INTERNAL REPORTS IN # SIMULATION, OPTIMIZATION AND CONTROL No. SOC-286 THE COMPLEX ADJOINT APPROACHES TO NETWORK SENSITIVITIES J.W. Bandler and M.A. El-Kady January 1982 ## FACULTY OF ENGINEERING McMASTER UNIVERSITY HAMILTON, ONTARIO, CANADA J.W. Bandler, Fellow, IEEE, and M.A. El-Kady, Member, IEEE #### Abstract We present a comprehensive comparison between the widely used Lagrange multiplier and Tellegen's theorem approaches to sensitivity calculations in electrical networks. The two approaches are described on a unified basis using the conjugate notation. Different aspects of comparison can thereby be investigated. The linear electronic circuit analysis case is seen to be a special case. This work was supported by the Natural Sciences and Engineering Research Council of Canada under Grants A7239 and G0647. The authors are with the Group on Simulation, Optimization and Control and the Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada L8S 4L7. M.A. El-Kady is also with Ontario Hydro, Toronto, Canada. #### I. INTRODUCTION Sensitivity calculations are performed routinely in electrical network analysis and design to supply first-order changes and gradients of functions of interest w.r.t. practically defined control or design variables. Two approaches, namely the Lagrange multiplier approach [1,2] and Tellegen's theorem approach [3,4], are intensively used for sensitivity calculations in both electronic and power networks. Methods based on the two approaches have been described and applied [1-4] on an individual basis. A combination between the two approaches has been proposed in [5]. The material presented in this paper aims at investigating relationships between the two approaches. This investigation is accomplished by employing common bases of description and analysis through which the required aspects of comparison can be clearly stated. We state the notation used and the basic formulation in Section II. In Sections III and IV, we describe, on a unified basis, the application of the Lagrange multiplier and the Tellegen's theorem approaches to sensitivity analysis of electrical networks. A comprehensive discussion of some aspects of comparison is then presented in Section V. #### II. BASIC FORMULATION We denote by f a single valued continuous complex function of $2n_x$ system complex state variables (x, x^*) and $2n_u$ complex control variables (u, u^*) arranged as column vectors. We also denote by h a set of n_x complex equality constraints relating (x, x^*) to (u, u^*) . Using the conjugate notation [4-6], the first-order change of f is written as $$\delta \mathbf{f} = \mathbf{f}_{\mathbf{x}}^{\mathsf{T}} \delta \mathbf{x} + \overline{\mathbf{f}}_{\mathbf{x}}^{\mathsf{T}} \delta \mathbf{x}^{*} + \mathbf{f}_{\mathbf{u}}^{\mathsf{T}} \delta \mathbf{u} + \overline{\mathbf{f}}^{\mathsf{T}} \delta \mathbf{u}^{*}, \tag{1}$$ where δ denotes first-order change, T denotes transposition and f_x \overline{f}_x , f_u and f_u denote the formal derivatives [5] $\partial f/\partial x$, $\partial f/\partial x$, $\partial f/\partial u$ and $\partial f/\partial u$, respectively. Also, the first-order change of h is written as $$\delta \underline{h} = \underline{H}_{x} \quad \delta \underline{x} + \overline{\underline{H}}_{x} \quad \delta \underline{x}^{*} + \underline{H}_{u} \quad \delta \underline{u} + \overline{\underline{H}}_{u} \quad \delta \underline{u}^{*} = \underline{0}, \tag{2}$$ where \mathbb{H}_{x} , \mathbb{H}_{x} , \mathbb{H}_{u} and \mathbb{H}_{u} stand for $(\partial \mathbb{H}^{T}/\partial \mathbb{H})^{T}$, $(\partial \mathbb{H}^{T}/\partial \mathbb{H}^{T}/\partial \mathbb{H})^{T}$, $(\partial \mathbb{H}^{T}/\partial \mathbb{H})^{T}$, respectively. When dealing with electrical networks, x, x, x, u and u may be classified [4] into 2-component subvectors x_b and u_b , respectively, associated with different element (branch) types, b denoting the bth branch. The elements of x_b and u_b may constitute complex conjugate pairs of network variables. In general, x_b and u_b constitute node branch variables x_m and u_m and line branch variables x_t and u_t . For example, x_m may represent node voltages in a typical linear electronic network. In this case the components of x_m are v_m and v_m . In power networks x_m and y_m are further classified [4,6] into vectors associated with load (x_{ℓ}, y_{ℓ}) , generator (x_{ℓ}, y_{ℓ}) and slack generator (x_{ℓ}, y_{ℓ}) branches. An element of x_{ℓ} , x_{ℓ} , x_{ℓ} , x_{ℓ} , and x_{ℓ} may be defined as v_{ℓ} , where v_{ℓ} and v_{ℓ} are the real and reactive powers associated with bus m and v_{ℓ} = v_{ℓ} and v_{ℓ} as v_{ℓ} , v In general, we write $$\{x, x^*\} = \{x_b\} = \{x_m, x_t\}$$ (3) $$\{u, u^*\} = \{u_b\} = \{u_m, u_t\}.$$ (4) In this formulation, we have assumed that the number of state or control variables defined is $2n_B$, n_B denoting the number of branches in the network. This assumption is made to simplify the comparison between the Lagrange multiplier and Tellegen's theorem approaches performed in the following sections. Both of these approaches can, however, be applied [2,5] for a general number of state variables. #### III. LAGRANGE MULTIPLIER APPROACH In this approach, we use (2) and its complex conjugate to write the first-order change δf of (1) in the form [5] $$\delta \mathbf{f} = (\mathbf{f}_{u} - \mathbf{H}^{T}_{u} \mathbf{\lambda} - \mathbf{H}^{T}_{u} \mathbf{\lambda})^{T} \delta \mathbf{u} + (\mathbf{f}_{u} - \mathbf{H}^{T}_{u} \mathbf{\lambda} - \mathbf{H}^{*T}_{u} \mathbf{\lambda})^{T} \delta \mathbf{u}^{*}, \quad (5)$$ where $\underline{\lambda}$ and $\overline{\underline{\lambda}}$ are vectors of Lagrange multipliers obtained by solving the adjoint equations $$\mathbb{H}_{\mathbf{X}}^{\mathrm{T}} \stackrel{\lambda}{\lambda} + \overline{\mathbb{H}}_{\mathbf{X}}^{*\mathrm{T}} \stackrel{\overline{\lambda}}{\sim} = f_{\mathbf{X}}, \qquad (6a)$$ $$\widetilde{H}_{x}^{T} \underset{\lambda}{\lambda} + H_{x}^{*T} \overline{\lambda} = \widetilde{f}_{x}.$$ (6b) Hence, from (5) $$\frac{\mathrm{df}}{\mathrm{du}} = f_{\mathrm{u}} - H_{\mathrm{u}}^{\mathrm{T}} \lambda - H_{\mathrm{u}}^{\mathrm{T}} \lambda, \qquad (7a)$$ $$\frac{df}{du} = \overline{f}_{u} - \overline{H}^{T}_{u} \lambda - H^{*T}_{u} \overline{\lambda}.$$ (7b) In practice, we solve the $2n_\chi$ complex adjoint equations (6) for the Lagrange multipliers χ and $\overline{\chi}$ which are then substituted into (7) to obtain the required total formal derivatives of f w.r.t. control variables. For use later, we now describe the approach in a slightly different way. We employ the classifications of (3) and (4) to define the change of an element-local Lagrangian term as $$\delta L_{b} \stackrel{\Delta}{=} (\lambda^{T} [h_{bx} \overline{h}_{bx}] + \overline{\lambda}^{T} [\overline{h}_{bx}^{*} h_{bx}^{*}]) \delta x_{b} + (\lambda^{T} [h_{bu} \overline{h}_{bu}] + \overline{\lambda}^{T} [\overline{h}_{bu}^{*} h_{bu}^{*}]) \delta u_{b},$$ $$(8)$$ where $$\frac{H}{\sim}x = \left[\frac{h}{\sim}1x \dots \frac{h}{\sim}n_Bx\right], \tag{9a}$$ $$\widetilde{H}_{x} = [\widetilde{h}_{1x} \dots \widetilde{h}_{n_{R}x}]$$ (9b) and $$\stackrel{\text{H}}{\approx} u \stackrel{\triangle}{=} \left[\stackrel{\text{h}}{\approx} 1u \cdots \stackrel{\text{h}}{\approx} n_{\text{B}} u \right], \tag{10a}$$ $$\overrightarrow{H}_{u} \stackrel{\Delta}{=} [\overrightarrow{h}_{1u} \cdots \overrightarrow{h}_{n_{B}u}],$$ (10a) h_{bx} and h_{bu} being n_{B} vectors. We also define $$\delta L \stackrel{\Delta}{=} \sum_{\mathbf{b}} \delta L_{\mathbf{b}}. \tag{11}$$ hence, from (2) and (8) $$\delta L = 0. \tag{12}$$ Using (8), (12) and $$\delta f = \sum_{b} ([f_{bx} \quad \overline{f}_{bx}] \quad \delta_{b}^{x} + [f_{bu} \quad \overline{f}_{bu}] \quad \delta_{b}^{u})$$ (13) we may write, from (11) $$\delta L = \delta f - \sum_{b} \{ ([f_{bx} \quad \overline{f}_{bx}] - \lambda^{T} [h_{bx} \quad \overline{h}_{bx}] - \overline{\lambda}^{T} [\overline{h}_{bx}^{*} \quad h_{bx}^{*}] \} \delta x_{b} +$$ $$([f_{bu} \overline{f}_{bu}] - \lambda^{T} [h_{bu} \overline{h}_{bu}] - \overline{\lambda}^{T} [\overline{h}_{bu} h_{bu}]) \delta u_{b} .$$ (14) Observe that when λ and $\overline{\lambda}$ of (14) satisfy (6), namely $$h_{bx}^{T} \stackrel{\lambda}{\sim} + \frac{1}{b} + \frac{1}{b} = f_{bx}, \qquad (15a)$$ $$\overline{\mathbf{h}}_{\mathbf{h}\mathbf{v}}^{\mathbf{T}} \stackrel{\lambda}{\sim} + \mathbf{h}_{\mathbf{h}\mathbf{v}}^{*\mathbf{T}} \frac{\overline{\lambda}}{\lambda} = \overline{\mathbf{f}}_{\mathbf{h}\mathbf{v}}, \tag{15b}$$ then (14) reduces to $$\delta L = \delta \mathbf{f} - \sum_{b} ([\mathbf{f}_{bu} \ \overline{\mathbf{f}}_{bu}]^{T} - \begin{bmatrix} \mathbf{h}_{bu}^{T} \\ \mathbf{h}_{bu}^{T} \end{bmatrix} \lambda - \begin{bmatrix} \overline{\mathbf{h}}_{bu}^{*T} \\ \mathbf{h}_{bu}^{*T} \end{bmatrix} \overline{\lambda})^{T} \delta \mathbf{u}_{b}, \tag{16}$$ hence, from (12) $$\delta f = \sum_{b} ([f_{bu} \quad \overline{f}_{bu}]^{T} - \begin{bmatrix} h_{bu}^{T} \\ h_{bu}^{T} \\ \overline{h}_{bu}^{T} \end{bmatrix} \lambda - \begin{bmatrix} \overline{h}_{bu}^{*T} \\ h_{bu}^{*T} \\ h_{bu}^{*T} \end{bmatrix} \overline{\lambda})^{T} \delta \underline{u}_{b}, \qquad (17)$$ so that $$\frac{df}{du_{b}} = \begin{bmatrix} f_{bu} \\ \overline{f}_{bu} \end{bmatrix} - \begin{bmatrix} h_{bu}^{T} \\ \overline{h}_{bu}^{T} \\ h_{bu} \end{bmatrix} \lambda - \begin{bmatrix} \overline{h}_{bu}^{*T} \\ h_{bu}^{T} \\ h_{bu} \end{bmatrix} \overline{\lambda}, \qquad (18)$$ which is a form of (7). #### IV. TELLEGEN'S THEOREM APPROACH In this approach, the application of Tellegen's theorem [4] results in the identity $$\delta T = 0, \tag{19}$$ where $$\delta T \stackrel{\Delta}{=} \sum_{b} \delta T_{b}, \qquad (20)$$ and the element-local Tellegen term $\delta T_{\mbox{\scriptsize b}}$ is defined as $$\delta T_{b} \stackrel{\Delta}{=} \hat{\eta}_{bx}^{T} \quad \delta x_{b} + \hat{\eta}_{bu}^{T} \quad \delta u_{b}$$ (21) and the 2-component vectors $\hat{\eta}_{bx}$ and $\hat{\eta}_{bu}$ are linear functions of the formulated adjoint network current variables \hat{I}_b and voltage variables \hat{V}_b and their complex conjugate. Hence, the $\hat{\eta}_{bx}$ and $\hat{\eta}_{bu}$ are related through Kirchhoff's current and voltage laws formulating a set of network equations. Using (13) and (21), we may write, from (20) $$\delta T = \delta \mathbf{f} - \sum_{b} \{ ([\mathbf{f}_{bx} \quad \overline{\mathbf{f}}_{bx}] - \hat{\mathbf{g}}_{bx}^{T}) \quad \delta \mathbf{x}_{b} + ([\mathbf{f}_{bu} \quad \overline{\mathbf{f}}_{bu}] - \hat{\mathbf{g}}_{bu}^{T}) \quad \delta \mathbf{u}_{b} \}. \tag{22}$$ The adjoint network is defined by setting $$\hat{\mathfrak{D}}_{bx} = \begin{bmatrix} f_{bx} \\ \overline{f}_{bx} \end{bmatrix}, \tag{23}$$ hence (22) reduces to $$\delta T = \delta f - \sum_{b} \left(\begin{bmatrix} f_{bu} \\ \overline{f}_{bu} \end{bmatrix} - \hat{\eta}_{bu} \right)^{T} \delta_{bu}^{u}, \qquad (24)$$ from which $$\frac{df}{du_{b}} = \begin{bmatrix} f_{bu} \\ \overline{f}_{bu} \end{bmatrix} - \hat{\eta}_{bu} . \tag{25}$$ In practice, we formulate the adjoint network using (23) and solve the 2n adjoint network equations to get \hat{n}_{bu} , which are then substituted into (25) to obtain the required total formal derivatives of f w.r.t. complex control variables. #### V. ANALOGY AND COMPARISON In the last two sections, we have described both the complex Lagrange multiplier and Tellegen's theorem approaches to sensitivity calculations in electrical networks. In this section, we investigate the analogous features of the two approaches and state a general comparison between them. Both approaches have been applied to both real and complex functions [6]. The application of the Lagrangian approach to complex functions in power networks implies the direct solution of $2n_B \times 2n_B$ complex equations of (6) or (15). For real functions $\overline{f_X} = f_X^*$ and it is sufficient to solve either (6a) or (6b) where $\overline{\lambda} = \lambda^*$. On the other hand, the application of the Tellegen theorem approach to real function sensitivities implies a consistency analysis [6] which depends on the particular network being analyzed. In order to attain a reasonable comparison between the two approaches, only the case of real functions will be considered. The equations derived are general and the case of complex function sensitivities can be analyzed in a similar, straightforward manner. We remark on the resemblance between the element-local Lagrangian term $\delta L_{\rm b}$ of (8) and the element-local Tellegen term $\delta T_{\rm b}$ of (21). We also remark on the resemblance between equation (12) formed to satisfy (2) and equation (19) formed by applying Tellegen's theorem. The δf of (14) and (22) is expressed solely in terms of the control variables via defining, respectively, the adjoint systems (15) and (23). The solution of the adjoint network is then used to obtain the total derivatives df/du_b from (18) and (25), respectively. In the complex Lagrange multiplier approach, the adjoint system of equations to be solved for the adjoint variables (Lagrange multipliers) $\frac{1}{\lambda}$ and $\frac{1}{\lambda}$ constitutes a n_B x $2n_B$ complex matrix of coefficients. In general, when other state variables are defined [2], the order of the matrix of coefficients is determined by the total number of state variables defined. On the other hand, the adjoint system of equations in the Tellegen's theorem approach represents a set of network equations and constitutes only a 2n x 2n real matrix of coefficients, n denoting the number of nodes (or buses) in the original network. The compactness of the adjoint system formulation in the Tellegen's theorem approach is afforded in essence by realizing, when formulating the adjoint equations, Kirchhoff's relations between the different adjoint variables which constitute a fictitious electrical network. Assuming that the effort required is divided into formulation and solution parts of the adjoint system, we immediately see that the Tellegen's theorem approach sweeps the major effort into the formulation part and results in only 2n real adjoint equations to be solved. In contrast, the Lagrange multiplier approach requires almost nothing to formulate the adjoint system which then constitutes n_{χ} adjoint equations to be solved. #### VI. CONCLUSIONS The two widely used approaches to sensitivity calculations in electrical networks, namely the Lagrange multiplier and Tellegen's theorem approaches have been described and compared. The description has been performed on a unified basis, where we have defined and employed element-local terms in formulating the two approaches so that different aspects of comparison are clearly investigated. The resemblance in formulating the adjoint systems of the two approaches has been discussed. #### REFERENCES - [1] H.W. Dommel and W.F. Tinney, "Optimal power flow solutions", <u>IEEE Trans. Power Apparatus and Systems</u>, vol. PAS-87, 1968, pp. 1866-1976. - [2] S.W. Director and R.L. Sullivan, "A tableau approach to power system analysis and design", <u>Proc. IEEE Int. Symp. Circuits and Systems</u> (New York, 1978), pp. 605-609. - [3] S.W. Director and R.A. Rohrer, "Generalized adjoint network and network sensitivities", IEEE Trans. Circuit Theory, vol. CT-16, 1969, pp. 318-323. - [4] J.W. Bandler and M.A. El-Kady, "A unified approach to power system sensitivity analysis and planning, Part I: family of adjoint systems", Proc. IEEE Int. Symp. Circuits and Systems (Houston, TX, 1980), pp. 681-687. - [5] J.W. Bandler and M.A. El-Kady, "A complex Lagrangian approach with applications to power network sensitivity analysis", IEEE Trans. Circuits and Systems, vol. CAS-29, 1982, pp. 1-6. - [6] M.A. El-Kady, "A unified approach to generalized network sensitivites with applications to power system analysis and planning", Ph.D. Thesis, McMaster University, Hamilton, Canada, 1980. SOC-286 #### THE COMPLEX ADJOINT APPROACHES TO NETWORK SENSITIVITIES J.W. Bandler and M.A. El-Kady January 1982, No. of Pages: 10 Revised: Key Words: Lagrange multipliers, Tellegen's theorem, network analysis, sensitivity analysis, conjugate notation, complex variables Abstract: We present a comprehensive comparison between the widely used Lagrange multiplier and Tellegen's theorem approaches to sensitivity calculations in electrical networks. The two approaches are described on a unified basis using the conjugate notation. Different aspects of comparison can thereby be investigated. The linear electronic circuit analysis case is seen to be a special case. Description: Extension of SOC-250. Related Work: SOC-234, SOC-237, SOC-238, SOC-241, SOC-243, SOC-247, SOC-248, SOC-249, SOC-253, SOC-254, SOC-255, SOC-256, SOC-257, SOC-258, SOC-265. Price: \$6.00.