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Abstract

This paper provides an attempt to formulate and to solve the best
mechanical alignment problem, which arises in many practical situations
when a relatively expensive manufactured product does not meet design
specifications and a decision is to be made for partial retreatment of
the product. We define and use concepts of regular points, reference
points and referenced points for a mechanical design. These points
represent important features which must be reproduced subject to
tolerances, which are defined w.r.t. various coordinate systems. The
algorithm proposed identifies candidates for reworking using minimax
optimization. While the concepts introduced and the method presented
resulted from a variety of approaches to solving mechanical problems in
two dimensions, this c¢lass of problem can arise in other areas and

further generalization is possible.

This work was supported by the Natural Sciences and Engineering
Research Council of Canada under Grants A7239, GO647 and A1708.

The authors are with the Group on Simulation, Optimization and
Control, and the Department of Electrical and Computer Engineering,
McMaster University, Hamilton, Canada L8S 4L7T.

M.A. El1-Kady is also with Ontario Hydro, Toronto, Canada.

W.M. Zuberek is on leave from the Institute of Computer Science,
Technical University of Warsaw, Warsaw, Poland.



I. INTRODUCTION

An important practical problem is optimal design subject to
tolerances [1]. Generally, the problem is to ensure that a design, when
manufactured, will satisfy specifications. In many practical situa-
tions, however, due to manufacturing errors, a product may not meet the
specifications [2]. There are two principal ways of tackling this
problem: complete rejection and replacement of the manufactured part,
or to align or rework (if possible) the part. In the case of very
expensive materials, the latter may be justified. The problem we
address in this paper is how to efficiently perform the part aligﬁment
process and, if reworking is needed, how to choose the best way to do
it. We provide an attempt to formulate and to solve this problem using
minimax optimization [3-5].

In Section II, basic definitions and concepts are given and the
problem is formulated in terms of minimax optimization. Tolerance
regions, error functions and their derivatives are described in Section
III, which also contains examples of tolerance regions. The general
structure of the computer program is given in Section IV. Section V
shows the test results obtained by running the program for several
samples [6]. Conclusions and suggestions for further development are

given in Section VI.

II. FORMULATION OF THE PROBLEM

Preliminary Concepts

Suppose we have a set of points P in a two-dimensional space
A
Pz Apgs Py veen p, o om> T (1)

and a system of coordinates YOX associated with this set. Let



18

{1,2,...,m} (2)
be the index set for these points.

The coordinates of a point pi e P, i € I, may be given either
w.r.t. the main origin of the Y0X system of coordinates or w.r.t.
another point of the set P. Let

1°2 ¢1,2,...m ) 5 1< <m, (3)
be the index set for points which are referenced to the main origin of
the YOX system of coordinates. With each point p, e P, 1 < i < ng, we
associate a set of indices Ii such that elements of Ii are indices of
points referenced to pi. The set Ii, 1 <1< no, may be an empty set or
a subset of the set I.

Let 1 <€ 2 < no. For 1 < i < 2 we have

i &g, (4)
which means that no points are referenced to p; € P, 1< i< g. For

L <1< no, we define the following index sets

2 A

I* = {no+1, ceey no+n2} .

2+1 :

I = {no+n2+1, ey n0+nz+n2+1},

L42 A
I = {no+n2+n2+1+1, vees n0+n£+nz+1+n2+2}, (5)
el 1 b, < d<

= Ing#np+n, ooy g+, L Ng#n,+n,  g+. .40k, i< ng,

%0 4

{n.+...+n #1, ceey N +eo.4n_ 1.
-1 ’ ’
0 n0 0 n0

For each point pi e P, i € I, we introduce a superscript indicating its
reference point. For example, pg(Eg , §2), 1<1<ng, is the ith point

of the set P with coordinates Eg , ?g referenced to the main origin,

pd30 + 73, 72+ 5, 0 <i<m 2 < i<, is the ith point of the
15 X Yy Y ' 0

J

set P with coordinates ii , §i referenced to the pg.
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Definitions of Subsets of Points

Three disjoint subsets of points can be distinguished in the set P:
- regular ints, P
g po ' reg’

- reference points, Pref'
- referenced points, Prefd’

For each of these subsets there is an associated index set.

Definition 1
A point pi € P is a regular point if its coordinates are given
w.r.t. the main origin of the Y0X system of coordinates and if it is not
a reference point for other points. Formally,
A . A J
j=0,1c¢€ Ireg = {1,2,...,2-—1) ==> pi e P . (6)

reg

Definition 2

J

i € P is a reference point if its coordinates are given

A point p
w.r.t. the main origin of the YOX system of coordinates and if it is

treated as an origin for other points. Formally,

& {2,2+1,...,n0} ==> pJ e P . (7

i =0, i I :
J 0, 1e re i ref

f
Definition 3

A point pi € P is a referenced point if its coordinates are given
w.r.t. another point of the subset Pref and if it is not a reference
point for other points. Formally,

jel , 1 ¢ Ir & {n_+1,...,m} ==> pJ e P

ref efd 0 i refd’ (8)

The concepts and definitions introduced are illustrated in Fig. 1.



Example
A X .
Let P = {p1,p2,p3,pu,p5,p6,p7}. From Fig. 1 we can define the
following index sets: I = {1,2,3,4,5,6,7}, the index set for the set P;
IO = {1,2,3}, the index set for points referenced to the main origin of

the YOX system of coordinates; I1 = @, the index set for points
referenced to po; 12

1
3 - {6,7}, the index set for points referenced to pg. We can also

= {4,5}, the index set for points referenced to pg;

define the index sets for regular points Ireg = {1}, reference points

I = i = 25,6,T1.
ref {2,3} and referenced points Irefd {4,5,6,7}

Tolerance Regions

Suppose we have a set R of tolerance regions Ri,
iegl g {1,2,...,m}, in the 2-dimensional space.

R & {Ry,R R} (9)

PYRRRER ™
and a system of coordinates YOX associated with this set. We can define
a one-to-one mapping g which assigns elements Ri e R to elements pg e P,

{g:P » R}. . (10)
The sets P, R and the mapping g are shown in the Fig. 2.

The regions Ri e R, i € I, may have different shapes (e.g.,
circular, rectangular), they may be defined using polar coordinates,
rectangular coordinates or combined polar and rectangular coordinates.
Dimensions of tolerance regions may be given either w.r.t. the main
origin of the YOX system of coordinates (for Ri = g(pi), ie Io =1 U
Iref) or w.r.t. the reference point (for Ri = g(pi), ice Irefd)'

We can use the same notation indicating the reference points for

0

tolerance regions as for points, e.g., Ri’ 1 €1 < n is the ith

09

tolerance region of the set R with dimensions given w.r.t. the main
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origin of the YOX system of coordinates and Ri, no <i<m, < j< no,
is the ith tolerance region of the set R with dimensions given w.r.t.
the transformed coordinates of p? from the YOX to the YOX system of

coordinates.

Transformation of Coordinates

The two systems of coordinates, YOX and Y¥0X are related by the

following transformation of coordinates

X cosé -sin¢ X. ¢
= 3 3 _1 + L , 1)
i sing, cos¢s v, b5

where

A T
8 2 Loy 6, 03] (12)

is a set of variables relating the two systems of coordinates (Fig. 3).

Formulation of the Problem

The first step in the solution of the best alignment problem is to

find 30 such that the maximum number of points pg e P, ieI, Je Iref
or j = 0, are inside or on the boundary of the corregponding Ri ¢ R, Ri
= g(pg). However, the solution to the problem stated above may not be
unique and may not be equal to the number of points m.

If it is not possible to find 30 = [¢1 ¢2 ¢3]T such that all m
points are inside or on the boundary of the corresponding tolerance
region then it is necessary to delete one or more points in the set P to

ensure that all other points satisfy this condition.

In general, the number of variables for the best alignment problem

depends on the type of the point (regular, reference or referenced)



being a candidate for deletion. The vector of variables ¢ may be
extended with new variables, which are the coordinates of reference
points if these are the candidates for deleting.

Introducing new variables is necessary when deleting a reference
point, because we have to determine the locations of all tolerance
regions referenced to it. The general form of the vector of variables

for the best alignment problem is

T . .
¢ = [o, b, b5 X5 Vs Xi Vi eee X Vs ], i,,i5,00.,i, € I ,(13)
k 172 73 i, i, "1, 71, i, 71, 172 k delref
where
A
Idelref‘ - Iref nIdel (1%
3 ry I ts
and k is the cardinality of Idelref' The index set Idel represen

deleted points. For example, if the ith point of the set P (i ¢ Iref)

is a candidate for deleting then reduces to the form T = [
L2 24 91 95 93

x, y.1, 1 e I

i ¥i delref® If the ith and jth points (i, € Iref) are

T
candidates for deleting then $s = [¢1 95 ¢3 X, ¥; X ref

j yj]. i,je Idel

If the candidates for deleting are not reference points then ik = ¢0.
The best alignment problem can be formulated as

.. A
minimize ng . = card (Idel) (15)

I
Tje1 € 2

subject to the constraint

. A
F(g,) <0, 1eI"2 (I-I4 ) U T (16)

delref’

where I is the index set for points pi which are to be aligned, Idel is

the index set for points which should be deleted, ZI is the family of

all subsets of the set I, n is the rdinalit fI nd is the
del cardinality o del a ik

vector of optimization variables corresponding to the set Idel'

Variables ¢,, ¢, and ¢, relate the YOX  and the YOX systems of co-



ordinates and X; . y; are transformed coordinates (from YOX to YOX) of
k k
a reference point actually being deleted. The error function fi(gk) is
associated with the point pi to indicate whether the point pi is in
; Jo_ J
(fi(gk) < 0) or out (fi(gk) > 0) of the tolerance region Ri = g(pi).

Solution to the Problem

The solution to the best alignment problem consists of two stages.
The first stage corresponds to a discrete (or combinatorial) minimiza-
tion of the number of points which should be deleted from the original
set of points, and the second stage is an unconstrained minimax
optimization of a set of error functions fi, i ¢ I', determined by the
first stage. The discrete minimization of the first stage is usually
impiemented as a systematic search of the solution in the family ZI of
all subsets of the set I. It is convenient to represent this search in
the form of a multi-level tree in which the root (level 0) corresponds
to the set I = @ (P denotes the empty set), the level 1 contains all

del
the single element subsets I1 = {1}, I1 = {2}, ..., the level 2

del, 1 del,2 ~
all the subsets of I which contain two elements, and so on. The first
stage minimization traverses the tree level after level until the
solution is found, i.e., until such a subset Idel is encountered for
which the constraint (16) is satisfied. It can be observed, however,
that the minimax optimization of the second stage, which 1is performed
for each step of the first stage search, can be used to eliminate those
nodes (and their subtrees) of the search tree which cannot influence the
solution. In faet, if the minimax constraint corresponding to the
subset Idel at a particular level of the search tree is not satisfied
then the next level subsets should be derived from the Idel of the



previous level by adding only the indices of those points which
correspond to the active error functions at the solution Q; of the
minimax optimization since the remaining, nonactive error functions do
not affect the solution. This observation is the basis of the

implemented combinatorial search algorithm which dynamically creates and

traverses the reduced search tree.

Algorithm
The algorithm always starts with the set Idel = @ (the root of the

tree) and ¢ = 2, = Q. If the minimax objective function

F(go) = ?2§ £, (99) an
at the solution g; is non-positive, F(g;) < 0, then i; corresponds to
the best alignment solution, and the solution is optimally centered. If
F(ig) > 0, there is no possible alignment of all the points pi, ie I,
and at least one of the points has to be deleted to allow the alignment
of the remaining points. The candidates for deletion are the points for
which the corresponding error functions are active at the solution g;,
and their indices are attached to the root IO of the search tree,
creating the level 1 nodes. The search is continued node after node of
the created level and the minimax optimization with one less function
(except the case of deleting a reference point) is repeated at each
node. During the traversal of the level 1 nodes, the new nodes are
attached to the search tree creating the next level, and so on, until a
subset Idel is found for which the minimax constraint is satisfied,
F(Q;) < 0. It should be noted that corresponding to each node of the

search tree there is a unique associated index, and the set Idel
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determined as the set of indices of the path from the node j to the root

of the tree.

e

III. TOLERANCE REGiONS, ERROR FUNCTIONS AND THEIR DERIVATIVES

To form the error functions for the best alignment problem we have
to decide in which system of coordinates these functions will be
expressed. It is convenient to choose the system of coordinates
associated with the regions, first of all because it is easier to
transform points than tolerance regions to the new system of
coordinates, and second, because the derivatives of the error functions
‘Ww.r.t. optimization variables can be easily obtained using transformed

coordinates of points and the Jacobian of the transformation.

Preliminary Considerations of Derivatives

For Qk = 30 (no deletions of any points or deletions only of

regular or referenced points) the error function is of the form

f = ’ , i - .

i(gzo) fi(xi(go) yi(go)) ielI-I,, (18)
The derivative of fi w.r.t. go can be written as

of , of , 3x, af, 3y,
i i i i 71

39, - 3%, 3§, 3V, 35, (19)
where
—~ ~ —
‘af‘,—1 ax.‘1 331.-1
1 1 1
¢ b 2,
5f 5f. 3% 3% 3y 5y
14 L i4 I N S . (20)
3%, 3%, %4 99, 99, 3%,
", A .
%93 %03 L %%3
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af . of,
The terms of the form 5§i' 3;5 depend on the shape of the tolerance
i i

region and usually are not very complicated because the function fi and

the coordinates xi.yi are expressed in the same system. The terms of

dx ., 9y,
the form 353, §§§ depend only on the transformation formula and are the
0
same for the derivatives of all minimax functions. They can be

calculated once for the actual point QO and used for all functions.

X, ay,
Partial derivatives 5—3 and 3—3 can be arranged in a matrix
20 £0
called the Jacobian of the transformation
— -

X, 9X. 09X,
i i i
a¢1 8¢2 a¢3

ne>

1
’ 1

£0 Yy ¥y 9y e

i i i

39, 90, 0%,

-

-

which, for the transformation (11) takes the form

1 0 (-xi sin¢3 - ¥ cos¢3)
. (22)

Jos
~0 - 0o 1 (X. cos¢, — ¥. sing,)
j COSé3 = ¥y Singg

General Formulation of Derivatives

For gk # QO (deletion of reference points) depending on the type of

a point for which we form the error function we have three cases:

i, (regular point or reference

ielI-1I I -1 -...-1I point not deleted)

delref

The error function is of the form
£ (g0 = £5(x3080) 475 (gp))- (23)
The derivatives w.r.t. optimization variables QO are given by (19) and

derivatives w.r.t. additional variables are



where 11,...,1

iel

k

delref

€

(reference point deleted)

I

Byik

delref °

-12-

The error function is of the form

fi(i )

f‘i(xi y V.

1

and the derivatives are

of .
2t

344

of .

1

9X .
i,

af

J

Byi

O

(N

(.od)

1

1

for i

for

for i
for i

LI X,
'

J

b

Y.

1

J

€

I

vey X,
' 7

delref

,

k

v 3=

Yy

)

1,000,k

(28)

(25)

(26)
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i

i,
i eI ' UI12U...UTdU...UTI" (referenced point)

The error function is of the form

fl(gk) = fl(xl(go)' Yi(QO)’ xi ’ Yi )y eensy xi.’ Yi', es ey xi ’ yik) 27

1 1 J J k

and the derivatives are given by (19) for 20 and w.r.t. additional

variables by

Bfi ) (eed)
Bxi -
J 0
af. (...)
l -
dy.
1j 0

for i €1 ,

for i g1 ,
(28)

1,
for ie I9,

i,
for i I9 .

Tables of Error Functions and Derivatives

For the general form of the vector of variables, given by (13), we

form error functions and derivatives for three cases:

1) regular point or reference point not deleted;

2) reference point deleted;

3) referenced point.

The general form of derivatives of fi w.r.t. 20 is given by (19),

where the terms of the form

af.
the terms of the form ——3u

9xX
i

type of tolerance region.

X, Y.

1 _1 may be calculated as in (22), and

3o 32

of.

§§£ are tabulated in Tables I-III for each
i

The coordinates xi, yi are transformed

coordinates of points using the transformation (11). The derivatives of

error functions w.r.t. additional variables are also given in these

tables.
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For the circular tolerance region error, functions and derivatives
are given in Table I. As an example, consider three points with

circular tolerance regions shown in Fig. 4. Assume that xg, yg are

additional variables, so

0 0.T
=8y 7 [y 0y 03 Xy Vol

0 0
The error functions and derivatives for P, (regular point), Po

(reference point deleted), and pg

(referenced point) can be calculated
using formulas given in Table I.

For other types of tolerance region the location of a point w.r.t.
corresponding tolerance region can be characterized by a system of four
linear or nonlinear functions. For a regular point and rectangular

tolerance region (Fig. 5), these functions result from the inequalities

0 0 0
x;p £%5 L%y (29)
0 0 0
and have the form
1_.0 _.0
fi = X - Xy (31
2 0 0
fi = X; = Xy oo (32)
0 0
f3 =Y., =Y. » (33)
i iL i
4 0 0
£y = 9; =Yy - (39

For a regular point and the X-R tolerance region (Fig. 6), the
error functions result from (29) and from

0.2 0,2 0.2 0 .2
(RiL) < (xi) + (yi) < (RiU) , (35)
1 2 4
and fi, fi have the form of (31), (32), respectively, while fz and fi

can be expressed as

3 0 0.2 0.2
£ = R - /Q;i) + (yi) ’ (36)
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0

e 2 /9% 92 2’0 . (37
i i i iu

Finally, for a regular point and the Y-R tolerance region (Fig. 7),
2 4

3
i fi' fi are

the error functions result from (30) and (35), and f;, f
given by (33), (34), (36) and (37), respectively.

For each of these tolerance regions, we represent a point using
only one error function. The four error functions may be combined into

one using the following function [7-8]

1
p [ ® /a

M seS —-—M——‘ , for M #0,

0

fi = (38
, for M = 0,
where
M2 max (£5) , s 8 11,2,3,41, (39)
seS
A_M 1<p<eo, for M>0,
q-IMlp{1£p<m,for‘M<O. (40)
The gradient vector of the combined error function is given by
s 1 -1 -1
NI (/) S R
VE(g) =] . I vf;(¢), for M # 0. 41)
~ 1 ~ 1
sSeS seS

From (38) and (41), it can be seen that if f£5(g), s = 1,2,3,4, are
continuous with continous first partial derivatives, then, under the
stated conditions, the function fi is continuous everywhere with
continuous first partial derivatives (except possibly when both M = 0
and two or more maxima are equal). For p » «, practically fi = ga;(f?).

The elements of the gradient vector Zfi, seS, for the rect:ngular

and the X-R tolerance regions are given in Tables II and III,

respectively. For the Y-R tolerance region error functions and their
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derivatives are the corresponding entries of tables for the rectangular

and the X-R tolerance regions.

IV. COMPUTER IMPLEMENTATION OF THE ALGORITHM

In this section, the FORTRAN program for solving the best alignment
problem is briefly described. It has some limitations, resulting from
the fact that it was designed for solving particular practical problems
(e.g., the number of different shapes of tolerance regions is limited to
4). The program employs a package for linearly constrained minimax
optimization [4] available in the form of a library of subroutines.

The structure of the program is shown in Fig. 8. The main segment
is BSTALN. It reads the data from the input file SAMPLE, prints the
data, calls subroutine FDF at the starting point, calls subroutine
PRSRCH and prints the final results. The subroutine PRSRCH organizes
the workspace memory for SEARCH and calls SEARCH. The subroutine SEARCH
implements the decision-tree structure described in Section II. It
calls SOLVER and INSRCH. The subroutine SOLVER prepares parameters and
calls the minimax optimization routine MMLA1Q. The subroutine INSRCH
eliminates identical entries in the decision-tree structure. The
subroutine FDF performs the transformation of coordinates, evaluates
error functions and calculates final derivatives. It calls TOLCIR,
TOLXY, TOLXR and TOLYR. Subroutines TOLCIR, TOLXY, TOLXR and TOLYR
calculate the error function and its derivatives for the circular,
rectangular, X-R and Y-R tolerance regions, respectively, using p = =,

For the purpose of illustration an artificial simple example has

been constructed.
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Example
Suppose we have a set of points P 3 {p1, Py p3, Py» p5} and a set

of tolerance regions, R 4 {R1, R2, R3. Ru, R5}. Fig. 9 illustrates the
situation before the alignment. Error functions at the starting point
93 = [0.0 0.0 0.0] are the following

£,= 2.071 x 107" ,

£, = -5.000 x 107" ,

fy = 5.000 x 107",

£, = =5.000 x 107,

fg = 5.000 x 107" .

Fig. 10 shows the situation after running the alignment program. The
best alignment was found at Eg = [-2.316 x 107" -2.792 x 10-1
4,758 x 10_2] with point 5 deleted. Remaining error functions at the
solution are

f = -1.540 x 10 ,

f, = —1.206 x 10 ’

2
-2
f3 = -1.204 x 10 ~ ,
-2
fu = -1.204 x 10

V. TEST RESULTS ON PRACTICAL PROBLEMS
The program described in the previous section has been extensively
tested. It has been run for seven sets of data [6] supplied by the
Woodward Governor Company. The data resulted from practical problems of
part alignment in manufactured mechanical systems and have been
collected from inspecting actual parts, so the order of error function
values represents the real life situation. The points represent holes

in one part which have to meet certain specifications when coupled
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together with another part. Test samples have different numbers of
points, varying from 5 to 13 and specified tolerance regions of
different shapes. To give an idea of what the samples are like, we
describe briefly two simple samples and one interesting sample in more

detail.

Sample 1 (Table IV)

This sample has 5 points, 1 with circular and 4 with the
rectangular tolerance regions. It has no reference points. Originally,
the number of points out-of-tolerance was 4. After 12 iterations of
stage 0, the minimum value of the maximum error function was 3.6078 x
10-4. Three points (1, 3 and 4) have been selected as potential
candidates for deleting. It turned out that deleting point number 1
gives the solution for which the remaining error functions are negative

=4
and the maximum error at the solution was -6.45668 x 10 (after 25

additional minimax iterations).

Sample 2 (Table V)

This sample has 7 points, all with the circular tolerance regions
and all referenced to the main origin. Originally, the number of points
out-of-tolerance was 5. After 15 iterations, the solution was found
with no deletions and the maximum error at the solution was -7.73563 x

107",

Sample 6 (Table VI)

This sample is very interesting: it has 11 points, 4 with circular,

} with rectangular, 1 with the X-R and 2 with the Y-R tolerance regions.
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Five points are referenced to points other than the main origin.
Previous work; on the best alignment program [6] do not permit a
reference point to be deleted (translated). In our approach, any point
can be deleted. Originally, there were 2 points out-of-tolerance, and
one of them is a reference point. When a point which is an origin for
one or more points is found to be out-of-tolerance, there is a good
chance that any point referenced to it will also appear to be off
location. In this sample, points 7 and 8 are referenced to point 1.
Points 1 and 8 were both found to be out-of-tolerance. However, if
point 1 was shifted by the amount specified (in other words, if hole
number 1 was plugged and re-drilled in the proper location), point 8
would be in-tolerance without any rework needed. Thus, in a practical
mechanical sense, there is only one point out-of-tolerance, that being
point 1 [2]. Results of running the program for Sample 6 show that
indeed deleting reference point 1 (plugging and redrilling hole) implies
that all other points will be in-tolerance and the maximum error at the
solution is -1.9911 x 10",

We can observe how point 1 was selected for deleting from the
details of the solution, given in Table VII. From the results of
minimax optimization at stage 0, points 1, 7 and 8 are selected as
candidates for deleting. Results of minimax optimization with point 1
deleted (translated) show that a solution can be obtained with only one
point deleted.

The results of running the program for all test samples are

summarized in Table VIII.
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VI. CONCLUSIONS

This paper provides an attempt to formulate and to solve the best
mechanical alignment problem using minimax optimization. Results of
running the best alignment program for practical problems (Table VIII)
confirm the efficiency of our approach. The concepts introduced and the
algorithm proposed are described in this paper by tackling a particular
mechanical engineering problem. However, this class of problem may come
from different sources and further generalization is possible. One
natural extension of this approach, which may be very useful from the
practical point of view, is considering alignment problems in three
dimensions. Another suggestion for further exploration is the investi-
gation of the least pth forhulation to reduce the number of minimax
functions.

The problem which originated from aligning mechanical designs is
here formulated as a general optimization problem and we feel that this
approach should prove useful in many other areas where problems of a

similar nature may exist.
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TABLE I

DERIVATIVES OF ERROR FUNCTIONS FOR CIRCULAR TOLERANCE REGION

Regular Point or Reference Point
Reference Point Deleted Referenced Point
Not Deleted
fi =D - ri fi =D - ri fi = D1 - ri
- * -
afi/axi A/D A1/D1
af . /2 -B/D * -B. /D
i yi / 11
Y
-A/D, 1 =1, A1/D1, iel
af, /ax; 0 J i,
i 0, 1%i o, i¢17
1
-B/D, i =1, B1/D1, iel
3f,/3y, 0 J i,
3 0, i#i 0, 147179
i,
A = xo - xO A, =X J + x9 - X
n i 1 n, i 1
i i j
i
.0 0 g J 0
B = Yn, = Y4 B1 =V, vV oYy
i i j
D= (a2 + 8912 D, = (A 13‘?)”2
axi ayi
* For this case, terms 36—,:35— are equal to zero, and consequently,
s 0
afi
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TABLE II

DERIVATIVES OF ERROR FUNCTIONS FOR RECTANGULAR TOLERANCE REGION

Regular Point or Reference Point not Deleted

s 1 0 o 2 0 .0 3 0 O 4 0 0
3 f, = - f. = - f- = - f = -
i A N P e PR S T S B SR A1)
3£3/3x° -1 1 0 0
1 1
s 0
ar3/0y} 0 0 -1 1
a3 /0x, 0 0 0 0
i 1j
3f3/3y. 0 0 0 0
1 lj

Reference Point Deleted

s 1 0 o 2 0 0 3 0 o 4 0 0
f = - = - = - = -
i Fo=xg =% fy=xg-x o=y, -y L=y =Yy
-1, i=i, 1, i=1i.
ar5/ox, J o 0 0
j 0, i #*1ij 0o, i# ij
s -1, i=1i, 1, 1i=1i.
afi/ayi 0 0 J J
i {* 4. 0, i#1i,.
J 0, i 1J j
Referenced Point
i i i i
s .0 ) i 3 ) j 0
fl f -xiJ+xiL-x fi-xi—(xiu+xij) f‘i-yiL+yi =/ fl-yi-(yiu+yij)
S
afs/o%, -1 1 0 0
S
3, /3y, 0 0 -1 1
i, i,
] 1, ie1? -1, ie1?
ar/9x, i, i 0 0
Yoty oo0, 11 o, i g1
i i,
s 1, ie1d -1, 1e1”
at> /3y, 0 0 i, i
oy 0, i 417 0, i 17




Y

TABLE III

DERIVATIVES OF ERROR FUNCTIONS FOR X-R TOLERANCE REGION

Regular Point or Reference Point not Deleted
s 1_.0 _.,0 2 _ .0 _ .0 3 _ _ yo_ oo
fi £oo= % =% fy=xg-xy, ff=R, -F £ =E-Ry
arS/ax0 -1 1 -x%/E x0/E
1 1 1 1
s,. 0 0 0
3, /3y, 0 0 -y, /E y;/E
af>/5x, 0 0 0 0
1 1.
s
af /9y, 0 0 0 0
1 1.
j
Reference Point Deleted
s 1_.0 _ 0 2_,0_.0 3 _ _ bo_oo o
i £o=xg - % fp=xg-xy fi=R, -FE £ =E=-Ry
. 1, i=1i, 1, i-=1, ~x%/E, i =i. x9%/E, i =1,
3f /3%, J J 1 J 1 J
Loy 0, 1#1ij 0, i#iy 0, i#ij 0, 1#1ij
s -y?/E, i=1, y?/E, i= ij
af /3y, 0 0 N .
3 0, i # ij 0, i # ij
Referenced Point
i i
s 1.0 J _ J 3 4
fi f‘i_xij+xiL-xi f._xi—(in+x.j) fi = RiL -D fi =D - RiU
arS/ax. -1 1 -A/D A/D
1 1
S
arS/ay. 0 0 -B/D B/D )
ool i i, i iJ
s 1, ie1d -1, ie1? A/D, i eI J -A/D, i€l
af>/3x, i, is i, i,
Py g, 11l 0, i £1° 0, i1 o0, if£1°
i, i,
s B/D, ieIY -B/D,iel?
ar2/0y, 0 0 i, i,
i 0, ig19 o, i£g17
0 1
A=x,-%x,, B=zy, -y, ,D= (A2 + B2)1/2, = ((x(.))2 + (y9)2) /2
1 lj 1 lj 1
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TABLE IV

DATA FOR SAMPLE 1 [6]

Point Tolerance Origin Actual Actual Tolerances
Code + Code * X y
xN yN ™
1 0 0 0.0000 0.0000 0.0000 0.0000 0.0010
L Xy L Yy
2 12 0 -0.8800 1.3682 -0.8780 -0.8750 1.3690 1.3720
3 12 0 0.6589 0.7499 0.6610 0.6630 0.7500 0.7520
y 12 0 0.8990 -0.4414 0.8990 0.9010 -0.4410 -0.4380
5 12 0 -0.5635 -1.5254 -0.5650 -0.5620 -1.5250 -1.5220

+ The tolerance code is one of four (0, 12, 13, 23), where

0 - the code for the circular tolerance region,
12 - the code for the rectangular tolerance region,

13 - the code for the X-R tolerance region,
23 - the code for the Y-R tolerance region.

* Any point w1th an origin code of 0 is referenced to the main origin of
X = 0.0, ¥ = 0.0. Any other origin code refers to the point by that
number on the same sample. For instance, for an origin code of 4, the

actual X and y dimensions are measured from the actual x and y dimensions
of point number 4,
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TABLE V

DATA FOR SAMPLE 2 [6]

Point Tolerance Origin Actual Actual Tolerances
Code + Code ¥ X y
N N N
1 0 0 0.0000 -0.0001 0.0000 0.0000 0.0050
2 0 0 -0.6412 1.1080 -0.6405 1.1094 0.0025
3 0 0 -1.2778 -0.0052 -1.2810 0.0000 0.0025
) 0 0 -0.6295 =1.1101 -0.6405 -1.1094 0.0025
5 0 0 0.6499 -1.1055 0.6405 -1.1094 0.0025
6 0 0 1.2846 0.0083 1.2810 0.0000 0.0025
7 0 0 0.6393 1.1126 0.6405 1.1094 0.0025

+ see p. 25 for code explanations.

%* see p. 25 for code explanations.
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TABLE VI

DATA FOR SAMPLE 6 [6]

Point Tolerance Origin Actual Actual Tolerances
Code + Code * X y

xN yN rN

1 0 0 2.3970 -0.9508 2.3950 -0.9500 0.0010

2 0 0 -1.6955 -=1.9621 -1.6960 -1.9620 0.0010
L *u L Yy

3 12 0 0.6620 0.7507 0.6610 0.6630 0.7500 0.7520

4 12 0 0.8998 -0.4393 0.8990 0.9010 -0.4410 -0.4380
L Yy R Ry

5 23 0 -0.5629 -1.5231 -1.5260 =1.5210 1.6225 1.6260
XL Xy L Yy

6 12 0 -0.8773 1.3700 -0.8780 -0.8750 1.3690 1.3720
xN Yy ry

7 0 1 -2.8646 3.5015 -2.8640 3.5010 0.0010
L *u 43 Yy

8 12 1 -0.8764 2.3274 -0.8750 -0.8710 2.3250 2.3290
N vy N

9 0 4 0.6653 -0.7855 0.6650 -0.7860 0.0010
L Yy Ry, Ry

10 23 5 -0.9642 1.0227 1.0210 1.0260 1.4053 1.4073
xL XU RL RU

11 13 6 -0.0641 -=1.1348 -0.0660 -0.0640 1.1358 1.1378

,

*
See p. 25 for code explanations.
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TABLE VII

RESULTS OF BEST MINIMAX ALIGNMENT FOR SAMPLE 6 [6]

N +
Values of Error Functions

Error Starting Point Stage 0 Optimization Optimization with
Function (no deletions) Point 1 Deleted
(translated)

1 1.1540659 x 107> 7.8766877 x 107" -6.0836163 x 10”4
2 _4.9009805 x 10~ 7.8054088 x 10~ -3.1859860 x 107
3 -7.0000000 x 107 -6.7451522 x 107 -6.0366698 x 107
4 _8.0000000 x 10~%  -5.1145712 x 100 -6.0460585 x 107
5 _1.2887855 x 1073 -4.1859431 x 1070  -1.3816043 x 107
6 ~7.0000000 x 107 _6.1087476 x 10~ -1.9911453 x 107"
7 2.1897503 x 107" 7.8766877 x 10”0 =1.9911453 x 10
8 1.4000000 x 1073 7.8766877 x 10~%  -1.9911453 x 107"
9 -4,1690481 x 107 -2.2387620 x 107 -1.9911453 x 10~
10 _2.5929437 x 10~ -2.7637365 x 107 -1.9911453 x 107"
11 ~1.0000000 x 10~ 6.1249301 x 107 -4,0926333 x T

+ . . .
Maximum error functions are underlined

*
This error function value corresponds to the new location of point

1.
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TABLE VIII

RESULTS OF RUNNING THE BEST ALIGNMENT PROGRAM
ON DATA SUPPLIED BY THE WOODWARD GOVERNOR COMPANY [6]

CYBER
170/730
No. of Points Results Execution
Sample Total No. Originally Out (Points Time in
No. of Points of Tolerance Deleted) Comments Seconds
1 5 y 1 Reg. Point Deleted 0.7
2 7 5 0 No Deletions 0.4
3 11 2 1 Ref. Point Deleted 0.9
y 11 3 2 Reference and Reg. 2.8
Points Deleted
5 11 3 2 Reference and Reg. 1.5
Points Deleted
6 11 2 1 Reference Point 1.2
Deleted
7 13 3 3 Regular Points 3.6

Deleted
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Fig. 1 The set of points P and the YOX system of coordinates
associated with it.
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Fig. 3 Transformation of coordinates relating the two systems
of coordinates.
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Fig. 4 Points with circular tolerance regions.
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Fig. 5 Regular point with the rectangular tolerance region.
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Fig. 6 Regular point and the X*-R tolerance region.
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Fig. 7 Regular point and the Y-R tolerance region.
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Fig. 8 Structure of the program for the best alignment problem.
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Fig. 9 Points and tolerance regions before alignment.
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Fig. 10 Results of running the alignment program.
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