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Abstract

This paper presents the theoretical background for designing tests
which are topologically sufficient for identification of faulty
parameter values in linear subnetworks. Nodal voltages are assumed to
be obtainable either by measurements or, indirectly, as a result of a
nodal fault analysis. A formulation of nodal fault analysis for
subnetworks is presented. It is shown how this approach can be used to
evalﬁate faulty elements within inaccessible faulty subnetworks. The
objective of this work is the reduction of the number of required
current excitations and, thereby, the number of vbltage measurements.

Coates flow-graph representation of a network is used.
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I. INTRODUCTION

Fault diagnosis and automatic testing techniques for analog
circuits often require parameter identification. Recent papers on the
subject [1-16] present different techniques of parameter indentification
and/or fault region location involving the solution of linear equations.
Most of the authors assume voltage measurements, which are more
convenient in practice, and consider current excitations only.

A central problem is the formulation of a sufficient number of
independent equations subject to a specified number of excitations or
voltage measurements. For linear analog circuits, necessary and
sufficient conditions related to the network topology have been
formulated, resulting in the identification of faulty nodes or
subnetworks [12-16].

The principal aim of this paper is to develop topologically based
necessary and sufficient conditions for the evaluation of faulty
elements within a linear subnetwork under test with a reasonably small
number of excitations at a single frequency and, thereby, a small number
of measurements. The paper extends the results presented by Biernacki
and Starzyk [9] and proposes an efficient approach to the design of test
nodes. The Coates flow graph representation of network elements is used
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II. LOCATION OF FAULTY NODES AND DESIGN OF NODAL VOLTAGES
Necessary and sufficient conditions for location of faulty nodes
have been discussed [14,15] for linear networks, and more generally
[13,18] for subnetworks selected during the fault location process in a

large nework. External voltages and currents of a subnetwork may be



measured or designed through identification of nonfaulty parts of a
large network [13].

Consider the nodal equations for a nominal subnetwork isolated
during a fault location process for a large network as

1= ¢% O (1)

Four types of external nodes are associated with this subnetwork:
c-nodes, where both voltages and currents are known; p-nodes, where only
voltages are known; Y—nodés, where only currents are known; and é-nodes,
where neither voltages nor currents are known.

We assume that all the elements spanned over the nodes g and § have
been arbitrarily associated with other subnetworks and they are not

represented in (1). See Fig. 1.

Solving (1) we obtain
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where ¢ represents internal nodes and Z_, denotes a submatrix of (lf,o)-1
obtained by the intersection of rows a and columns b.
For any subnetwork, with card a > card §, we obtain an internal-

self-testing condition [18]:
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Let Z denote a submatrix of (Yo)"1 obtained by the
~a1...ak, b1"'bm ~

intersection of rows a1 u ?2 Ueoeo U ak and columns b1 u b2 U ... u bm'



Result 1 (Fault-free subnetworks)

If the system of equations (3) is consistent and

] > Rank[Z

a8, BX Zyg, ol (#)

Rank[Z
where x € o u Y u g, then there are no faulty elements incident with
nodes x.

According to Result 1, only the elements spanned over the external
nodes g u § can be faulty. Because we have associated these elements
Wwith other subnetworks we can declare the subnetwork under consideration
as fault free. Equation (3) can then be solved for EB and LG, hence all
the voltages of this subnetwork can be calculated. Consequently, the B-
and G&-nodes of this subnetwork become a-nodes of adjacent subnetworks.

Let nodes n¢ o u vy u ¢ be faulty, and card a > (card §) + (card

n . Let
v 1% 1B
aB A |~ ay A~ BS A |~
Y, = VB ’ £ = IY L = EG

and let £n be the vector of node currents representing faults.

Result 2 [18] (Faulty subnetworks)

If the system of equations

aB ayY _ BS n
L7 - Zeg,ay & " kag,gs L *Rag,n k ()
is consistent and
Rank[gas’sanx] > Rank[éas’sal + card 7 , (7

where x € au y u z-n, then the only faulty elements can be those span-
ned over the set of nodes F = nu B u 8. These nodes are called faulty
nodes although there may be no faulty element incident with B and 6.

s
Assume that by solving (6) we have evaluated LB, I and Ln. We can

again proceed to evaluate all voltages of the subnetwork under
consideration and use the information obtained to analyse the adjacent

subnetworks.



Let Ia denote a matrix obtained from the unity matrix of the same
dimensions as thé XO matrix by extracting columns which correspond to
elements a. Ia Ea will transform vector Ea into a vector with the
dimension of IO, where nonzero elements can only appear in rows
corresponding to the elements of Ea. For example,

0]

a +Q

1% 1% -

1O U+

For the assumed faulty subnetwork, (1) can be replaced by

I=YUV, (8)

where

1810, a1 -
= 1% 190 L v YO, oF F 9)
n
IF = E' (10)
and

v=v 4oy (1)

is the vector of nodal voltages in the faulty network. After solving
(6), we know the left-hand side of (8) and we can solve (8) to get V.
For all independent current excitations we are, therefore, able to
calculate voltages in the faulty network if the conditions of Result 2
are satisified. These voltages, which would otherwise have to be
measured, are required by the approach presented in [9] for evaluating
all the elements of a network. In the present paper we only need to
evaluate unknown elements, i.e., those which are spanned over the faulty

nodes.



III. ELEMENT EVALUATION FOR SUBNETWORKS SPANNED OVER FAULTY NODES

The elements spanned over faulty nodes may form separate subnet-
works within a given subnetwork, as shown in Fig. 1. The subnetworks
may be remote and inaccessible from the point of view of direct
excitation and measurement. We can formulate conditions for element
evaluation within each of these subnetworks separately and combine the
results obtained to establish conditions for the whole network. These
conditions will show which external nodes should be excited
independently to evaluate all faulty elements.

Consider a linear subnetwork spanned over N faulty nodes. Let the
N-dimensional vectors £s and ls be subsets of I and V, respectively,

corresponding to this subnetwork. We can then write

¥ z; = 3;’ (12)
for the i th excitation. Our goal is to evaluate Is and then the
element values. Although we concentrate our discussion on the nodal
equations, it 1is applicable to any other description based on an

independent set of cut-sets (see [9]).

For N independent excitations, we can write a matrix equation

where the square matrix
A 1 2 N
!t = [!s !s oo !S] )
is the matrix of voltage responses and the square matrix
A 1 2 N
Et = [ES Es ‘e Es] (15)

is the matrix of current excitations. From (13), we find the unknown

matrix Ys as

=1 !—1

t (16)

provided that !t is nonsingular. As a consequence of equations (13) and



(16), the following result provides sufficient conditions for the

evaluation of XS.

Result 3 [9]

If a given linear subnetwork can be described by the nodal equation
(12) and the current excitations are chosen in such a way that Et is a

nonsingular matrix, then Vt is also nonsingular and the solution (16)

exists.

Proof of this result follows from equation (12) since N = rank Zt <
rank Xt < N.

Thus, in order to identify the values of all elements of IS, we
could arrange for N independent current excitations, design or measure
all nodal voltages and then apply equation (16).

In order to perform the least number of tests, however, we must
obviously eliminate whole columns of Xt' We propose a systematic way
which enables us to identify tests sufficient for component evaluation.
The method assumes that all components have nonzero values.

Conditions for Sufficient Tests

Equation (13) can be rewritten in the form
T.,T __T

Xt Y = Et' a7
Consider the product of Vz and the jth column of zz. We have
= ~ =
o1
1 " n 1
Xs yj1 Isj
T
2 2
Ys Y52 Ts
T . L] .
Yo Ly = = \ (18)
T
VN V. IN.
~S JNJ sj
— J - - -




where I;j is the j th element of the vector ;;.

Let the k unknown elements of y. be identified by the set of

~J
indices Bj = {31, ooy Jk}. We denote the set of elements yji’ i< Bj a

reduced cut-set. Transferring the known terms from the left-hand side

to the right-hand side of (18) and adjusting I;j appropriately we

rewrite the equation as

B n
Vs . Iy
T 0
V2 Vs I
~S 331 2]
T
Yt !B. = . . = . , (19)
J . .
. Y.. .
33,
T
N
LY'S Ju 0 . _ INJ .

where Iij is equivalent external current for a reduced cut-set at the
jth node due to the i th current excitation.

In order to determine the elements yjj1’ ey yjjk, we can solve a
subsystem of (19) given by

— = ~ =
Y53 L
1 1
vite. | B, ) - . , (20)
~] J
N I, .
| ‘]‘]k_; L lkJ B

where the k equations are chosen from (19) in such a way that the square

submatrix YE{Cj | Bj]’ obtained as the intersection of rows Cj = {11,



ey ik} and columns Bj’ is nonsingular. See Fig. 2 for an

illustration. According to relationship (13), the matrix XE [Cj:Bj]
can be defined as

T , LT

Xt [Cj'Bj] = Lt

where EE [Cj:.] consists of rows Cj from Ez and (:{z)—1 [.}Bj] consists

1 T\-1 |
[Cyie] (17 [+iB1, 21)

of columns Bj from (zg)"1. On the basis of (21) and the Cauchy-Binet
theorem [19] we may formulate the following result.
Result 4
The matrix [E [Cj:Bj] is nonsingular if and only if
34, det ;;f [C;1A;] 4 0 and det Y (A;iB)) 40 , (22)

where XS (Aj:Bj) denotes the submatrix of Is obtained by removing rows
Aj and columns Bj (see Fig. 2).

Consider a sequence of sets Bj' j = j1. coey jM’ which corresponds

to a sequence of reduced cut-sets of the current graph of the

subnetwork. Only those reduced cut-sets will be considered for which
external currents, if any, can be specified. Based on (13) and (20),
the following result can be summarized.
Result 5
Independent excitations which appear at or are applied to the
subset of nodes A € {1, 2, ..., N} are sufficient for the identification
of all elements of Is if and only if
¥B, 3c, Ja,chdet I [C;iA;]1 #0 and det Y (A | B £0, (23)
where
card Aj = card Bj = card Cj’ (2u)

Nodes A in Result 5 can be chosen from a remote inaccessible subnetwork

therefore we call them injection nodes. For each subnetwork the set A

must be a subset of the external nodes of this subnetwork.
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As a consequence of (24), we have the following corollary.
Corollary 1

card A > max card Bj . (25)
J

It is seen from (25) that the choice of the sequence of Bj is crucial

for the minimization of the number of sufficient tests.

Now, in order to characterize Aj feasible for a given Bj' we
consider topological equations for the nodal admittance matrix.
Y o= A Y AL, (26)

where the element ij of A is equal to 1 if the jth edge is directed
towards the ith node, otherwise zero; and the element ij of A+ is equal
to 1 if the jth edge is directed away from the ith node, otherwise zero;
ie is a diagonal matrix of element admittances.

The submatrix of Zs obtained by removing columns Bj can be

expressed as

Y(«1B)=x Y AT, 27)

1]
where A+ is obtained from &+ by removing rows Bj‘ In the Coates graph,

this corresponds to deleting all the edges outgoing from nodes Bj-

Similarly,

' '
zS(Aj i Bj) =2 Y A ’ (28)

New ~AQ g
!
where )\ is obtained from A_ by removing rows Aj’ In the Coates graph,
this corresponds to deleting all the edges incoming to nodes Aj’

Let G denote a directed Coates graph [17] and let P denote a set

of node pairs of G, namely, P ={(Vs1’ve1)’ ooy (vsk,vek)}, where vpl #

Vom for £ # m (p,n = s,e).

Definition [20]

A k-connection of a graph'G is a subgraph c¢_, of the graph, such

P

that elements of cP form a set of k node-disjoint directed paths and
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node-disjoint directed circuits incident with all graph nodes. The
starting point and the endpoint of the paths are indicated by the pairs
of P.

Let us consider the Coates graph G(Aj ] Bj) obtained from the graph
of the given subnetwork after deleting all the edges incoming to nodes
Aj and all the edges outgoing from nodes Bj' The following theorem can
be proved on the basis of the Cauchy-Binet theorem [19] and the concept
of the k-connection [20].

Theorem 1
If det zs(Aj ] Bjs # 0, there exists in G(Aj | Bj) at least one k-
connection Cp (see Fig. 3), where
P = {(vs, ve) H vy € Aj' Vg € Bj} (29)
and
k = card P = card Aj = card B, . (30)

J

(vs. ve) represents a path directed from the node vS to the node Ve or

isolated node when vg = ve, and N denotes all nodes of the graph. The

condition stated in the theorem is sufficient almost everywhere, which

means that if a specified k-connection c_ exists then det Ks (AjIBj) £0

P
for almost all values of element admittances.
Proof

According to the Cauchy-Binet theorem and relation (28), we have

det Y (A, | Bj) = I det CTedet 7, (31)
- 1
where C is a major submatrix of A_'Ze with order equal to (N - card Aj)
1
and g+ is the corresponding major submatrix of A+T. If det YS(Aj ] Bj)

# 0, then there exists at least one pair of corresponding determinants,
1
both different from zero. A major determinant of A_-Xe is different

from zero if and only if there exists one nonzero element in every row
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of the chosen submatrix (chosen set of columns). This corresponds to
the set of (N - card Aj) edges, such that every edge has a different
endpoint, belonging to the set of nodes (N - Aj)' The corresponding
submatrix is different from zero if the same edges have different
origins, belonging to the same set of nodes ( N-Bj). Now it is easy to
check that these edges form a K-connection, as stated in Theorem 1. The
determinant of XS(Aj i Bj) equals zero, in spite of having nonzero
components in (31), only for particular element values. So, if a

specified k-connection c

P exists then Zs (Aj i Bj) £ 0 with conditional

probability equal 1.
Remark
If rank (Ez [«}1A]) = card A, where EE [«iA] consists of columns A

from IT then

~t'
¥A,c A Jc, det IT [C.IA.] #0 . (32)
J J ~t "3

As a consequence of Theorem 1 and the Remark, we have an important
corollary.
Corollary 2

To satisfy (23), we should find a set Aj such that, after deleting
all the edges outgoing from nodes Bj and after deleting all the edges
incoming to nodes Aj’ there are no 1isolated nodes in the set
N-(AjnBj).

Theorem 1 does not guarantee that ZS(AJ d Bj) is nonsingular. It
may, however, be singular for particular element values only. If we
know the nominal values of the elements, then we can easily check
whether the injection nodes Aj are sufficient for the solution.
Definition

A node is said to be a corner if there exists a complete subgraph
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containing all the edges incoming to the node as well as the edges
having the same weight as any of the incoming ones.

It follows that there may exist edges outgoing from a corner to
other parts of the graph. Also, the order of the complete graph is not
defined. 1In particular, it may be a complete graph of zero order (see
Fig. l4a).

Based on Corollary 2, the following theorem can be proved.

Theorem 2

All the corners must be injection nodes.
Proof

Assume that a corner is not an injection node. If we identify an
edge within the subnetwork incident with the corner, then every reduced
cut-set containing the edge must contain all the nodes of the complete
subgraph. After deleting all the edges outgoing from the nodes of this
reduced cut-set, the corner will be an isolated node, and if it is not
an injection node, we obtain an isolated node in the set N - (Aj n Bj)
and a contradiction to Corollary 2.

Thus, the number of corners influences the minimal cardinality of
A. In order to estimate the cardinality of A, the following remarks may
be helpful.

Remark 1 card A > order of the maximal complete subgraph.

Remark 2 card A > minimal incoming degree in the remaining subgraph
after deleting all edges incident with corners.

The incoming degree of a vertex is the number of edges incoming to this

vertex.

Location of Injection Nodes

An optimal selection of injection nodes could be done in a combina-
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torial way, where different sets of reduced cut-sets are considered and
then different combinations of injection nodes are checked. However,
for large networks, it may be quite tedious to check the conditions of
Theorem 1, even if reduced cut-sets and a set A are known.

A very efficient heuristic algorithm which utilizes theoretical
aspects discussed at this section was presented in [9]. It allows us to
find a nearly minimal set of injection nodes in a time which depends
linearly on the subnetwork size. Since the conditions stated in Theorem
1 must be satisfied, the algorithm localizes injection nodes in such a
way that there exist a set of separate paths from injection nodes to the
nodes of each reduced cut-set, as illustrated in Fig. 5.

In particular cases, when the number of injection nodes is too
large because of the subnetwork topology we can reduce them by adding
some known elements to the subnetwork under consideration. The same
argunent holds when we have too many corners in the subnetwork (Fig. 6).
These remarks concern the case when we identify elements of a given
network using voltage measurements at all nodes [9] as well as
evaluation of faulty elements within remote, inaccessible subnetworks.
In the latter case, adding the known elements may be equivalent to
considering an augmented subnetwork which will contain faulty nodes as
well as some nonfaulty ones.

The following examples explain how to use the results obtained from
the test finding algorithm to identify all network elements.

Example 1

The subnetwork whose parameters we want to design and its Coates

graph are shown in Fig. 7 (node 0 is chosen as the reference node) . Let

us assume for simplicity that the independent current excitation Et = 1.
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This can be easily achieved when elements are identified through direct

voltage measurements. There are 3 corners in this network - nodes 1, 6

and 7. Using the algorithm presented in [9] we find that they consti-

tute a sufficient set of injection nodes for this network. Table I

illustrates the reduced cut-sets considered and elements associated with

them. For identification of network elements, we apply excitations at

nodes 1, 6 and 7. The nodal voltages measured with unit excitations at

different nodes are shown in Table II. We formulate equations (20) for

successive reduced cut-sets and compute element values. The first
equation is as follows:
V11 V12 Y1 + Y2 i 1 o 0.77641 0.32925 Y1 + Y2 1
V61 V62 - Y2 0 -0.38775 -=1.1633 - Y2 0
and we obtain Y1 = 1, Y2 = 0.5.
The second equation
~ ~ 7
Vg Vip Vi3 Vyy) - i 0
V61 V62 V63 V6u Y2 + Y3 + Yu + Y5 = 0
Y Y2 Vo3 T - ¥5 0
- - J
- - Yu J
can be transformed, because Y2 is now known, to
— — - -
Vig Vig Vay |[ Y3+ Yy + Y5 (Vpy = V) Ty ]
V62 Vo3 Veu - 15 = | Wy = Ve2) ¥
V72 V73 \17,4 - Y4 (V71 - V72) Y2_J
L— — e ) —
or
- < r ~ =
0. 32925 -0.006477 0.14264 Y3 + Y + Ys-l 0.22358
-1.1633  -4.6575  —1.4699 - X =| 0.38778
0.048524 0.17534 0.076466 - Y,4 -0.016175
 — - - L. —
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and we obtain Y3 = 0.333, Y,4 = 0.25, Y. = 0.2.

5

Continuing the procedure we design all the other network elements

as
Y6 = 0.167, Y7 = 0.143, Y8 = 0.125, Y9 = 0.111, Y10 = 0.1,
Y11 = 0.0909, Y12 = 0.0833, Y13 = 0.0769, Y14 = 0.0714,
Y15 = 0.0667, Y16 = 0.0625, Y17 = 0.0588, 8n = 8.5.
Example 2

We apply the algorithm proposed to the passive grid circuit shown
in Fig. 8. In such circuits, the number of nodes n = k2 and number of
passive elements e = 2k2 - 2k, where k= 2, 3, ... We assume that the
voltage at each node is known. Using the algorithm described in [9] we

find that no matter what the size of the grids three tests at a single

frequency are sufficient for determining all the element values.

IV. ELEMENT EVALUATION USING EXTERNAL EXCI’fATION NODES
Let us assume that we have distinect, remote, inaccessible faulty
subnetworks S1, ey sf spanned over faulty nodes within the subnetwork
under investigation (see Fig. 9). According to Result 2, the number of
external nodes, where both voltages and external currents are known,
have to satisfy the relation

card a >
i

n. , (33)

1 1

LU o B}

where ni is the number of nodes in the subnetwork Si' We can apply the
approach discussed in Section III to each subnetwork S1, co oy Sf
separately to identify sets of injection nodes A1, ceey Af at which

independent current excitations could be forced. With independent
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excitations appearing at injection nodes, we are able to evaluate all
elements within S1, N Sf.

Let T be a subset of the external nodes of the subnetwork S, which
is defined by (2). Let G denote the Coates signal-flow graph of S. Let
us assume that we have evaluated faulty currents and designed nodal
voltages as discussed in Section II. Let ki = card Ai.

Lemma 1

If there exist ki‘simultaneous and separate paths in G from T to Ai
not incident with other Si nodes, then all the elements of Si can be
uniquely identified.

Proof is based on the recognition of each cut-set in Si as a
reduced cut-set in S.

Corollary 3

If the Lemma 1 is satisfied for all Ai, then T can be chosen as a
set of test nodes where independent current excitations are applied, to
evaluate all faulty elements in S.

We are interested to have the cardinality of T as small as
possible, to minimize the number of tests and designs of nodal voltages.
Corollary 4

card T > max k. (34)
The main goal of the approach presented is to find ki as small as
possible, so the technique described guarantees identification of faulty
elements effectively. For most practical cases, card T is between 2 and
5.
Remark
For identification of faulty elements within remote inaccessible

subnetworks we design currents flowing into these subnetworks from the
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surrounding network using the designed voltages and nominal element
values first, and then proceed with element evaluation within each of
them as discussed.
Example 3

Assume that the nominal element values for the network from Fig. 7

are as follows:

Y, =1, ¥, = 0.5, ¥, = 0.3, ¥, = 0.32,

Ys = 0.2, Yo = 0.167, Yy = 0.143,

Y8 = 0.125, Y9 = 0.1, Y10 = 0.2, Y11 = 0.1,

Y,, = 0.0833, ¥,5 = 0.0769, ¥;, = 0.0714,

Y5 = 0.0667, Y, = 0.0625, Y. = 0.0588, g, = 8.5.

Four external points are available for voltage measurements and current
excitations at the nodes 1, 3, 4 and 7. Assume for simplicity that all
external nodes are of the & type. Using the approach discussed in
Section II we have found three faulty nodes, namely, 2, 4, 6 and
evaluated currents }n. n = {2, 4, 6}. The subnetwork spanned over the
faulty nodes is a simple ladder network. With the help of the method
discussed in Section III we can easily locate nodes 2 and 6 as injection
nodes sufficient for evaluation of the ladder elements. According to
Lemma 1 external current excitations sufficient for element evaluation
can be made at nodes 1 and 7.

Now we simulate the nominal network with independent (unit)
excitations at nodes 1 and 7 separately and evaluate currents En from
equation (6). With those currents and independent current excitations
we excite the nominal network to obtain the current voltages as in rows
1 and 3 of the Table II. Elements Y2, YS’ Y7 and Y8 are nominal as they

are not spanned over the faulty nodes. Using the voltages from Table II
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we calculate external currents for the ladder subnetwork spanned over

faulty nodes as equal to

112 = (V11 - V12) Y2 + (V13 - V12) Y5 = 0.1564,
I14 = (V13 - V14) Y7 = -0.02135,
I16 = (V13 - V16) Y8 = -0.005633.
Similarly we can get
172 = 0.009188, 174 = 0.01414, I76 = 0.01049.

Equation (20) for the first reduced cut-set has the form

vV v

12 Vg || T3ty [T
Y72 T Yy I72
e
Therefore,
[(0.32925 0. 14264 T+, 0. 1564
0.048524 0.076466 -Yu 0.009188
e
and we get Y_ = 0.333 and Yu = 0.25. In the next two reduced cut-sets

3 °
elements Y9, Y11

voltage measurement as well as evaluated and nominal elements.

and Y10 are evaluated respectively, with the help of a

V. CONCLUSIONS

The method presented enables us to find a reasonably small number
of excitation nodes which are topologically sufficient for the
identification of all faulty parameter values of linear analog
subnetworks. This can be achieved by searching for a "good" sequence of
reduced cut-sets within the subnetworks spanned over faulty nodes, whose
elements are consecutively determined from (20). The element evaluation
approach as presented in Sections III and IV is easy to program and
gives a linear dependence of computational effort on the size of the

network. The notion of corner is particularly important, since it



- 20 -

influences the number of necessary injection nodes independently of a

sequence of cut-sets. The number of excitations can be reduced by

adding external elements or some nominal ones in the case of

inaccessible subnetworks.
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TABLE I

REDUCED CUT-SETS

Elements in the reduced cut-set

Step i Nodes in reduced cut-set to be found
1 1,2 Y1,Y2
2 2,3,4 Y3,Y4,Y5
3 3,4,6 Y7,Y9,Y11
y 3,6 Y8’Y1O
5 3,5 Te
6 5,7,8 Y12.Y13,Y1u
7 7,8 Y15,Y17
8 6,8 Y.i6'8m
TABLE II

NODAL VOLTAGES FOR EXAMPLE 1

Voltage at node no.

Excitation
at the 1 2 3 4 5 6 7 8
node no.
1 LTT641 .32925 -.0066477 .14264 -.57149 .038418 -:.91631 -2.0943
6 -.38775 -1.1633 =U4.6575 -1.4699 -15. 751 .89959 -22.757 -50.343

7 .016174 .048524 .17534 076466 .47525 .091385 U4.5309 =-2.126
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FIGURE CAPTIONS

Fig. 1 Illustration of remote, inaccessible faulty subnetworks
(shaded) spanned over faulty nodes.

Fig. 2 Illustrations of equation (20) and Result 4.

Fig. 3 Example of required 3-connections.

Fig. 4 Examples of corners. Corners are denoted by v.
Fig. 5 Illustration of the paths required.

Fig. 6 External path from an injection node to a corner.
Fig. 7 (a) Faulty network, (b) Coates graph.

Fig. 8 Grid circuit.

Fig. 9 Inaccessible faulty subnetworks (shaded).
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Fig. 3
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