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Abstract

This paper deals with the problem of fault location in analog
circuits. The circuit under test is decomposed into subnetworks using
the measurement nodes. We localize the faults to within the smallest
possible subnetworks according to the final decomposition. Then,
further identification of the faulty elements inside the subnetworks is
carried out. The method is applicable to large networks, linear or
nonlinear. It requires a limited number of measurement nodes and its
on-line computation requirements are minimal. The method is based on
checking the consistency of KCL in the decomposed circuit. A measure of
the effect of tolerances on the elements is introduced, and a number of
examples are considered to illustrate the application of the method in

both the linear and the nonlinear cases.
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I. INTRODUCTION

This paper addresses itself to the problem of fault location in
analog circuits. There are two main approaches to the problem [1]. The
simulation-after-test approach [2-11] and the simulation-before-test
approach [12,13].

The simulation-before-test requires the simulation of different
possible faults and storage of the results as a dictionary. The faulty
subnetwork responses are compared with the dictionary entries and the
closest entry to the responses by a certain measure determines the
possible fault. The method is usually suitable for single catastrophic
fault 1location. For multiple soft fault situations the size of the
directory becomes very large and the method is impractical. In the
simulation-after-test approach, using the faulty network responses,
either all network elements are identified (parameter identification)
[3], or a search for the faulty set (assumed of small cardinality) is
conducted to locate the faulty elements [2,4]. In both cases there is a
compromise between the computational effort and the number of accessible
nodes.

Recently [2], there has been a real attempt at reducing the number
of accessible nodes while keeping the computations within an acceptable
limit. For the multiple fault situation, Wu et al. [2] proposed an
algorithm which is based on a heuristic that the effect of two analog
faults will not cancel each other. They also assumed a maximum bound on
the number of possible faults in the circuit.

Here, we present a new simulation-after-test method for fault

location with the aim of keeping both the computations and measurements



to acceptable bounds. A nodal decomposition [14] of the network into
smaller uncoupled subnetworks is carried out. The measurement nodes
must include the nodes of decomposition. The voltage measurements are
employed to isolate the faulty subnetworks. Utilizing the incidence
relations between subnetworks and KCL we develop necessary and almost
sufficient conditions for a subnetwork or a group of subnetworks to be
fault free. Logical analysis of the results of these tests is carried
out to identify faulty subnetworks.

In analog circuits the good network elements are usually not at
their nominal values, but are randomly distributed within specified
tolerance intervals. A probabilistic approach is used to check whether
the testing conditions can be satisfied under these random changes.

Further analysis can be carried out to find the faulty elements or
regions within each faulty subnetwork. This is the second part of our
method. Depending on the size of the subnetwork either fault
verification is carried out immediately or the testing conditions are
applied to find smaller faulty regions inside the faulty subnetwork,
then fault verification [4] is carried out in this region if possible.

The paper is organized as follows. In Section II we discuss the
application of the network decomposition concept and logical analysis to
locate faulty subnetworks. The testing conditions for verifying fault-
free subnetworks are presented in Section III. The consideration of
tolerances on the results is discussed in Section IV. Techniques for
locating faults inside faulty subnetworks are presented in Section V.
The method is applied to linear and dc nonlinear cases in Sections VI

and VII, respectively.



II. NETWORK DECOMPOSITION AND LOGICAL ANALYSIS

The topology of the network under test is known. In the pre-test

stage we perform a nodal decomposition of the network. This results in

subnetworks connected by the nodes of decomposition. There should be no

mutual coupling between any two subnetworks and the nodes of
decomposition should be chosen from the set where vo;tage measurements
can be performed. The decomposition is either performed by inspection
(for networks of relatively small size) or a special algorithm is used
for that purpose, e.g., the heuristic algorithm proposed by Sangiovanni-
Vincentelli et al. [15].

Fig. 1 illustrates the situation. Subnetworks Si and Sj are linked
at nodes of decomposition Ci" In actual testing we excite the network,

J

usually with current source, and perform voltage measurements at Cij'

Tests are applied to identify the nonfaulty subnetworks. The

outcome of a test is classified simply as pass or fail. The test passes

if and only if all subnetworks involved in the test are fault-free. The
test fails if and only if at least one of those subnetworks is faulty.
A subnetwork is faulty if it contains one or more faulty elements. A
test that is applied to check whether subnetwork Si is fault-free or not

is described as a self-testing condition (STC). A test that is applied

to check whether a group of k subnetworks S. S ooy O, are fault-

Ji Iy

free or not is called a mutual-testing condition (MTC). In practice, we

utilize the measurements together with the incidence relation between
subnetworks to expedite these tests.

We follow a hierarchical decomposition approach [16]. This 1is

illustrated in Fig. 2 and is represented by the so-called tree of



decomposition. Vertices of this tree are assigned to subnetworks.

Various levels of decomposition can be considered. The procedure can be
continued until further division of subnetworks through the measurement
nodes 1is impossible. The subnetworks at the final level are called
blocks.

We begin by considering suitable STC and MTC situations for the
subnetworks at the first level of decomposition. (We assume that a
STC applied to S1 has confirmed a fault). If a subnetwork is declared
nonfaulty no further partitioning of it need be carried out. Faulty
subnetworks and those which we are not sure about are decomposed
further, if possible.

The results of different tests are analyzed to identify the faulty
and nonfaulty subnetworks. Logical functions are utilized for this

purpose. Every subnetwork has associated with it a logical variable ¢,

which takes the value 1 if the subnetwork is good and 0 if it is faulty.

Every test is associated with a logical test function (LTF) which is

equal to the complete product of variables °j if the test is a pass

o,.,no.n ...no, , (1

where
I8 5., ; i1 (2)
t 10 Jdor eeee it o
ji refers to subnetwork Sj , k is the number of subnetworks involved in
i

the test, or the complete union of complemented variables Ej

TJ . UG, U ... UG, (3)

if the test is a fail.

A logical diagnostic function (LDF) is given by




g , 2

(n T, )n (n T; ), (4)
t=1 t t=g+1 t

where the first g LTFs correspond to successful tests and £ is the total
number of tests. In the LDF, the subnetworks which are represented by
;i are faulty and those which are represented by o; are nonfaulty. If a
subnetwork is not represented in the LDF we assume nothing about its
status: more tests are necessary. We usually construct the LDF in a
sequential manner by combining the results of the current test to
previous tests. This'usually reduces the number of tests needed since

some of the tests could be redundant.

Example 1: illustration of logical analysis

In the decomposed network S1 of Fig. 3 1let S3 and S5 be faulty
blocks in an otherwise fault-free network. There is no subnetwork for
which we can check the STC. We will apply MTCs to evaluate T35, T23,

T2u6 and T456' Only the test for Tzue is a pass so we have

T236°

D5 (03 u 05) n (02 u 03) n (02 u 03 u 06) n

(02 n o, n 06) n (3u u 55 u 56) =

from which it is evident that 53 and 55 are the only faulty subnetworks.

III. APPLICATION OF TESTING CONDITIONS TO SUBNETWORKS

In this section we give necessary and almost sufficient conditions
for a subnetwork or group of subnetworks to be fault-free. The
conditions are based on invoking KCL and topological relations.

For analog circuits the effect of two independent faults is highly

unlikely to cancel at the measurement nodes. We adopt this reasonable



heuristic [2].

The input-output relation for a subnetwork Si' that is connected to
the rest of the network by mi+1 external nodes, as shown in Fig. U4, with
one of the nodes taken as the reference, is given by

Mi Mi Mi ’
L =n (), g, (5)

~

where gi is the vector of the subnetwork parameters and the cardinality
M, M. M,
of i Y, h ' and v Yty is m.. We assume that the subnetwork S, is

connected, i.e., there exists a path between any two nodes of subnetwork
Si and the mi+1 external nodes do not decompose the subnetwork further,
i.e., we cannot partition Si into smaller uncoupled subnetworks using
only the set of m,+1 external nodes. Let

i

Mi = Mia u MiB u MiY , (6)

where Mia is the set of nodes where both voltages and currents are

known, MiB is the set of nodes where only voltages are known, MiY is the

set of nodes where neither currents nor voltages are known and Mi is the

set of the m, nodes. Accordingly, we can rewrite (5) as

M. M. M. M. M.
L% =0 Ty ),y B,y e, g0 (7a)
M. M. M. M, M,
e O I A COME AR (O N AL CONE IO (7b)
M. M. M. M. M

L s M, 1 P, M, g (Te)

If the cardinality of the set Mi is greater than the cardinality

a

of the set MiY’ i.e., m, > m, a necessary condition for the

ia iy’

subnetwork Si to be fault-free is that



Mia Mia Mia M
f]:.' (t) = h (v (

~ ~

Mis iy 0
), v "T(v), ¥ (Y), Qi). (8)

is a consistent system of overdetermined equations at any instant of
time, where gg is the vector of nominal parameter values of the

subnetwork. We refer to this condition as the internal-self-testing

condition (ISTC). We utilize this condition in locating faulty regions

inside faulty subnetworks.
When all the voltages of Mi are known and mia is greater than or
equal to one, we can state the following stronger result.

Lemma 1: self-testing condition (STC)

A necessary and almost sufficient condition for a connected

subnetwork Si with mi+1 external nodes that do not decompose it further,

m, 2 1 and m,_ = 0 to be fault-free is that
ia iy
Mia Mio M5 0
i (¢) - h (v (¢, gi) =0 ¥t . (9)

The necessity of (9) is obvious. For the sufficiency part of Lemma
1 the adjoint network concept [17] can be utilized to prove that any

change in the subnetwork should be observable at the Mi nodes, thus
M, M,
changing 1. If no change has occurred in i 1
M.
using the given y Y and the nominal parameters of the subnetwork, this

from that computed

implies that the subnetwork is fault-free. It is sufficient to check
Lemma 1 using only one external current to the subnetwork.

Normally, the voltages of the mi nodes are directly measured. The
currents LMia are not directly measured since it is difficult to do so
practically except when they represent the input excitation to the whole

network. The application of KCL and topological relations overcomes

this difficulty. The currents are not measured: they are computed using



the nominal parameter values together with the measured voltages, then
KCL is invoked.

Let us assume we have a set of k subnetworks Si, ie Jt which are
incident on common node ¢ as shown in Fig. 5. Each subnetwork is
assumed to be connected and has mi+1 external nodes that do not
decompose the subnetwork further. The input-output relation for every
subnetwork is similar to that given in (5). The voltages of the m,
external nodes are assumed to be measured. The current incident to the
common node c¢ from subnetwork Si is given by
i::i(t) - h:i (y,Mi(t), o) . (10)

Lemma 2: mutual-testing condition (MTC)

A necessary and almost sufficient condition for Si’ ie Jt to be
fault-free is that -
M. M.
I onl(y i), o) =0 ¥t (11)
c i
ieJt

i.e., the currents incident to the common node ¢ computed using the
measured voltages and nominal parameter values should satisfy KCL.

The necessity is obvious. The sufficiency follows from the heur-
istic that no two faults will cancel each other at the measurement
nodes. Since ¢ is one of the measurement nodes, the satisfaction of
(11) and from Lemma 1 each term in the summation of (11) represents a
nonfaulty subnetwork and thus implies that all subnetworks are
fault-free.

When the previous test is applied to two subnetworks which are

incident at a common node ¢ we refer to it as the bi-testing condition

(BTC).



10

Lemma 3: generalized-mutual-testing condition (GMTC)

Let Ei’ i e Jt denote some external nodes of the subnetwork Si'

Each subnetwork Si is connected and has mi+1 nodes that do not decompose

it further, Ei E-Mi' If the currents incident to Ei' ie Jt' form a cut

set, then a necessary and almost sufficient condition for these
subnetworks to be fault-free is that

Mi M.
pX z hj (v "(t), ¢:) =0 ¥t. (12)
ith jeEi

Example 2: illustration of Lemma 3

Consider the two subnetworks Sa and Sb that are incident with the
subnetwork Sc. which is faulty, as shown in Fig. 6. The BTC fails for

S, u S, and S, _u Sc‘ But the output branches that connect S_ and S

with Sc form a cut set. So, according to the GMTC Sa and Sb are fault
free if and only if the computed currents using the measured external
voltages and nominal design values of Sa and Sb’ through the cut set

considered will sum to zero, i.e.,

b iP-o . (13)

IV. TOLERANCE CONSIDERATIONS

The actual values of nonfaulty elements can deviate from their
nominal values within prescribed tolerance bounds. Thus, in practice,
we face the situation that Lemmas 1-3 are not satisfied to the required
degree of accuracy. Taking the tolerance changes in the subnetwork

elements into consideration we may write condition (9) as



1

M M. M

i ia(t) -n 1a(x 1

t),g‘i’»f%i):g. (14)

where Agig [A¢i1 Ad .o A¢ip]T defines the tolerance changes in the p

i2
elements of the subnetwork under consideration. For small tolerances
the first-order approximation can be utilized to describe the changes in

the network response. Accordingly, we may write (14) as

M
M. M. M p dhia
L% - TNy ), 4 = T o Ae (15)
~ ~ ~ o ¢. . lJ
j=1 ij
Let
M . M. M.
. ia A, ia ia i 0y _
AL T(t) =4 TT(t) - h (v “(v), gi) = gi Agi . (16)
where
M, M. M.
5h 1@ 5 1o sh 1@
B, 2 [ TypmironeiR R ra I a7
i1 i2 ip

At a certain instant to of time equation (16) is an underdetermined
system of 1linear equations in the variable Agi. The weighted
least-squares solution of (16) is given by [9,10]

M

+ ,. ia
Ag, =B AL TT(E) , (18)
where
+ A T T,=-1
BT =GBy (36,8 (19)

and Ei is a weighting matrix. For Agi normally distributed with mean Q
and covariance matrix g;1, the solution given in (18) is the conditional

expected value of the parameters A¢; [91, i.e.,

M,
Ag: = E [ag;t a1 %t)] (20)
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where E denotes the expectation. Moreover, the solution is a minimum in
the weighted least-squares sense. So Agi is the solution of

Minimize Ayl CT' A 21)

subject to

Mia
(

Using the probabilistic interpretation of the result, namely (20),
we can have a measure of how far (9) is satisfied under the variations
caused by the tolerances. If any component of the computed vector Agi
from (18) significantly exceeds its tolerance value we consider that the
test is unsuccessful. The consideration of the matrix gi in (19)
provides the possibility of considering the known correlation between
the elements of the subnetworks.,

The effect of tolerances on conditions (11) and (12) is treated in

a similar way.
V. FAULT LOCATION INSIDE FAULTY SUBNETWORKS

Further diagnosis is usually necessary to identify faulty
element(s) or at least the faulty region inside a faulty subnetwork.
Our approach to this problem depends on the structure and size of the
subnetwork. For small subnetworks with few elements a search for the
faulty element inside the subnetwork (fault verification) is feasible,
since the number of different combinations to be considered is very few.
For relatively larger subnetworks we first apply the ISTC to find a

smaller region inside the subnetwork that contains the faulty elements.
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Then, we apply the fault verification technique on this faulty region if
possible.

Fault Verification based on Nominal Models

For a faulty subnetwork Si it is required to verify the existence
of f faults inside the subnetwork. These f faults may have been
predicted using an approximate fault location method as reported in
[6,7] or we may try all possible combinations of f faulty elements [4].
The latter strategy is feasible for subnetworks with few elements.
Necessary and sufficient conditions for fault verification in linear and
nonlinear networks have been developed in [2,4,5,8,18].

For a faulty subnetwork Si with miY = 0 and with m > 0, we may
write (5) as

M M, M F

10 =0 Ty T, gl agD) (23)

where Agg represents the unknown changes from nominal for f faulty
elements of the subnetwork. For mia > f+1 a necessary condition for f
elements to be the correctly chosen faulty elements is that the over-
determined system of equations (23) is consistent. It is to be noted
that the condition that m; > f+1 is needed when testing linear networks
using a single excitation and considering (23) at an instant of time
to.

For frequency dependent linear networks as well as for nonlinear
networks mia may be less than f since, by changing the input excitation
(level, frequency, position, ...) further information is revealed about

the subnetwork. Following [8] and considering (23) at instant t, with

s > f+1 the solution of (23) is locally unique in Agg if
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M, M, M, M
3h ia 3n ia 3n ia

311 %55 3sr

M. M. M.
5h ia 5h ia 3h ia 5h ia

~

351 355 03¢ 09

Rank [ ] < Rank [

ix
¥ X e A-F, t = to, (2u)

where A is the set of all subnetwork elements ¢i1’¢i2’ N ¢ip’ and F
is the set of assumed faulty elements ¢i1’ ¢12. oo ¢if‘ For 1linear
networks this condition evolves into a global sufficient condition with
a graph theoretical interpretation [5].

Fault Verification based on Fault Models

Practically, in any subnetwork there are some elements that are
fault prone. Fault models of these elements are usually known and in
the directory approach they are used to construct the dictionary. We
exploit this to our advantage by computing using the measured voltages
and the fault models

Mg Mia M ¥
L% = gty oh L a2k, (25)

J

F,
where QiJ refers to the subnetwork parameters that model the jth faulty

case and k different faulty cases are considered. Utilizing the nearest

neighbour rule [13], the exact faulty case is the one that has the
M

minimum distance dj from the actual i 10‘(t). where
R te M, M,
d; £/ g %ty -1 THEYIN dt,  §=1,2,....k . (26)
0 J

Alternatively, we consider dj at just a single instant to as

Mia Mia
dj = | LFj (to) -1 (to)u. 27

e.g., in dc testing.
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Internal-Self-Testing

The application of the ISTC starts by partitioning the faulty
subnetwork Si into two smaller subnetworks Sj’ Sk such that Si = Sj u

S as shown in Fig. 7. See also [5]. For at 1least one of these

k'

subnetworks and preferably for both of them, m o > mzY, where 2 = j or

L
k, as appropriate. Utilizing condition (8) we can identify whether Sj
or Sk are fault-free or not. We continue the binary partitioning
process in the identified faulty region until we cannot find a partition
that satisfies the cardinality condition, namely P > mzY. At this
stage we apply the verification technique to identify the faulty

elements inside a faulty region that in many cases is much smaller than

the subnetwork Si'

VI. FAULT LOCATION IN LINEAR NETWORKS

For 1linear networks, the matrix description of the subnetworks
greatly simplifies the needed computational effort for checking the
testing conditions. Without 1loss of generality we assume sinusoidal
excitations are applied. Whence, we represent the voltages and currents

by their phasor variables.

General Description

Consider a subnetwork Si which has mi+1 external nodes, one of

which is the reference node, and n; internal nodes. The nodal equations

are given by
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— "1 - Mi"] r~ Mi Mi'ﬂ
ZMiMi zMiNi ~ ':E + :'Eg
= , (28)
Nl Nl
Y Y v I
_ NiMl ~NiNi_J .~ J L g -
where
Mi
. I
i Al~g
Ig =l N ’ (29)
I l
~g
Mi
defines the current sources associated with the subnetwork, X is the
N.
voltage vector of the external nodes, V *is the voltage vector of the

M.
internal nodes and I t is the current input vector to the subnetwork

from outside through my external nodes. Eliminating the ny internal

nodes we get

o M -1 N -1 _
o=y -y Iyw, i P My, ~ oy, Tow tamd X
11 11 1 11 11 11
(30)
or more compactly
M i My
I = ﬂM. Eg + IM. v ’ (31
1 1
where
A -1
By =-l1 - XYy y Iyw ! (32)
1 11 11
A - -1
ZM. = Ly, ZM.N. ZN.N. XN.M.] (33)
1 11 11 11 11

and 1 is a unit matrix of order m .
Equation (31) describes the input-output relation of the
subnetwork. This relation is the one we are interested in to verify

Lemmas 1-=3.

Since the hierarchical decomposition is obtained prior to actual
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testing, it is fixed at the time of testing and the characteristics of

the subnetworks, namely, XM, and EM, Lé are computed off-line using
nominal values and stored beézre con;hcting the actual testing. At the
time of testing, the only on-line computation required is the matrix by
vector multiplication, namely XM- XMi. Let E define the set of
faulty subnetworks or the ones w;ich we are uncertain about. The

procedure in carrying out the tests can be summarized as follows.

Procedure for Locating Faulty Subnetworks

Step 0 j = 0.
Ej = {S,}. (3, is the network under test.)

Step 1 Partition, using the least number of test nodes every Si € Ej’
if possible, into smaller uncoupled subnetworks to constitute
Ej+1‘ Otherwise go to 8.

Comment Only decomposed parts of every Si € Ei Will be contained in Ej+1
or Si itself if it is not decomposable.

Step 2 For every Si € Ej+1' find the sets Mia and MiB'

Step 3 Check the testing conditions of Lemmas 1-3.

Step 4 Identify faulty subnetworks using a logical analysis of the
tests.

Step 5 Utilize the nonfaulty subnetworks to determine the external
currents of the faulty subnetworks.

Step 6 Update the set Ej+1 by removing nonfaulty subnetworks.

Step 7 j = j+1. Go to 1.

Step 8 Print out the components of set E = Ej.

Computational Effort

The number of nodes where measurements are performed and the

computational effort depend on the size of the blocks and the number of
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levels of decomposition. If we assume that we have L levels of
decomposition and the resulting hierarchical decomposition is binary and
symmetric, the number of subnetworks (blocks) at the final 1level of
decomposition will be equal to 2L. If each block has n nodes and b is
the number of interconnection nodes between any two blocks, then the
total number of network nodes is approximately given by

Ny S 2" (n=b) + b . (34)

Assume that all the interconnection nodes are measurement nodes. Then
their number Nm can be estimated from
No<2' b . | (35)
Accordingly, a measure of the needed degree of accessibility is
given by the ratio

Nm b
c—— .<_ __:b_ .
T n

(36)

r =

For a smaller r, n should be much greater than b. On the other hand, we
wish to have n as small as possible to obtain better diagnosis and
decreased computational effort. There is clearly a compromise between
the degree of accessibility and the size of the block.

If the faulty elements are in one block, following the hierarchical
decomposition strategy and assuming binary partition, we check the
testing conditions for just two subnetworks at each level. The total
number of subnetworks to be considered is consequently 2L. In a number
of steps proportional to log NT Wwe 1isolate the faulty subnetwork.
Obviously, we do not need to measure all the voltages of the test nodes.
Less than bL measurements are actually required.

Location of Faulty Elements

Representing the change from nominal in a faulty element by a
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current source across that element, we may write (31) as

M. M,

i i i F
I = I° + XMi v + ﬂMiF I, (37

H
~Mi g

where ;F represents the faulty current sources and gM F is computed
i
using the nominal parameter values of the subnetwork and defines the
M.
transfer relation between I ' and ;F. It is normally computed using the

adjoint network concept as in [6]. Considering (37) for the m known

currents we have

- la
By p 2 =1 7 -Hy Lo-Y% Y . (38)

where only rows Mia are considered in the matrices EMiaF’ EMia and
XM. . If m; ., is greater than or equal f+1, then the system of equations
islzn overdetermined system of equations. A necessary condition for F
to contain the faulty set is that (38) is a consistent system of
equations. The set F is unique if [5]

Rank [H, p Hy ,]=7f+1 ¥ x€ F, (39)
la la

where EM, % represents a transfer vector from a current source across an
element ;ain the subnetwork to the measurement nodes Mia’ and (39) is
considered for all elements x in the subnetwork other than the elements
in the faulty set F.

Internal-self-testing and fault verification in the faulty subnet-
works can be applied as discussed in Section V using (38). All matrices
used in (38) are computed using nominal element values and can be stored

before performing the test. The computational effort will be only that

of verifying the consistency of (38), which/is usually performed using
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elementary operations on the matrix EM g as in [51.
i
Example 3: linear network example

The network under test is composed of two identical low-pass filter
sections in cascade. The low-pass filter section is shown in Fig. 8 and
its nominal elements values are given in Table I [19]. The operational
amplifier is modeled by a controlled source and output resistance, as
shown in Fig. 9. The network has 52 resistors and capacitors and 16
operational amplifiers. In the first section, nodes 1,3,5,6,8,10,12,14,
15,17 and 19 are taken to be the measurement nodes. The corresponding
nodes in the second section are chosen as measurement nodes. We
Simulated the network with a sinusoidal current source ig(t) = 0.01 cos
2000t A. A number of faulty elements were randomly chosen in the first
section and they are identified by an asterisk in Table 1I. The
procedure follows.

Stage 0 E; = {31}. (8, is the network under test).
Stage 1 S1 is decomposed as shown in Fig. 10 into 32 and 83.

E1 = {52, 53}.

My = (1}, My = {19}

2a
M3a = {37} , M3B = {19}

From the results of Table II, 32 is faulty and S3 is
non-faulty.
E1={32}.

Stage 2 52 is decomposed as shown in Fig. 10 into Su and SS’

E {Su’ s }.

2 = 5
Mua = {1} , M

yg = 110}

MSa = {19} , MSB = {10}

From the results of Table III, Su and S5 are both faulty.



Stage 3

Stage 4

21

E,={S,Sg}.
34 and S5 are decomposed as shown in Fig. 10. S,4 is decomposed
into S6. S7 and 88. S5 is decomposed into 59, 810 and 811.

E3 = {56, S7, 38, Sg, S10, 511}.

Mg, = 18}, Mg = {1, 3, 6}
Mo, = {2} . M7B = {3, 6}

Mg, = 10} » Mgg = {1, 3, 6, 10}
Mgy = {0} v Mgg = 110, 12, 15}
Miga = 181 Mg = {12, 15}
My = (19} 4 My = {10, 12, 15}

From the results of Table IV, subnetwork 511 is faulty and
further tests are needed for all other subnetworks.

E3 = {56, S7, 38, Sg, S

Subnetworks S7, 38’ S10 and S11 are decomposed into 512, 813,

S,,1.

10" "1

S S and S

140 Sq50 Sq160 Sqp0 Sqgr Sqg0 Sy 21

No further decomposition of 36 and 39 is possible using only

as shown in Fig. 10.

the measurement nodes.

S S

Eu = {360 S }

12* Sq130 Sqy» Sqgr Sqgr Sgr Sqg0 Sqgr Sqge
@, Mg = (1,36

20" 21

Mine = (83 0 Mip = 13,5)

M13a = {ﬂ} ’ M138 = {5a6}

My = 80 My, = (3,8)
M15a = {g} s M158 = {1,8}
Mgy = (8} . Mg, = 16,8,10)
Mg =0}, Mg = {10,12,15)
M17a = {2} , M17B = {12, 14}
M18a = {0} ’ M183 = {14,15}



22

M19a = {g} ’ M193 = {10,17}
MZOQ = {g} ’ MZOB = {12917}

From the results of Table V subnetworks S6’ 517 and 820 are faulty and
all other subnetworks are nonfaulty.
E

{86, S S

y = 17° 20}"

No further decomposition is possible for subnetworks 56’ and 3

Sq7 20
using the measurement nodes. So we have E = E, = {86’517'320}’

For subnetwork S6' me., = 3 and we are able to verify the existence
of at most double faults. For subnetwork 317, M7y = 2 and we are able
to verify the existence of a single fault, and for subnetwork 520, Ms00
= 1 and, since it contains single element, we can immediately find its
value. The fault verification procedure identified R1, C2 in subnetwork
S6 as faulty elements and R23 in 817 as faulty. Using the computational
procedure outlined in [6] we computed the changes in these parameters
and they are given by IAR1| = 0.082, IAC21 = 0.01, IAR234 = 4.0 and
IAstl = 400.0, which are the exact changes.

It is to be noted that in four steps (levels of decomposition) we
were able to identify the faults to within very small subnetworks. Also
since S3 is fault-free after Stage 1, no further decomposition is

carried out and, accordingly, we do not need to measure the accessible

nodes inside S3.
VII. TESTING OF NONLINEAR NETWORKS

In typical nonlinear networks, the network is dominantly 1linear

with a few nonlinear elements. The nodes of decomposition are chosen
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such that the part of the network that contains the nonlinear elements
is decomposed into subnetworks, each of them having very few nonlinear
elements or being completely linear. The part of the network that
contains only linear elements is treated exactly as in the linear case.
We decompose the network into blocks that contain the nonlinear elements
and a number of subnetworks that contain only linear elements. The
latter could be decomposed further. In applying Lemmas 1-3 for
nonlinear networks we need a nonlinear network solver. Intuitively, by
having very few nonlinear elements in each subnetwork the nonlinear
network solver converges rapidly in just one or two iterations starting
from the nonfaulty state. Also, analyzing several subnetworks
simultaneously 1is possible wutilizing the parallel processing
capabilities of modern ATE.

For locating faulty elements within faulty blocks that contain
nonlinear elements we adopt the fault model approach of fault
verification. We analyze the faulty block using assumed fault models of
its elements, then we compare the different cases using the nearest
neighbour rule, as outlined in Section V.

Example 4: nonlinear network example

We considered the video amplifier éircuit [ 20] shown in Fig. 11.
The nodes of decomposition are chosen as nodes 1,2,5,7 and 10. The
circuit is decomposed into eight uncoupled subnetworks as shown in Fig.
12 and in abstract form in Fig. 13. Every subnetwork contains at most
one nonlinear element (transistor), which agrees with our requirements
on the decomposition.

We considered dc testing of the circuit. All capacitors are there-

fore open circuits. To investigate faulty capacitors ac testing is
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needed. The nominal values of circuit elements are given in Table VI.
We have considered the well known Ebers-Moll model of the transistor as
shown in Fig. 14. The nominal operating conditions for the circuit are
given in Table VII, All transistors are operating in their active
regions.

Different faulty situations have been simulated. The results for
four different cases with the nonfaulty parameters assumed at nominal
values are summarized in Tables VIII-XI. In Case 1 (Table VIII), we
considered Q1 faulty, namely its collector-base junction is almost
shorted. In Case 2 (Table IX), the base-emitter junction of Q3 is
shorted, and in Case 3 (Table X), the resistor R10 is increased to 7.8
k2, In Case 4 (Table XI), transistor Q, has a shorted base emitter
junction. We considered also Case 2 when all resistors are allowed to
change with + 10% of their nominal v;lues and the transistor gain, B =
(ay/1-2y), 1is allowed to change + 10% of its nominal values or
equivalently oy to change within + 0.1% of its nominal value. The
predicted changes in the subnetworks using equation (18) for the
different tests is summarized in Table XII (Case 5). It is clear that
the diagnosis of the different tests will be exactly as in the
non-tolerance case (Case 2). The matrix C; in (18) has been taken to be

2 02 O2

. 0
g’i = dlag {¢i1, ¢i29 °cs oy (bip} ]

where p is the number of elements in the subnetworks considered in the
test that are subjected to tolerance changes.

In all the cases considered we were quite successful in identifying
the faulty subnetworks. 1In Case 3 further diagnosis may be needed after

repairing the faulty element R10 since, due to abnormal operating
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conditions subnetworks Su, 58 and 59 are short circuited, and any fault
in them will not show up until R10 is repaired. Also, knowing that S7

is faulty we compute

T _ 3 5 6 _
I1 = - I1 - I1 - I1 = 2.8379 mA
and
V,- V
1 ce
R10 = I7 = 7.8 k@ ,

which is the exact fault value.

VIII. CONCLUSIONS

We have described a novel and unified method for fault location in
analog circuits. The method has the following characteristics:
(1) Due to the decomposition of the whole network into smaller
uncoupled subnetworks, the method is directly applicable to large
networks.
(2) The testing conditions are a result of network topology and KCL:
they do not depend on network type, so the method is applicable to both
linear and nonlinear networks. Also, depending on the type of circuits
the network could be tested using different types of excitations.
(3) The measurement nodes are chosen as the nodes of decomposition.
Their number can consequently be limited for practical implementation.
(4) For 1linear networks the on-line computational requirements are
minimal (matrix by vector multiplications) and the off-line computation
involves the analysis of the nominal network only. For nonlinear
networks the on-line computation is reduced by performing the

computation in a parallel processing mode.
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(5) The decomposition of the network into subnetworks allowed us to
deal with the tolerance problem at the subnetwork level, thus we have
localized its effects.
(6) The method is initially modular, where nominal circuit models are
used for the subnetworks. Subsequently, it is element oriented at which
time faulty elements are located inside subnetworks. Typical faulty
models may be utilized at this stage.

A computer program realizing this method has been written and other

practical examples [12] were tested yielding very useful results.
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TABLE I

NOMINAL ELEMENT VALUES FOR THE LINEAR NETWORK EXAMPLE

Resistors (kQ) Capacitors (yF)

R: 0.182/0.1 C; 0.01/0.02
R3 1.57 C12 0.01
R5 2.64 C18 0.01
R6 10.00 C29 0.01
R7 10.00

R9 100.0

R10 11.1

R11 2.64

R14 5.41

R15 1.0

R17 1.0

R19 4,84

R21 2.32

R22 10.0

R, 10.0/6.0

23

Ros 500.0/100. 0

R26 111.1

R27 1.14

R28 2.32

R31 T72.U4

R32 10.0

R3‘4 10.0

*
refers to a faulty element: its faulty value follows the slash.
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TABLE II

DIAGNOSIS FOR FIRST LEVEL OF DECOMPOSITION

Voltage Measurements Computed Currents Diagnosis Test
and Designed Currents

Measured voltages I? = 5.53-j0.0039 mA I1 - I? £ 0 T2
V, = 0.956+30.0044 V 12 = 7.05-31.52 A
1 19 I2 3
3 19 * 119 20 T23
- _i 3 . - -
V37 = 1.53=-j.421 Vv 137 =0 137 I37 =0 T3

Designed Currents

I1 = 10.0 mA

I37:0

logical diagnostic function: D3 = czn(c2 u 63) n 03 =0, n 03.

3

19 is known in Table III.

result: 83 is declared nonfaulty and I
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TABLE III

DIAGNOSIS FOR SECOND LEVEL OF DECOMPOSITION

Voltage Measurements Computed Currents Diagnosis Test
and Designed Currents
y -3 . -5 y
Measured Voltages I1 = 5.69x10 “=j1.05%x10 ~ A I1 - I1 £ 0 Tu
V., known Iu = -17.72+j1.61 A
1 10 y 5
5 3 y o To*T0%0 Tys
V10 = -4,39+3j0.386 V 110 = =3.91x10" ~+3.44x10" A
- : 5 _ 3 5
V19 = 1.67-3j0.265 V 119 = 0.67-0.81 A I19 + 119 £ 0 T5
Designed Currents
I1 = 10.0 mA
- 3
T19 = -9
logical diagnostic function D3 = cu n (04 u 05) n o = 0yn 65.

result: no new currents are designable.
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TABLE IV

DIAGNOSIS FOR THIRD LEVEL OF DECOMPOSITION

Voltage Measurements Computed Currents Diagnosis Test
and Designed Currents
6 . 6 .8
Measured Voltages I1 = 8.911+j0.0143 mA I1+I1 £ I1 T68
V., known 16 = 6657.25+j4.196 mA
1 3 19417418 £ 0 T
6 3*3™3 678
Vg = -0.142-31.33 V. I¢ = -9.271+30.823 mA
- . T _ . 6 -7 .8
7 .
V10 known I6 = 13.446-31.1625 mA 8 _9 11 ~
8 Ti0*T70%T10 = © Tg,9,11
V,, = 0.103+j.69 V I7 = 0.439-30.0301 mA v 7
V,_ = 8.93-31.12 V 18 = 0.0378-30.0167 mA 12,119,111 4o T
15 = ©+95=J1. 3 . . 1212712 9,10, 11
8 .
V19 known 16 = 3.9224+3j0.3436 mA 9 10 11
8 Ts*l15*t1s £ 0 Tg 40,11
Designed Currents 110 = 3.9039-j0.3389 mA e
Coan 9 _ . 11 3
I, = 10.0 mA 17, = -3.8546+j0.3389 mA Iig £ =I5, T,
13 9 .
Ig = -I;g 17, = -0.0005-30.0772 mA
135 = 3.8473-j0.4837 mA
11g = 0.0103+j0.0689 mA
112:-5uo.09-j2728.18 mA
I}g = -0.0499+30.0052 mA
11; = -0.0021+j0.0018 mA
I}; = 0.1083-30.0136 mA
1‘1; = 695.12-3593.77 mA

logical diagnostic function Dy = (36 u 38) n 511

although T8 9‘11 is almost 0 it contradicts T
L] 1]

the LDF, otherwise the LDF

result: no new currents are

= 0.

designable.

11°

hence we do not consider it in
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TABLE V

DIAGNOSIS FOR FOURTH LEVEL OF DECOMPOSITION

Voltage Measurements Computed Currents#* Diagnosis Test
and Designed Currents
Measured Voltages I12--0 0142-30.1328 mA I6+I15 £ 1 T
377" ¢ 171 1 6,15
V. known 1122-0.0435-30.5034 mA
1 5 6 .12 14
13 Ig*Ig+lz £ 0 T6,12,14
V3 known 5 =0.0435+3j0.5034 mA v
) . 13, . 12 13
V5-0.141+J1.33V 6 13.4462-31.1625 mA + I5 T12’13
V, known %1142 0378-50.0167 mA
6 3 8 13 .16
15 15 I6 I6 +I6 0 T6 13,16
V8=-.392+j.339V :—18 =0.4391-30.0301 mA R
16 14 _15 _16
V1O known 6 =-3.9224+30.3391 mA 18 I8 18 =0 T14,15,16
16
V12 known 8 =0.4768-30.0468 mA 9 16 .19
Tio*T10* 11070 T9,16,19
V1u=—.0615—j0.413v I10=3.9039—j0.3436 mA v
17_ : 9 117,720
V15 known 112-0.0082+JO.0552 mA I 12 I éO T9'17'20
V.. =1.08-30.136V I172205.185+31379.726 mA
17 17 18
13 TiytTyy 20 T17,18
V19 Kknown I,,=-0.0225-30.1787 mA ’
. 18 9 18 .21
Designed Currents --3 9556+30.4974 mA 115 115 115 =0 T9,18,21
I.=10.0 mA 119- 19_—0 0493+ 3j0.0047 mA
1 10 17 I19+IZO £O T
-3 20_ _20 . 1707ty 19,20,21
I19.—I19 I 5= I17--0.OO20+30.OO17 mA
21_ . 3
I75=0.1083-30.0137 mA I 9+I ¢=0 T,,

21

I17-

-0.0590+j0.0130 mA

19 =-9.66-3j1.57 mA

logical diagnostic function D11 = Og n 09 n o4, n 013 n o, n 015 n g4 N

n O,y N Oy
17

%8 ™ %19
result: S6’ S

* for computed currents 86 and S

and S 0

are faulty.

9

see Table IV,




TABLE VI

NOMINAL VALUES OF NETWORK ELEMENTS

Element Value

R1 1.2 k&
R, 3.0 k
R3 5.672 k&
Ry 1.2 k&
R5 0.33 k@
R6 0.33 k&
R7 1.0 kQ
Rg 1.7 kQ
R9 3.3 k@
R10 0.078 k@
R11 0.5 kQ
R12 1.0 kQ
R13 1.0 kQ
C1 1.0 uF
C2 3.3 wF
C3 1.0 wF
VCC 28.0 V

v 28.0 V




TABLE VII

NOMINAL OPERATING POINT AND PARAMETERS OF TRANSISTORS

Q, Q, Qg Qy
Io 4,744 mA 9.091 mA 5.891 mA 3.048 mA
IE -4.791 mA -9.183 mA -5.951 mA -3.079 mA
VBE 0.764 Vv 0.798 V 0.776 V 0.741 V
VBC -11.767 V -14,506 V -10.208 V -15.315 V
oy 0.99 0.99 0.99 0.99
ar 0.5 0.5 0.5 0.5
I 1.E-6 mA 1.E-6 mA 1.E-6 mA 1.E-6 mA
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TABLE VIII

CASE 1 - Q, FAULTY

Measurements Computed Currents Diagnosis Test
V, = 27.1008 V 12 - 4.7437 mA 12 +13 40 T
1 ° 2 - 2 2 23
V, = 3.1321 Vv
2 13 = 9.9952 ma 310 . 1? »17 = Tas67
V5 = 2.4126 V 3
V., = 1.7256 V IZ +I_ +I2 +1I° = T
7 Ig - -1.9949 mA 5 5 5 3456
V10 = 1.7606 V 5 8
I_ = 2.0104 mA
6 9
I + I =0 T
I? = 1.0049 mA 10710 69
Ig = 0.0101 mA
5
I7 = =-1.050 mA
6
I1 = 0.5282 mA
Ig = 0.0053 mA
6
17 = Z11.5283 mA
. 1 - - . 3 m
8 _
I7 = 1.0150 mA
17 = 0.5335 mA
10 - °°

logical diagnostic function D5 = (02 u 03) n (03 nog nogn 07) n (03 n

oy 0 og n gg) n (05 n 08) n (og n 09) = 52 N g3 Noynognognoynog N og.

result: 82 is the only faulty subnetwork.
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TABLE IX
CASE 2 - Q3 FAULTY
Measurements Computed Currents Diagnosis Test
_ 2 _ 2 3 _
V1 = 26,1850 V I2 = 4,7437 mA I2 + I2 =0 T23
V, = 11,6790 V
2 13 = 13.9057 ma 13 4 I? + I? + 11 40 Tac7
V5 = 10.8809 V 3
I2 = =4,T7437 mA 3 u 5 6
V, = 10.8599 V I2 +I_+1IZ+1I_#0 T
7 Ig = -9.1620 mA 5 5 5 5 3456
V1O = 10.1296 V 5 8
In I7 + I7 20 T58
15 = 9.0675 mA
6 9
I + 1 =0 T
I2 = 5.8736 ma 1010 69
5 _ 2 7 8 4
I‘5 = 0.0593 mA 12 + I1 + I7 + IS
5 9 .
17 = =5.9329 mA + 110 =0 T24789
6
I1 = 3.0389 mA
Ig = 0.0307 mA
6
I10 = =3.0696 mA

17 = -23.2685 mA
8 - 6.3882 mA

9 _
110 = 3.0696 mA

logical diagnostic function Dy = (o, n 03) n (33 u 35 u 86 u 37) n (53
uogy uo;u 36) n (05 u 08) n (06 n 09) n (02 n o, n ognon 09) = o,
N o;N 0NN N 0N 0N O

result: S5 is the only faulty subnetwork.
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TABLE X
CASE 3 - R1O FAULTY

Measurements Computed Currents Diagnosis Test
V, = 5.8645 V 12 = 2.8379 mA 2+13:0 T
1 ‘ 2 : 2 2 23
V, = -2.6491 V
2 3 _ 3 5 6 7
o I1 = 2.8379 mA I1 + I1 + I1 + I1 £0 T3567
5 13 = -2.8379 mA s o s 6
Vv, = 0 IZ +I_+I-+I_=0 T
7 I3 = 0.0000 mA 5 5 5 5 3456
Vip = 0 ° 5 .8
I5 = 0.0000 mA
6 9
I + I =0 T
I2 = 0.0000 mA 10 - 710 69
Ig = 0.,0000 mA
13 = 0.0000 mA
6
I1 = 0.0000 mA
Ig = 0.0000 mA
6
110 = 0.0000 mA
17 = _28
1% - 3.7879 mA
8
I7 = 0.0000 mA

9 .
I, = 0.0000 mA

logical diagnostic function D5 = (05 n 08) n (06 n 09) n (02 n 03)_n
n

(33 u 35 u 86 u 37) n (03 noyno;n 06) =0, N 0,00, N0;N0NGT

3 7

n0'8 n0'9.

result: S7 is the only faulty subnetwork.
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TABLE XI

CASE 4 - Q2 FAULTY

Measurements Computed Currents Diagnosis Test
V, = 26.1241 V 12 - 4.7437 mA 12 413 40 T
1 - * 2 - 2 2 23
V, = 11.6001 V
2 13 = 4.8414 ma IR S 1? +17 40 Tas67
V5 = 11.6001 V 3
V. = 10.8001 V IZ +I_ + I +I° #0 T
7 Ig = 0.000 mA 5 5 5 5 3456
V1O = 10.8445 V 5 8
4 17 + I7 =0 T58
IS = 9.6667 mA
6 9
I + I =0 T
I? = 6.2895 mA 10710 69
5 _ 7 .8 9 .
I5 = 0.0635 mA I +I +I7 5+I =0 T24789
I7 = -6.3530 mA
6
11 = 3.2533 mA
Ig = 0.0329 mA
6

IZ = —24.0497 mA

Ig = 6.3530 mA
19 - 3.2862 mA
10 = 3

logical diagnostic function Dg = (52 u 53) n (53 u 55 u 56 u 37) n (53 u
f” uog u °6) n (05 n °8) n (06 n 09) n (02 n oy N o, N ogn 09) =g, M
03 n GU n 05 n 06 n 07 n 08 n 69-

result: S3 is the only faulty subnetwork.
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TABLE XII

CASE 5 - Q3 FAULTY WITH TOLERANCES ON THE NONFAULTY ELEMENTS

Percentage Test 1 Test 2 Test 3 Test U Test 5 Test 6

Deviation T23 T3567 T3H56 T58 T69 T2u789
IAR1/R1I 0.0 0.0
lARz/RZI 1.983 13.54 0.0
A
| R3/R3! 1.774 | 2. 11
IARH/RHI 26.99% 4,076
%

IARS/RSI 6.71 20.98
IARG/R6I ) 0.0 0.136
IAR7/R7l 46, u47% 0.31 70.82%
}ARB/RSI 9.09 2.U45
lAﬁg/Rgl 47,17% 0.878 1.382
taR4o/R g 51.44% 8.96
IAaN1/an1l 0.0224 0.026
5AaN2/uN21 0.0513 0.71% 0.408%
IA“N3/“N3| 0.001 0.194%
'AQNM/QNM' 1.27% 0.072 0.14

Pass Fail Fail Fail Pass Pass

logical diagnostic function D, = T n T n T n T n T n
T24789 6 23 3567 3456 58 69

=0, N 0300y N0;N0gN0d,ndgn dg.
result: S5 is the only faulty subnetwork (see Table IX).

Deviation significantly exceeds tolerance.
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Fig. 7 Decomposition of Si into two subnetworks S, and S

k

Pka nodes where currents and voltages are known
P%B nodes where voltages are known only

M, nodes where neither currents nor voltages are known.
Ly
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Fig. 9 Equivalent circuit for the Op-Amp.
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S0C-300
A UNIFIED DECOMPOSITION APPROACH FOR FAULT LOCATION
IN LARGE ANALOG CIRCUITS
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Abstract: This paper deals with the problem of fault location in analog
circuits. The circuit under test is decomposed into subnetworks using
the measurement nodes. We localize the faults to within the smallest
possible subnetworks according to the final decomposition. Then,
further identification of the faulty elements inside the subnetworks is
carried out. The method is applicable to large networks, linear or
nonlinear. It requires a limited number of measurement nodes and its
on-line computation requirements are minimal. The method is based on
checking the consistency of KCL in the decomposed circuit. A measure of
the effect of tolerances on the elements is introduced, and a number of
examples are considered to illustrate the application of the method in
both the linear and the nonlinear cases.
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