorial

operations and does not take advantage of network topology.

Combinatorial Algorithm

Step 1
Divide arbitrarily the set of all elements on k distinct subsets

Sys ++.» S, each of them of cardinality equal to E(m—;l).

1,
Comment

Of course, if p/E(E%l) is not integer the last subset has less than

E(g%l) elements. So k Z_p/E(m%l).

Step 2
Examine all combinations of f subsets out of the k subsets using
Result 1 and Theorem 1. If all combinations fail increase f and go to

Step 1.

Comment

The number of these combinations (?) is usually much less than (?)
when (m-1) > 2f,

If the number of faulty elements is really f (or less) there always

exists such a combination of f subsets for which the relation (8) is
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fulfilled. The sum of the subsets of this combination is the first

fault region

Fw,f = }J S an
iel

m-1 . . . R . .
where w = f.E(—?—), and I = {11, isy eees 1k}, i, £1iy for j £ 1.

Step 3
Divide the set F& £ arbitrarily on f+1 subsets and then check which
1]
combination of f subsets contains all faults. If there is no such

combination then stop. Eliminate at least E(?¥T) elements as not being

faulty. Define a new fault region Fw' £ with w' < w.
’

Step 4

If w< f go to Step 3.

Step 5

Set f = f-1 and go to Step 3.

Example 1
Let us assume that a network under consideration has p = 76, m =

39, f = 2. Then realizing the algorithm we design:

1. k> LB - %%—: 4, for example, k = 4.

- m=1
E(—?rd

M

2) = 6 different combinations of elements, to find

2. We check (?) = (

the first fault region F38,2'
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3. In every step of this stage of the algorithm we check 3
combinations obtaining successively the following fault regions:
F26,2' F1g,20 Fro,00 Fg 00 Fg, 00 Fiy o0 F3 00 Fp o

In this example, therefore, we have to check not more than 30
combinations instead of (72) = 2850, which is much easier in spite of
the higher ranks of the matrices to be computed.

It is evident from Theorem 1 that for two subgraphs separated by c
common nodes rank EMX < ¢ for all X representing nodes in one subgraph
when all measurements are in the second one. This cah be used in fault
location, when we take X = {c common nodes} to represent f > c faults in
the second subgraph. If f >> c then this strategy allows us to locate
the faulty region even when m << f, Let us decompose the graph G into
subgraphs G1, ooy Gk‘ Let 5 denote the cardinality of the set of Gi
nodes incident to the other graphs

A k
c; = card ( LJ Nj nuNo) o (18)
j=1
J#i
where Nj, Ni represent sets of nodes of subgraphs Gj and Gi respec-

tively. Let Mi denote the set of measurement nodes belonging to Gi and

m; = card Mi‘ We can formulate an important result.

Result 2
If subgraph Gi contains fi faults and
m,. >c, + fi

1 1

we can locate this fault taking M = Mi and
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)
"

=)

[

>

"
Cx

1 Nj n Ni U Fiu X ¥ x € Ni—F,

J
J#i

wNon

where Fi represents all the faults in subgraph Gi' and checking the
consistency of equation (8) and the condition stated in Result 1.
Now we can formulate an algorithm which can be used to locate fault

regions on the basis of topological restrictions.

Topological Algorithm

Step 1
Decompose the Coates signal-flow graph G of the network into sub-

graphs G1, ooy Gk separated by a small number of nodes.

Comment

It is better if the common nodes contain measurement points.

Step 2
Choose the subgraph Gi containing my measurement nodes Mi’ such

that

If there is no such subgraph use the combinatorial algorithm.

Step 3
If the chosen subgraph Gi contains fi faults such that
m; > c; + fi

locate them using Result 1 and Theorem 1 and taking FX as in Result 2.
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Comment

Realization of this step allows us to find all the faults in a
certain region and to calculate the actual values of the faulty
elements. Then all the currents and voltages in subgraph Gi can be
calculated and Gi may be represented as the set of external excitations

with known voltages for incident subnetworks.

Step 4

If no subgraph chosen in Step 2 satisfies the condition stated in
Step 3 then try different combinations of two or more subgraphs and
check if Step 3 may be realized for the combination considered. If not,

we return to the combinatorial algorithm.

Example 2

Assume two subgraphs G1, G2 separated by ey =¢ = 2 common nodes.
Let subgraph G1 have my, = 5 measurements and no faults. The conditions
stated in Steps 2 and 3 are obviously satisfied because c, + f‘1 = 2 <
m,. So no matter how many faults are in subgraph G2 we find G1 as
nonfaulty and can use two measurements from G, together with

measurements placed in G2 to locate the faults in G2.

V. SOME PRACTICAL REMARKS
Biernacki and Bandler [5] stated that condition (8) is satisfied if

and only if the following relation holds

= M
(Zyp = 1) AV =0, (19)

where

7 -1 .7

A T
Zwr = Zwr (Zyr Zwp)  Zype (20)
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We propose a simpler method which can be used to verify the condition
(8).
One can prove that the solution of the equation
Ax =b, (21)

where A is an mxf full column rank matrix f < m, exists if and only if

it can be transformed to the form

= -

X X X

0 X X

-

L] L] L] FE‘]

0 X

———————————— ’}5 = - (22)
L 9 — ‘-g -

after row manipulation, where 21 is a column vector having f elements.
The form (21) is also more convenient to obtain the solution of the set

of equations.

Example 3

To compare the two methods let us solve the overdetermined system

of equations

12 17
3 Yy X4 -1
= . (23)
b 3 X5 -6
L.2 1 B h‘-M.J
We have
30. 28 30 -28
T T =1 _ 1
A A= VAR = '
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(38 50 -8 =20 |
50 78 20 -8
O O
-8 20 78 50
20 -8 50 38 |
C 17 (o7
-1 0
(’é-") = .
-6 0
1 0
e J e

Consequently, we have checked consistency using 83 multiplications

and divisions and still do not know the solution, while after

transforming the system to the form

(1 27 [ 17]
0o 1 X1 ) 2
0o 0 || x 0
0 0 L0

we can easily compute X1y Xy and we used 11 multiplications and
divisions only.

For ill-conditioned systems the method of Householder orthogonal
transformations can be used to reduce to zero the subdiagonal elements
of A [12].

For practical situations when both measurement errors and effects
of tolerances appear, the technique proposed by Bandler, Biernacki and
Salama [11] can be used. In the first stage of computation we solve
optimization problem that can be stated as

n

minimize § (1Re(ad)| + IIm(ad}) 1) (21)
i=1
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subject to linear equality constraints (8). Solution of this problem
gives us the most 1likely faulty elements. Then the verification
technique in the presence of tolerances can be used to check (8) in the

way described in [11].

VI. EXAMPLES
To see how the method works in practical networks let us discuss
two examples where the number of measurements was less than the number

of faults.

Example 4

The resistive network shown in Fig. 3 has 20 nodes and 39 resistors
with nominal values Ri = 1 for i ¥ 12 and R12 = 2Q. We take measure-
ments at nodes number 9, 11, 13 and 19. These measurements are simu-
lated for the faulty network where we increase the value of resistors Rk
(k = 5,6,...,12) and R37 from the nominal by 1 Q and J = 1A. They are
equal to

V9 = 0.1316V, V., = 0.06177V, V13 = 0.03797V, V19 = 0.05351V.

1
The graph of the network can be decomposed into three subgraphs as shown
in Fig. U,

All the measurements are placed in subgraph G2. Following the
topological algorithm we find that subgraph G2 has a number of
measurements m, larger than Cse In this case m, > e, + f2 only for f2 =
0, so we can only check if subgraph G2 represents a nonfaulty subgraph.
We take Fx as in Result 2 having F2 = @. So, in this case F = N1n
N2 1] N3 n N2 = {9,13,18}. We check that the rank of ZMFX is 4 for all
x € Ny-F = {7,11,12,19,20}, so on the basis of Result 1, if equation (8)
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is consistent, then the solution AQF represents all the faulty elements.

The equation (8) now has the form

rAV’; n [0.0676 | [ 0.506 0. 144 0.170 ) e
Ad
Av“f1 0.0319 0.237 0.384 0.572 ;3
M = = AJ13 . (25)
AV13 0.0197 0.144 0.536 0.381 F
AJ
M 18
AV _0.0277 J | 0.205 0.396 0.698 | - =

We check consistency using the transformation to the form of (22) and

obtain the transformed equation

[0.506  o.1u4 0170 Y~ o o [ 0.0676 )
oA
0 0.317 0.493 . 0.0003
Ad = . (26)
0 3.10729  _0.435 ;3 10~15
Ad
29 -30 18 -16
o 4.10 3.107° ) L1 | 8.6.107" ")

The last element of the right-hand side is almost zero so we recognize
(8) as consistent and solving for AgF, we obtain
g = 0.13334, AJﬁ3 = 0.000949, aJ5g = -3.107"°A,

From the solution obtained, we can be sure that subgraph G2 is non-

Ad

faulty, while G1 and G3 represent faulty subnetworks. If G3 contains
only one faulty element, as in this example, we can locate them exactly,
using the reduction technique described in Section II. We check the
combination of every two nodes in G3 which are connected by a resistor.

After subtracting column 16 from column 14 in matrix zMN' we may write

equation (8) as

[ 0.506 -0.0289 | ~ . - [ 0.0676)
Ad

0.237 ~0.0769 9 0.0319

- i 27)

0.144 -0.107 0.0197

F
) Miyte | o
| 0.205 -0.0792 | L _ 0.0277]
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Next, we transform it to the form (22) and obtain

(0.506 ~0.0289 | - - - [ 0.0676
A
0 ~0.0634 9 0.0003
- (28)
0 610730 10°1°
AJE
L o 6.10730 | L1416 6-1071°
We can solve this obtaining
adf - 0.13331, AdF = —0.00475A
9 = 7 * 416 T :

This proves that the faulty element is between nodes 14 and 16. We can
find its value by exciting the nominal network with the original
excitation plus current sources AgF as excitations at faulty nodes. The

solution gives us the values of voltages X' at all the nodes of G2 and

G3 (not G1). Now, AY37 can be calculated as:

F
by o Y 116 -0.00u75
37 % Vi - VI, T T0.0095

(29)

1
-5
which is the exact change from the nominal value.
Example 5

The active lowpass filter as shown in Fig. 5 has nominal values of

elements equal (ef. [131) to

R, = 0.182, 02 = 0.01, R3 = 1.57, R5 = 2.64, R6 = 10, R7 = 10, R9 = 100,
R1O = 11.1, R11 = 2.64, C12 = 0.01, R14 = 5.41, R15 =1, R17 =1,
C18 = 0.01, R19 = 4,84, R21 = 2.32, R22 = 10, R23 = 10, R25 = 500,
R26 = 111.1, R27 = 1.14, R28 = 2.32, R29 = 0.01, R31 = T2.4, R32 = 10,
R3u = 10 (all resistors in kQ and capacitors in uF).

Operational amplifiers are modelled by the circuit shown in Fig. 6.

The input current is equal to j(t) = 10"2 cos(2000t)A. Measure-

ments taken at nodes 10, 12, 15 and 17 are equal to
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V10 = -=9.866+j0.6264 V, V12 = 0.0822+j0.932 V, V15 = 20.08-31.726 V,
V17 = 2.437-30.2094 V.

These measurements were simulated in the faulty network with the
faults
R1 = 0.1, 02 = 0.02, R = 20, R7 =20, Ryqy =2, Ry = y, R15 = 2,
Rip = 2, Rgp = 40
and the gain of the amplifier A8 was reduced to 50. Again, we

decompose the graph of the network into three subgraphs, as shown in
Fig. 7. We repeat the steps from Example 4 testing the middle sub-
network. We obtain equation (8) for the given set of measurements and

F = {10, 15, 17} as

M = .
[ avy, [ -5.43+30.246 )
Av? 1.34-30.0908
7
M = = (30)
sl 0.0359+30.513
M .
| AV | 11.1-50.749
- - - “
r1.06~1o'2+j3.u3-1o‘5 6.52-10’11-j7.19-1o 12 9.64.10 8+j3.11-10 10 F— r
3 .. .5 -y -5 . -10 AJ
—2.62:1073+35.10 5.82.10 ™ 1+37.05.10 1.01+33.76+10 .
A
—2.14.1072-310"3 —1072-352.41.107" -1.57.10"19_35.82.1077 ;5
L_-2.1z’>.1o‘2+j4.12-1o‘” 4.8:1073+35.81.107F  —1.25.107T433.1.107° JL
We transform (30) to the form (22) and obtain
[ 1.06+102433.43+1072 6.52¢107 1437.19:10" 12 9.641078433.11+107 10|~ _
AJ
-8+10732, 510733 5.82410"%4+37.05:10™>  1.01-j7.86.10~ 1 ;0
AJ
-3-10'34 -2~1o'31-32-1o‘32 17.2-31.66 15
AJ
—2.10730_310732 40107314 56410732 -8.1028,38.10729  JU 1T
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-5.43+j0.246

—3.46-10'”+j2.94-1o'5

=5.85.10"3+31.071073

~1.74107 M 53, 02.107 1)

Again, we can recognize equation (8) for these faults as consistent

and solving for AiF we obtain

F . Fo_ -
AJ1O -512+j24.94, AJ15 = -1.65.10

AJ?7 - 3.43-107F 4 32.91.1070a.

14 14

+ j7.33+107 A

Once again, we may try to locate the fault in the right-hand side

subgraph. After subtracting column 19 from 17 and solving the resulting

set of equations, we obtain

AJﬁo = —512+324. 94,
F i o -5
035, 1o = =3.864107" + 29401074,

We can see that the change in faulty currents is very small, which
indicates weak sensitivity of the given measurements w.r.t. the faulty

current at node 19. This result is easy to predict because the faulty
current source of value 3.u6-1o‘“-32.9u-1o‘5A is connected in parallel

with a controlled current source having a current equal to J19 ~

0.07-jO0.006A. Again, we may excite the nominal network adding faulty
currents and calculate voltages X'. We calculate

F
Ad -4 . -5
17-19 - -3.46.10 +3j2.94.10 ~ _0.749.10—4.

aY §.62-30.392

P

This is quite accurate, since the actual change was —0.75-10’”.
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VII. CONCLUSIONS

We have extended the possibilities of multiport methods for
multiple-fault location in analog networks. Necessary and sufficient
conditions for uniquely evaluating faults have been discussed. Together
with topological constraints inherent in a particular network these
conditions indicate whether or not the measurements which have been made
can be used to evaluate all the faults. Even in cases where the faults
can not be evaluated, our analysis can be applied to identify and
isolate faulty and nonfaulty subnetworks. Our recommended strategy then
would be to subject the subnetworks containing the faults to further
analysis. Our ability to evaluate the faults within a subnetwork
depends upon the actual number of faults, the number of measurements
within the subnetwork and the information which can be used from outside
the subnetwork as seen through the nodes common with the rest of the
network. Thus, our approach permits us to use effectively all methods
which have been proposed for fault evaluation of networks at the
subnetwork level. This partitioning into subnetworks not only increases
the efficiency of existing algorithms, especially when we have a large
network to analyze, but also permits detailed investigation of specific

subnetworks.
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Fig. 1 Changes in nodal current caused by a single fault.
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Fig. 2 Illustration of necessary measurements.



Fig. 3 Resistive network example,
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Fig. 4 Decomposition of the graph of the resistive

network into subgraphs.
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Fig. 6 Operational amplifier model used for

the active filter.
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