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Abstract

We present a comprehensive comparison between the widely used
Lagrange multiplier and Tellegen's theorem approaches to sensitivity
calculations in electrical networks. The two approaches are described

on a unified basis using the conjugate notation. Different aspects of
comparison can thereby be investigated. The linear electronic circuit

analysis case is seen to be a special case.
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I. INTRODUCTION

Sensitivity calculations are performed routinely in electrical
network analysis and design to supply first-order changes and gradients
of functions of interest w.r.t. practically defined control or design
variables.

Two approaches, namely the Lagrange multiplier approach [1,2] and
Tellegen's theorem approach [3,4], are intensively used for sensitivity
calculations in both electronic and power networks. Methods based on
the two approaches have been described and applied [1-4] on an
individual basis. A combination between the two approaches has been
proposed in [51].

The material presented iﬁ this paper aims at investigating
relationships between the two approéches. This investigation is
accomplished by employing common bases of description and analysis
through which the required aspects of comparison can be clearly stated.

We state the notation used and the basic formulation in Section II.
In Sections III and IV, we describe, on a unified basis, the application
of the Lagrange multiplier and the Tellegen's theorem approaches to
sensitivity analysis of electrical networks. A comprehensive discussion

of some aspects of comparison is then presented in Section V.

II. BASIC FORMULATION
We denote by f a single valued continuous complex function of 2nx
system complex state variables (i, ff) and 2nu complex control variables
(3, Ef) arranged as column vectors. We also denote by h a set of n

* *
complex equality constraints relating (i’ X ) to (g, u ).

Using the conjugate notation [#4-6], the first-order change of f is



written as

T
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T
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6f = f, 6x+ T, 6k + £, u+T o, (1)

where § denotes first-order change, T denotes transposition and ;& z;,

_ | .
£, and fL denote the formal derivatives [5] 3f/3x, 3f/9x , 3f/du and

#
of/3u , respectively. Also, the first-order change of h is written as
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where Ex’ Ex’ Eu and Eu stand for (ag?/ag)T, (ag?/ag )T, (ag?/ag)T and
*
(aET/ag )T, respectively.

* *
When dealing with electrical networks, x, x , u and u may be

~

classified [4] into 2-component subvectors X and Ups respectively,
associated with different element (branch) types, b denoting the bth
branch. The elements of Xy and u, may constitute complex conjugate

pairs of network variables. In general, Xy and Yy constitute node

and u For

~t°

branch variables fm and Em and line branch variables ft

Amay represent node voltages in a typical linear electronic

example, Xn

*
network. 1In this case the components of x, are Vm and Vm.

In power networks Xn and u, are further classified [4,6] into

vectors associated with load (52’ uz), generator (ig’ Eg) and slack

generator (xn, En) branches. An element of xz. X _ , X

g n and X, may be

defined as Vz, Qg + jég. Pn + an and It’ respectively, where Pm and Qm

are the real and reactive powers associated with bus m and Vm = Ilef n®

A corresponding element of u Yo Y and Y is defined, respectively,

L' ~g

as P, + JQ,, Pg + J]Vgl, Vv, and Y.

In general, we write
X, x'} = {4} = (g, %) (3)

and



fu, u'd o=y} = {u;, ub. | (%)
In this formulation, we have assumed that the number of state or control
variables defined is ZnB. ng denoting the number of branches in the
network. This assumption is made to simplify the comparison between the
Lagrange multiplier and Tellegen's theorem approaches performed in the

following sections. Both of these approaches can, however, be applied

[2,5] for a general number of state variables.

TIII. LAGRANGE MULTIPLIER APPROACH
In this approach, we use (2) and its complex conjugate to write the

first-order change &§f of (1) in the form [5]

T =% — T = =T #T - T _*
5f'(£u"lfué"§u2:) ‘53*(51'%\:5"% 2\,) 8U 5)

where ) and Z’are vectors of Lagrange multipliers obtained by solving

the adjoint equations

Ex A+ ax A= £ (6a)
.-.T *T — -—
He A+ Qx A= ix' (6b)
Hence, from (5)
af T —~%T —
d}(‘. - £u - Iiu A= Iiu 2‘.’ (7a)
—_ — #T —
S _F _H A-H % (7b)

In practice, we solve the 2n, complex adjoint equations (6) for the
Lagrange multipliers ) and ) which are then substituted into (7) to
obtain the required total formal derivatives of f w.o.t. control

variables.



For use later, we now describe the approach in a slightly different
way. We employ the classifications of (3) and (4) to define the change

of an element-local Lagrangian term as

AT, Rl R nD T th B
‘SLb‘ ,2‘- be be A be Enx 6% + 12 bbu l;’bu

T E a1
+ 2 [ by Su, , (8)
where
Ho= (b, ..o n 1, (9a)
B
B
and
g 2 [n ho ] (10a)
~ ~fu °°° ~nBu !
i 2 ho] (10a)
A3 Bl | B ~nBu ’

be and Ebu being ng vectors.

We also define

sL &1L, (11)
b
hence, from (2) and (8)
sL = O. (12)
Using (8), (12) and
of = ¢ ([f, ?Sx] §%, + Ly, ?Lu] 8u,) (13

b

we may write, from (11)
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Observe that when 2 and'z of (14) satisfy (6), namely

T ~%T —
be A * be 5 =
—~T *T —
By A+ oy A=
then (14) reduces to
T
_ = .7 Ebu
§L = 6f -2 (ffbu fbu] -7
b h
~bu

hence, from (12)

§f =
b Ebu
so that
T
daf  _ f.bu Ebu
du,. | = T =T
~b fbu By

which is a form of (7).
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TELLEGEN'S THEOREM APPROACH

(1)

(15a)

(15b)

(16)

an

(18)

In this approach, the application of Tellegen's theorem [U4] results

in the identity

8T

1]
o
-

(19)



where
6T £ 1 81, , (20)
b
and the element-local Tellegen term GTb is defined as
| o7, & fox 6% + Tou S 21

and the 2-component vectors ﬁbx and ﬁbu are linear functions of the
formulated adjoint network current variables Ib and .voltage variables Vb
and their complex conjugate. Hence, the Tbx and Tpy are related through
Kirchhoff's current and voltage laws formulating a set of network
equations. Using (13) and (21), we may write, from (20)

S AT - AT
§T = 6f - 12): {([fbx fbx] - Dbx) (Sib + ([fbu fbu] - Dbu) ng'}. (22)

The adjoint network is defined by setting

-

f
By =l | (23)
f
be
hence (22) reduces to
-
f
bu ~
§T = &f - ¢ (,“ = Dbu)T ng. (24)
b f
L bu
from which
f
daf bu -~
= =z - . (25)
dEb r Bhu
bu

In practice, we formulate the adjoint network using (23) and solve the
2n adjoint network equations to get ﬁbu’ which are then substituted into
(25) to obtain the required total formal derivatives of f w.r.t. complex

control variables.



V. ANALOGY AND COMPARISON

In the last two sections, we have described both the éomplex
Lagrange multiplier and Tellegen's theorem approaches to sensitivity
calculations in electrical networks. In this section, we investigate
the analogous features of the two abproadhes and state a general
comparison between them.

Both approaches have been applied to both real and complex
functions [6]. The application of the Lagrangian approach to complex
functions in power networks implies the direet solution of 2nB X 2nB
complex equations of (6) or (15). For real functions i; = g: and it is
sufficient to solve either (6a) or (6b) where } = A*. On the other
hand, the application of the Tellegen theorem approach to real function
sensitivities implies a consistency analysis [6] which depends on the
particular network being analyzed. In order to attain a reasonable
comparison between the two approaches, only the case of real functions
will be considered. The equations derived are general and the case of
complex function sensitivities can be analyzed in a similar,
straightforward manner.

We remark on the resemblance between the element-local Lagrangian
term SLb of (8) and the element-local Tellegen term 8T, of (21). We
also remark on the resemblance between equation (12) formed to satisfy
(2) and equation (19) formed by applying Tellegen's theorem. The §f of_
(14) and (22) is expressed solely in terms of the control variables via
defining, respectively, the adjoint systems (15) and (23). The solution
of the adjoint network is then used to obtain the total derivatives
df/dgb from (18) and (25), respectively.

In the complex Lagrange multiplier approach, the adjoint system of



equations to be solved for the adjoint variables (Lagrange multipliers)
A and Z constitutes a nB X 2nB complex matrix of coefficients. In
general; when other state variables are defined [2], the order of the
matrix of coefficients is determined by the total number of state
variables defined. On the other hand, the adjoint system of equations
in the Tellegen's theorem approach represents a set of network equations
and constitutes only a 2n x 2n real matrix of coefficients, n denoting
the number of nodes (or buses) in the original network.

The compactness of the adjoint system formulation in the Tellegen's
theorem épproaeh is afforded in essence by realizing, when formulating
the adjoint equations, Kirchhoff's relations between the different
adjoint variables which constitute a fictitious electrical network.

Assuming that the effort required is divided into formulation and
solution parts of the adjoint system, we immediately see that the
Tellegen's theorem approach sweeps the major effort into the formulation
part and results in only 2n real adjoint equations to be solved. 1In
contrast, the Lagrange multiplier approach requires almost nothing to

formulate the adjoint system which then constitutes nx adjoint equations

to be solved,

VI. CONCLUSIONS
The two widely used approaches to sensitivity calculations in
electrical networks, namely the Lagrange multiplier and Tellegen's
theorem approaches have been described and compared. The description
has been performed on a unified basis, where we have defined and
employed element-local terms in formulating the two approaches so that

different aspects of comparison are clearly investigated. The
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resemblance in formulating the adjoint systems of the two approaches has

been discussed.
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