v =

L €D,

INTERNAL REPORTS IN

SIMULATION, OPTIMIZATION
AND CONTROL

No. SOC-2
NONLINEAR PROGRAMMING USING MINIMAX TECHNIQUES
J.W. Bandler and C. Charalambous

June 1973

FACULTY OF ENGINEERING
 McMASTER UNIVERSITY

HAMILTON, ONTARIO, CANADA

$5.00






NONLINEAR PROGRAMMING USING MINIMAX TECHNIQUES

2

J.W. BANDLER® and C. CHARALAMBOUS>

Abstract A minimax épproach to nonlinear programming is presented.
The original nonlinear programming problem is formulated as an un-
constrained minimax problem. Under reasonablé restrictions it is

shown that a poinf satisfying the necessary conditions for a mini-

max optimum also satisfies the Kuhn-Tucker necessary conditions for

the original froblem. A least pth type of objective function for
minimization with extremely large values of p is propoged to solve

the problem. Several numerical examples compare the present approach
with the well-known SUMT method of Fiacco and McCormick. In both cases

a recent minimization algorithm by Fletcher is used.
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1. Introduction

A number of examples can be cited (Ref. 1) when general nonlinear
minimax approximation problems involving a finite point set have been re-
formulated as nonlinear programs and solved by well-established methods such
as the barrier function method of Fiacco and McCormick (Refs. 2 and 3).
Other methods of solving the resulting nonlinear programs include the re-
peated application of linear programming to suitably linearized versions of
the nonlinear problem (Ref. 4).

In the present paper, on the othér hand, we show how conventional
nonlingar pfogramming problems can be formulated for solution as minimax
problems, with several attendant advantages. To our knowledge, the particular
scheme we have adopted does not appear to have been previously attempted,
although some exact penalty function methods for solﬁing nonlinear programs
have already appeared and been discussed in the literature (Refs. 5 to 8).

2. The Present Approach

2.1 The Nonlinear Prqg;amming Problem

The nonlinear programming problem can be stated as _



minimize U(¢) (1)
Y
subject to
gi(i) 20 i=1,2,...,m : _ (2)
- where U is the generally nonlinear objective function of k parameters ¢,
Y

where
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aﬁd gl(i), gz(g), cees gm(g) are, in general, nonlinearvfunctions of the
parameters. We will assume that all the functions are continuous with
continuous partial derivatives, and that the inequality constraints

gitg) 2 0, i=1,2,...,m are such that a Kuhn-Tucker solution exists (Ref.9).

2.2 An Equivalent Minimax Problem

Consider the problem of minimizing the unconstrained function

V(g9 = max UG, UQ) - om0 @)
where
A T
3 = [al Gy eet am] . | (5)
 and
a,. >0 i=1,2,...,m (6)



Theorem. If the Kuhn-Tucker necessary conditions for optimality of the

nonlinear programming problem are satisfied at ¢°, then positive Aslysee ey
n, 1%

can be found satisfying

m
Y
Ig <! | m
i=1"
such that ¢° satisfies the necessary conditions for optimality of V(¢,a)
N N

.,u are the Kuhn-Tucker multipliers.

with respect to ¢, where UgslUys e
N

Proof. The Kuhn-Tucker necessary conditions for optimality of the

original nonlinear programming problem are:
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Assuming (7),
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Also using (8), (13), (14) and (15) we obtain,
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U = UG - oy g (67 ieM (22)
Y N Y
Ue%) > U?) - o g, (67)  igM (23)
Now, relations (18) to (23) are the necessary conditions for

..,u_ are
m

optimality of V(¢,a) for fixed o at the point ¢°. The u,,u,,.
LY " ~n 1772

specific non-negative numbers, so that sufficiently large positive
Ays0sseeesd must be chosen to satisfy inequality (7). Clearly some flex-

ibility in their choice exists, but since u;,u -»u are not known in

200>

advance one may not, in general, be able to forecast their values.

s O

It should be noted that if insufficiently large values of Q50,0000

are chosen it can be shown that although a valid minimum of V(¢,a) may be
n,



found, the constraints gi(¢) > 0 for all i=1,2,;..,m may not be satisfied
N

at that point.

2.3 Possible Implementation

One possible approach for minimizing V(%,%) with respect to ¢
Y

and which the authors have used with some success is to assume

W(g,g,ﬁ) = 1?§l§m[U($)+B’ U(st)+8-aigi($)]
= éiﬁ X(g,g,s,p) (24)
where
X(6,,8,p) = ([w (U(9) + 8)TP
N v 4"
1
+ I [w, (U(¢)+6-a,g; (6))1P)P (25)
i=1 1 L 171 ",
and where
B 20 | | (26)
W = {0 fOI’ U('?‘)"'S <0 . _ (27)
[0
| 1 for U($)+B >0
0 for U(¢)+B - a.g.(¢) <O '
W, = v el ‘ (28)
i 1 for U(2)+B - aigi(i) >0
m .
W+ ilwi 31 (29}

p>1 » (30)



and proceed to minimize X(z,g,e,p) with respect to 2 from an arbitrary
starting point for selected a and B using a very large value of p.
In particular, it is noted that
V(ﬁ’,?,) = W(¢,2,8) - B (31)
The reason for B is to ensure that (29) is satisfied, i.e., that
vX(s,g,B,p) >0, If X(z,%,e,p) becomes 0, B may be increased, and the
minimization procedure restarted.

If a minimum of X(¢,9,8,p) with respectto ¢ is obtained for which
some or all of the constraints are violated, the elements of g are increased,
and the minimization procedure restarted. In practice, a tolerance for
violated constraints should be specified.

2.4 Comments

A number of advantages are obtained by our approach. The first is
that the minimization*of V can be regarded as an essentially unconstrained
problem and a number of simple and suitablg methods are available for its
solution. The second is that fhe starting point can, in principle, be
anywhere. There is no neéd to distinguish between feasible and nonfeasible

points. The third is that once suitable values for the oy have been



determined, one complete optimization yields the solution unlike, of course,
conventional barrier function methods. More precisely, if the minimax
problems are reformulated as least pth problems (Ref. 11 to 13) one complete
optimization yields an approximate solution depending on the magnitﬁde

of p as in barrier function methods where the approximation depends on

the size of the controlling parameter. Finally, we note that nonlinear

equality constraints can also be readily handled by our method.

3. Examples

To illustrate some of the concepts discussed in this paper and to
provide some means of assessing the usefulness of our approach to nonlinear
'programming a number of-nqmerical examples, which have already received
attention in the literature on optimization, will now be considered. A

CDC 6400 computer was used throughout. Fletcher's recent minimization

algorithm (Ref. 14) is also employed throughout. One function evaluation

includes evaluation of all first derivatives.

3.1 The Post Office Parcel Problem (Ref. 15)

For the post office parcel problem
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The solution is

U= - 330, ¢ =20, 4, = 11, ¢ = 15

We.confine ourselves on ;his problem to showing contours of V
against ¢1' and ¢2 for ¢3 = 15 and for different sets of values of the a; .
We let o, = a, = az = a. It can be shown that the threshold value of a

1 3

is 245. Fig. 1 shows the situation for a = 200, Fig. 2 the situation for

R
"

245, Fig. 3 the situation for a = 300 and Fig. 4 the situation for

a = 106. In these figures we have in Region 1

V=1U
in Region 2

V=U-a(ll - ¢

2)

in Region 3

V=U-a(72- ¢ - 20, - 2¢,)
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in Region 4
V=U-a(20 - ¢1)
and it is noted that only Region 1 is feasible. In Fig. 1 the minimum is
nonfeasible. We note also that nonfeasible starting points are permitted
although, as seen from Fig. 2, convergence to the desired minimum may not
be guaranteed.

3.2 The Beale Problem (Refs. 16 and 17)

Here,
U = 9-80,-66.-40,+4262+262+62+420. 6. +26. ¢
| 176057 4034201420,405420, 4,420, 64

subject to

w
o

[\
o

550 -9, - 265

The solution is

(=1 RN}

=1 =4 n -4
U“"g_) ¢1"3: ¢2‘ ) ¢3‘§'

The SUMT method of Fiacco and McCormick (Refs. 2 and 3) was
‘used to solve the problem by defining

- o
B(g,r) = U(Q) +T izl E;TE) _ (35)



11.
and minimizing B with respect to 3 for a strictly décreasing sequence of
r values. In Table 1, the same sequen;e as used by Kowalik, Osborne and
Ryan (Ref. 17) was chosen. Table 2 shows results from a different starting
point. From the nonfeasible point ¢1 = ¢2 = ¢3 = 1, using the same a,8
and p as in Tables 1 and 2, our method reached ¢1 = 1.333330, ¢2 = 0.7777813,

¢3 =+4444436, U = 0.1111117 in 42 function evaluations. .

3.3 The Rosen-Sn;uki Problem (Refs. 16 and 17)

In this case,

U= ¢f . ¢§ . 2¢§ . ¢§ - 50, - 50, - 214 + 74,

subject to

2 2 2 2
- ¢1- ¢2 = ¢3 - ¢4 - ¢1 + ¢2 f ¢3 + ¢4 + 820

2 2 2 2
- ¢1 - 2¢2 - ¢3 - 2¢4 + ¢1 + ¢4 + 19.3 0
2 2 2 .
- 2¢1 - 95 - 93 - 2¢1 + 6, + 0, +520
The solution is
U='44, ¢1'=0:¢2=1’ ¢3=2: ¢4="1

Table 3 shows the pefformance of our method for a number of

different values of o and 8. These parameters were increased by factors of
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10 as necesSary to obtain the desired solution. These results may be
compared with the SUMT method from the same starting point, again
generating the same sequence as used in Ref. 17. The value U = - 43.999

was obtained in 145 function evaluations. Using r=10-9 the value

U= - 42,173 was obtained in 520 functién evaluations, during which

the Fletcher method had to be restarted three times.

3.4 Quadratjc Function With Equaligy Constraints
This problem, which has been used by Fletcher (Ref. 6), has
_ .2, .2

U=19) +4

subject to
¢1 + 2¢2 -1=0
The solution is
u=20.5, ¢1 = 0.5, ¢2 = 0.25
It can be shown that the threshold value of a is 1. Fig. 5 depicts
contours of
V= max[U, U+(¢1+2¢2'1) > U - (¢1+2¢2'1)]

with respect to ¢1‘and 9y

Using a =10, 8 =0, and p = 105 and starting from ¢1 = ¢2 =1,



13.

the result U = 0.4999999, %, = 0.5000004, ¢, = 0.2499998 was obtained in
37 function evaluations. For the SUMT method Qe used

1 2
U(¢) + = (4,+2¢,-1)
~ /e 1 2
beginning with r = 1073 and reducing r by factors of 10 down to 10710,
The result U = 0.4999950, ¢1 = 0.4999975, ¢2 = 0,2499987 was obtained in

10

65 function evaluations. Starting with r=10 ", only four function evaluations

yielded this solution.

4. Conclusions

As our numerical results indiéate, thé method of nonlinear
programmning ge have adopted is very promising. Crucial to efficiency
is the method used to eff@ctively minimize the unconstrained minimax
ﬁbjective_fuqctiOn which we create and to rapidly @etermine sufficiently
large a; so that ;he desired feasible solution can be at;ained. Arbitrarily
large values of a; chosén initially may result.in loss of efficiency due to
poor'scaling> Our use of Fletcher's minimization algorithm in conjunction
with a value of p as high as 105 undoubtedly is a further obstacle to
bet;er results.. Our experience on approximation problems indicates that

values of p of about 1000 yield highly acceptable results in a reasonable



14,

computing time. Our method does not depend so much on least pth approximation

but strictly on available algorithmsAfor solving nonlinear minimax approximati

problems.
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Table 1. Comparison on Beale problem for starting point ¢1=¢2=¢3=0.5.

Methods Fiacco-McCormick - Bandler-Charalambous
¢1 _ 1.33336 ‘1.333333
¢2 0.77776 0.777777
¢3 0.44441 ' I 0.444444
§] 0.11113 0.11111
Function : :
Evaluations 127 . ' 48
Parameter ' . rl =1 a=1
Values . | ‘ " r=10-9 8 =0
Tio = 10 p= 105




Table 2. Comparison on Beale problem for starting point ¢1=¢2=¢3=0.1

Methods Fiacco-McCormick Bandler-Charalambous
¢1 1.333336 1.333337
¢2 0.7777763 0.7777868
¢3 0.4444407 0.4444375
U 0.1111126 ' 0.1111115

Function o

Evaluations 129 _ - 45

Parameter -3

Values r, =10 : a=1

=0
_ -11
r9 = 10 p = 105




Table 3. Results for Rosen-Suzuki Problem starting at ¢,=¢,=¢.=¢,=0

using p=105
Parameter Values Function Pbjective
1om Function
Imitial Final Evaluations
Value
o=l a=10 137 -43.9997
=100 =100 '
a=10 a=10 78 -43.9958
8=100 g=100
a=10 a=10 - 57 -43.9951
8=1000 B=1000
=] o=10 95 -43.9950
8=1000 8=1000
a=100 a=100 520 -43.9988
=1000

8=1000




Figure Captions

Fig. 1.
Fig. 2.
Fig. 3;
Fig. 4.

Fig. 5.

Contours

Contours

Contours

Contours

Contours

for Post Office Parcel Problem when a=200.
for Post Office Parcel Problem when a=245,
for Post Office Parcel Problem when a=300,
for Post Office Parcel Problem when a=106.

for Quadratic Function when a=1.
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