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Abstract

The paper presents a new complete method for signal flowgraph
analysis of large electronic networks. Two efficient methods of flow-
graph formation that can easily represent decomposed networks are
introduced. Hierarchical decomposition approach is realized using the
so-called upward analysis of decomposed network. This approach removes
the limitations on topological analysis and allows to obtain fully
symbolic network formulas in time which is linearly proportional to the
size of the network. The approach can be used to obtain symbolic

solution of any linear system of equations.
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I. INTRODUCTION

The notion of topological analysis of electrical networks is

connected with the determination of the network characteristics from the

knowledge of elements and their connections (network topology) without

applying the numerical methods of solving system of equations. As a
result, for linear, lumped, stationary (LLS) networks, we get the
transfer functions defined as the ratio of the Laplace transform of the
input and output signals. The result can be presented in one of the
following forms:

- 1in all-symbolic form, as a function of all network parameters;

- in semi-symbolic form, when only some parameters are kept as symbols;

- in a rational function form of complex frequency s;

- in tabulated form of values of transfer function for given frequency

points.

Recently, the important problem of analyzing large networks was
discussed in many monographs and articles [8,11,24,25,48,69,70,71,90,96,
101,126]. The main aim of these papers was to improve the computational
efficiency (i.e. accuracy and time of computation, memory consumption,
convergence of the algorithms, etc.) and gaining the full qualitative
information about the network. The latter goal could be achieved by
such a method of analysis that provides the results in all- or semi-
symbolie form [2,41,73,102,103,106,1071].

As the topological methods met the difficulties in analysing large
networks, the other numerical approaches have been extensively
elaborated and utilized such as: numerical methods for solving system

of equations [10,24,46,49] and numerical methods for solving the



eigenvalues problem [18,55,72,76,91,99,108].

This paper is consecrated to the problems of topological analysis
of 1large 1linear networks. We only consider the Coates flowgraph
representation of the network. Similar approach is possible with other

representations (e.g. unistor graph [301]).

II. GENERAL CHARACTERIZATION OF TOPOLOGICAL METHODS

Methods of topological analysis started in the nineteenth century
with the Kirchhoff's works [60]. These methods have been intensively
developed in the sixties [9,16,21,30,35,39,54,89,117] when their
expansion was connected with the popularization of the computer
techniques. At the same time, the methods of abstract algebra have
been elaborated. These methods allow the algebraic notation of the
network topology and formalization of topological operations. It is
worthy to mention the interest in Wang algebra [37,119,120,124] and
Bellert algebra of structural numbers [3,4,5,6,42].

In that period one of the most important advantages of topological
methods was the possibility of getting the transfer function directly
from the network model [104]1 or the signal flow graph [29]. It was
possible to study the direct impact of any network element on the
results [29,771]. The efficiency of computation was considered as
secondary because of the quick development of the computer techniques.

A special feature of topological methods., independently on the
utilised graph representation, is the possibility of determination of

network transfer function in a form of rational function. Numerator and



T

denominator of this function are expressed as sum of products of graph

edges weights [19]:

L, (1)

These weights depend directly on the type and value of network
elements.

Equation (1) is obtained from the solution of a set of linear
equations describing the analysed network:

AX = F . (2)

It is well known from the linear algebra that the knowledge of deter-
minant and cofactors of A is sufficient to determine the solution X of
the system of equations (2).

Different topological representations take advantage of the

relationshiﬁ between the network topology and the coefficient matrix A.

For example if élis the nodal admittance matrix, then

T
A=k As s (3
where
Xb - diagonal matrix of element admittances
&1, &2 - reduced incidence matrices [36] of graphs representing the

network or their modifications obtained when some elements are
put to zero.

Matrices A1 and xz have the same number of rows and columns.

With different topological representations matrices ) , X2 have the

following meaning:



1. Incidence matrices for current and voltage graphs [104] or nullator

and norator graphs [32,33] (pair of conjugated graphs). In the

particular case of RLC networks, 51 = AZ'

2. Unistor [30] or dispersor graph [113] (directed graph). In the

case of the unistor graph, &1 is the incidence matrix and 52 is obtained
by setting to zero all -1 elements in 51. For the dispersor graph 52 is
the incidence matrix of the graph and 51 is obtained by setting to zero

all -1 elements of 52'

3. Coates graph [29] or Mason graph [77] (signal flowgraph). Ay is

obtained from the incidence matrix by setting all +1 elements to 0 and
changing the signs of other elements. lg is obtained from the incidence
matrix by setting to zero all -1 elements. For Mason graph equation (2)
is replaced by A'X—F=X and A" = AsI.

The relationship between the network and its topological represen-

tation is generally established by determining topological models of the

network elements. This allows the determination of the graph directly
from the network without the formulation of system of equations. Topo-
logical models are normally formed on the basis of the nodal admittance
matrix (or indefinite admittance matrix [26]). Such approach gives
direct representation for two-terminal and VCCS elements. Representa-
tions of other elements may be derived by combining the above two
elements. However, this leads sometimes towards too much complicated
models. For a pair of conjugated graphs, it is possible to get
independent models for all basic elements of linear active networks

[7,13,32,34,1121.
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Topological formulas which permit the computation of the determi-
nant and cofactors of matrix A of (2) are derived from the Binet-Cauchy
theorem [36] applied to (3). 1In this theorem, if Q and R are matrices

with the dimensions kxm and mxk respectively and k<m then

det (QR) = Ddet Q . . detR'Z K, )
14 ...4 1277k
EPYERE
where
Q. . = submatrix of Q formed of columns i ,... i ,
~i ,... 1 1 k
1 k
i?"" i
R - submatrix of R formed of rows PEERE ik ’

1112,... ik - combination of k elements out of m.

It can also be shown that the determinant of main submatrices of
incidence matrix differs from 0 (and equals +1 or -=1) if and only if we
deal with the incidence matrix of a tree [104].

In accordance to the Binet-Cauchy theorem the determinant of matrix

A of (3) for the chosen representation is equal to:

1. Algebraic sum of complete trees weights [63,88,104] for current and

voltage graphs (or nullator and norator graphs) when the representation
by pair of conjugated graphs is used. A weight of a complete tree is
equal to a product of all tree edge weights, and the tree sign is equal
to the product of corresponding main determinants of &1 and 52.

2. Sum of directed trees weights [19] in the case of directed graph

representation. These trees are directed towards a chosen reference
node. In the unistor graph it is a consequence of nonsingularity of a

submatrix of bz, corresponding to a set of edges such that from each



node except the reference there is exactly one starting edge. In the
dispersor graph we have the similar nonsingularity of submatrix of &1.
A weight of a tree is equal to the product of all tree edge weights.

3. Algebraic sum of connection weights [29] when the representation by

signal flow-graphs is considered. In the Coates graph a connection is a

set of disjoint loops incident with all graph nodes. A weight is

defined as the product of all edge weights and a sign is equal to
(—1)lp, where 1p is the number of loops in the connection.

Matrices 51 and 52 are formed from the incidence matrix by setting
to zero respectively 1 and -1 elements. They have at most one non-zero
element in each column. It is then obvious that maximal nonsingular
submatrices of 51 and 52, will have exactly one non-zero element in each
row and column. A pair of such submatrices correspond to a subgraph in
which each node is incident exactly with one incoming and one outcoming
edge. It is equivalent to the statement that this subgraph is a
connection of a flowgraph. This argumentation can be considered as
proof of Mason rule [77,78] for a determinant of Coates graph. A proof
of Mason rule that is recognized as a particularly elegant can be found
in a paper by Kim and Chien [59].

Realization of topological formulas requires the knowledge of all
graph trees or connections. To make the computations efficient one
should use the algorithms which generate trees or connections rapidly
and without duplications. Only in this case, it is possible not to
check any new tree or connection with all previously generated ones.
There are many efficient algorithms for graph trees [17,23,47,81,83,86,
95] and connections [98,118,124] generation. They form the basis of

many programs of topological analysis intended for the analysis of small



linear networks [28,29,74,84,88].

In practice, direct application of topological formulas permits the
analysis of networks with graph having about 10 nodes [261]. This
limitation 1is not the result of the small efficiency of generation
algorithms but of the great number of terms in the topological formulas
for the determinant of the coefficient matrix in (3). Even if we could
generate all terms in null time, the time needed for weights evaluation
would grow proportionally (or quicker) to the number of terms and for
relatively small networks (with about 20 nodes) will attain enormous
values.

So the direct realization of topological formulas is practically
impossible for networks having more than 20 nodes, even for the fastest
computers. The foresighted progress in the computer techniques can only
slightly move this "limit of physical realizability" of direct
topological formulas. Besides it is obvious that application of
topological formulas for networks having more than 10 nodes is much more
time consuming then the methods of symbolic analysis based on the
numerical techniques of determinant evaluation [2,12,41,121].

These are the reasons why the methods of topological analysis based
on trees and connections generation were judged by McCall and Pederson
[82] as inefficient. Nevertheless, the investigations in the domain of
topological analysis and design have been carried on [1,51,56,58,61,62,
85,87,92,94,971.

Trials of introducing methods of graph reduction [20,31,38] or
decomposition [22,44,105] to the analysis didn't provide the universal
efficient programs of analysis and were poorly estimated in paper by

Alderson and Lin [2].



The investigations on the possibility of application of decomposi-
tion techniques have been continued [123]. In the paper by Chen [22],
the problem of trees generation has been solved for the case of n-node
bisection and in Konczykowska and Starzyk [68]1 for the general case of
simple decomposition. These achievements were the basis of the method
and the program of topological analysis of networks represented by a
pair of conjugated graphs [63,64].

Computer realization by simple decomposition method allowed an
increase by 2-U4 times the size of analyzed networks. But still the
topological analysis of large networks having more than 100 nodes was
unreal.

Besides, the realized method for simple decomposition had m-any
limitations on the graph partitioning, and computations were

considerably complicated in the case of decomposition with defect [631].

An important progress in the damain of topological analysis has

been achieved with the introduction of hierarchical decomposition. 1In

the paper by Starzyk [111] the method of signal flowgraph analysis has
been presented and in Starzyk and Sliwa [110,114] the hierarchical
analysis of directed graph has been discussed. Based on these methods
the programs of topol;)gical analysis of 1large networks have been
elaborated [15,65,67 1.

Further improvement has been attained when the upward hierarchical

method was introduced [14,66]. The details of this method will be
presented in the paper. The main aim of the investigations is to reduce
the time consumption from the involution dependence for the previous

(downward) decomposition to the linear dependency.
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III. SIGNAL FLOWGRAPH OF A NETWORK

There are many ways of forming a flowgraph for an electrical

network. When the computer techniques are applied, the primitive [79]

or compact [26] Mason graph is the most frequently utilised. A
primitive graph illustrates the set of element, KCL and KVL equations.
Graph nodes represent all element voltages and currents. Compact graph
can be obtained from the primitive graph by elimination of nodes
corresponding to the currents in the branches of chosen tree and
voltages of the branches of corresponding cotree [36]. The theory of

matrix Coates graphs [27] has been elaborated to obtain topological

representation of matrix operations. These graphs are specified by
matrix equations (2) with the submatrices as coefficient matrix
elements, which leads to the definition of a graph representing the

matrix system of equations

(2 a oo 1[x ] [

~11 ~12 ~1n ~1 1
~21 522 Tt £2n 52 E2

. e =1 =0. (5)
Aot Anz o A || 4y En

JL4d v
In a similar way, it is possible to define the Mason matrix graph
which represents the following equations:

AX-F =X (6)
with submatrices as matrix elements, and éM = A+I. The nodes of Mason
or Coates matrix graph correspond to the subsets of variables (voltages
or currents) and submatrices éij (i, = 1,2,..n) are the weights of

edges. In Fig. 1 primitive and compact Mason matrix graphs are
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represented.

Symbols in the figure have the following meaning:

E - vector of independent voltage sources, they must be tree
branches

d - vector of independent current sources, they must be cotree
branches

ET'ET - vectors of voltages and currents in remaining tree branches

QL,SL-vectors of voltages and currents in remaining cotree
branches

ET’IL - matrices of element equations (for RLC networks these

matrices are diagonal).

Evidently a structure of a flowgraph depends on the chosen tree and
this leads to various possible flowgraphs for any electrical network.
When choosing the tree in order to form a flowgraph, we should try to
obtain a graph with the simplest structure and the minimal number of
edges. It is not always possible to be satisfied with the graph
obtained on the basis of chosen tree.

An inconvenience for both primitive and compact types of graphs is
the necessity of choosing the optimal tree, and the structure of the
resulting graph is difficult to anticipate. Moreover, it 1is not
possible to create the whole flowgraph from the models of elements or
subnetworks. This disadvantage is an essential limitation to the upward
hierarchical analysis (see Section VI). The upward analysis makes
possible the sequential analysis of subnetworks when the size of the
whole network overflows the camputer memory.

Two other methods of flowgraph formation, useful for decomposition
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analysis, are presented. Among different flowgraphs, representing the
analysed network we should choose easily decomposable ones. It is

better to avoid k-connected graphs [36] (with k>4) because the

topological analysis of such graphs, in spite of application of
decomposition techniques, is very time-consuming.

The efficiency of computation is independent of whether the Mason
or Coates graph representation is chosen. The Coates graph represent-
ation 1is more convenient for computer calculations because of the
constant number of edges in a connection, for a given graph. This is
the reason for the application of Coates representation in the methods

of analysis presented in this paper.

Linear System of Equations and Its Coates Graph

In general, the Coates flowgraph can be formed not only for
electronic circuit but for any linear system of equations having the

form (2).

Definition 1 [19]

A Coates graph associated with a square matrix é = [aij] being a
matrix of linear system of equations

AX = F ,

~r~

where

X = [X.y ooo x 10, F = [f,, vou £ 17
~ 1 n ~ 1 n

is a flowgraph with n nodes. Nodes correspond to variables x1, ces xn.

A Coates graph edge goes from node x_. to node xi having a weight equal
J

Coates graph associated with matrix é will be denoted by Gc(é).
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Example 1
Coates graph associated with the system of equations

' - - — M

0 1 2 (;1 8
y =

3 5 X, 0 (7
6 0 7||x 9

— -.J—3_J —_— -

is shown in Fig. 2.
We have the following connections in this graph:
{6,2,”’}, {7’113}! {6,511}

The following theorem, equivalent to the Mason's rule [78], can be

concluded from the Binet-Cauchy theorem [361].

Theorem 1 [19]

The determinant of a matrix A is given by
1
n P
det A = (1) I (-1)  detp, (8)
peP
where
P is a set.- of connections of Gc(é),

1p is the number of loops in connection p,

det p= 7 y, and y is a weight of an element e.
eep © €

If weights of all elements are different there are no reducible terms in

the dependence (8). det A is sometimes called a determinant of a graph

GC(A), and det p a determinant (weight) of a connection p.

In an aim to solve a system of linear equations let us consider the

following extended square matrix

=
i

2

o
L
e



T

where: A and F are as defined in (2) and m, L = [9,1, Lo1 eee Lyl
consist of symbolic elements.
Matrix Coates graph Gc(£u> is shown in Fig. 3.
Let éi denote the matrix obtained by replacing the i-th column in

matrix A by the vector F.

Remark
Determinant of matrix Au calculated from the formula (8) can be

presented in the form
n
det Au =mdet A+ I &, det 51 . (10)

Conclusion:
Taking into account equation (10) and Cramer's formulas, the

solution for system of equations (2) with nonsingular matrix é can be

presented in the form

1
T (=1) Pdet p
det A; pePy
X T 9o i = T i=1,2,...n , “an
g (=1) P det p
peP

where weights of additional edges m, 21, e zn are equal 1;
Pm - set of Gc(Au) connections enclosing edge m;

Pi - set of Gc(Au) connections enclosing edge zi.

Example 1 (cont.)

For the system of equation (7) matrix éu is of the form
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(mi s L. &)

m;1 2

81 0 1 2
A: : .
~u 0! 3 4 5

]

]

L9t 6 o 7]

The associated graph Gc(gu) is shown in Fig. 4. According to the
formula (8), we have
det Au = _mo1o3o7 + mo10506 - m020u06 + 2'1-8.)4.7 + 11-10509
-0 e2elleQ o £ e8eXe L 8¢5 2.00_2-0-_2.-}406 12
1 2+4-9 5 8237 + 5 8+5°6 + 5 2°3+9 3 1¢3-9 3 8 (12)
After ordering terms in (12) in the form of (10), any unknown variable

can be easily calculated (as in (11)). For example,

) 14349 + 8e4.6
X3 T 9,307 = 1+546 + 2.4.6 °

If some of the unknown variables xi are not to be calculated, the

corresponding edges Zi are removed from the extended graph.

Transitor Representation

As a convenient way of forming the signal flowgraph one can imagine
the connection of models of such basic elements as two terminal and
VCCS. These models can be obtained from the admittance equations. To
reach this goal the notion of pseudo two-terminal transitor has been

introduced.

Definition 2

A transitor is a pseudo two-terminal satisfying following equations
(Fig. 5)
i =yv , (13)

i =0, (148)
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where: Vm' v potentials of nodes m and k

k

currents from nodes m and k

[

-
[N
1]

admittance (weight) of the transitor

<
1]

In practice a transitor, as well as an unistor, can be described as
a VCCS - Fig. 6a. In Fig. 6b, the unistor model for a transitor is
shown. In Fig. 7, the transitor models for two-terminal and VCCS are
presented.

Transitor models can be connected together resulting in the
directed graph G with given weights of edges. The obtained graph has

the structure similar to the structure of the analysed network.

Lemma 1

Coates signal flowgraph of analysed network can be obtained by
removing from G one arbitrary node (treated as reference ncde) and all
edges incident with this node [36].

The nodes of obtained graph correspond to nodal voltages with
regard to the chosen reference node. The proof follows immediately from
the form of admittance matrix of the network and submatrices
representing transitors.

With an aid of models of two-terminal and VCCS the transitor model
of any LLS network without operational amplifiers can be formed.
Table I shows models of controlled sources obtained as an association of

elements from Fig. 7.

Formal Transitors

When controlled sources of different kinds appear in the circuit,

the application of models from Table I results in unnecessarily
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complicated flowgraph.

From the topological point of view, transitor is an edge of Coates
flowgraph with a weight (transmittance) equal to the transitor
admittance.

The graph is derived from the equations corresponding to the nodal
analysis method. If we decide to derive our graph from the modified
nodal analysis method [52], then variables may contain both nodal
voltages and currents of controlled sources. Modified admittance matrix
can be obtained as a sum of modified element admittance matrices. This
property permits to form a flowgraph of a network by connecting graphs

of its elements.

Definition 2

Graphs of network elements derived from modified nodal analysis

method are called formal transitor models and their edges are called

formal transitors.

In Table II formal transitor models for chosen network elements are
shown. In equations describing the models in Table II, symbol ix
(x=a,b,c,d) indicates current from the node x.

It can be noticed that the structure of controlled sources models
in Table II is less complicated than those of models in Table I.

Models of basic aq}ive elements of the linear electrical network
can be obtained from the two-port model described with an aid of chain
matrix A. When some elements of A are equal to zero we remove from the

model in position 8 (Table II) transitors with weights equal to 0. Let

us consider the following examples:
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a) formal transitor model of CCCS can be obtained when

= a = a = 0, a

a1 12 © 3 22 8

b) converter model when a5 = a5y = 0

c) model of ideal operational amplifier can be obtained by setting

Generally speaking, models of two-ports that are not presented in
Table II can be obtained by proper selection and adjusting of matrix

parameters of general two-port formal transitor model.

Remark :
Models of ideal transformer and gyrator are equivalent
respectively to the model of converter with a11 a22 = 1 and inverter

with a9 85 = 1.

Formal transitor model of VCCS obtained from a two-port model with
chain matrix description (Fig. 8a) 1is slightly different from that
obtained using admittance matrix description in Fig. 7b. Similarly, the
CCVS obtained from a two-port with impedance description (Fig. 8b)
differs from the model obtained from chain matrix deseription. In all
other cases active element models obtained with an aid of different than
chain matrix description have structure identical to that in Table II,
and differ only in the weights of edges.

Generally any multi-terminal network having the following matrix

form description:

Ay b
s 20T 1=l ol (15)
~ o~ ~0 ~

where:

LI - vector of terminal voltages
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I - vector of terminal currents
Io - vector of same terminal currents

can have the formal transitor model with the matrix Coates graph shown

in Fig. 9. Nodes of the Coates graph correspond to node voltages and
some currents in terminals. Nodes Io in transitor model are internal
nodes. Model of multi-terminal network can be connected to other models

with an aid of nodes V.

Example 2

Matrices g,é,g,g for ideal operational amplifier are equal to

0000 0 , B=1[1 -<100]
0000 0 ~
Y= 1loooo|l" 2=|
00O00O -1 , 2 = [0]
and vectors X.I and Io are
T . . . . 4T
X = [za, Zb’ 'Y;C, z’d] ’ S = [1a9 lbo lC’ ld]

I, = [4]
and according to the notation io = ic.
Example 3

In Fig. 10, we have two multi-terminal networks each with the

following system of equations:

~ ~ ~ 8 ~ on
Y1Y1An vT Ij YZYZA; v-1 I
11 2 B 4 L L1 L2 29 35 i3
1.1 .1 1 2.2 .2 | .2
Yor Yoo Mol Yo = Lo and | X0 Yoo Aol Yo | 5| Lyl (16D
gl gé AR 0 Bf Bg 22| 1° 0
. ~JLe) Ll L~~~ L] L)

Matrix Coates graph of the multi-terminal connection is presented in

Fig. 11. Two subgraphs are connected in nodes V2.
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Remark

Grounding of any terminal causes the elimination of corresponding
node from the graph and all edges incident with it.

When a flowgraph is obtained as a connection of element transitor
models its nodes correspond to node voltages and some element currents.
All other currents can be easily calculated and if necessary
corresponding nodes can be taken into account in a graph structure.

For example if we are interested in a current in an admittance y, a
current node should be connected to the existing voltage nodes as shown
in Fig. 12. If we want to consider a current in a short circuit (as
when calculating current or voltage-current transfer function), then a
current node should be connected to the existing voltage nodes as shown
in Fig. 13.

The models of elements shown in Table II are called autonomous
models which means that when they are directly connected, they result in
a flowgraph of the entire circuit. Adding a new element does not change
the structure of an existing flowgraph. It is very convenient for
forming the graph, but it is necessary to point out that the generated
structure has still excess elements. When the internal currents are

eliminated we obtain so-called nonautonomous models. When a non-

autonomous model is connected to the flowgraph, the existing structure
of a graph is to be changed. Changes are made in a set of edges
incident with nodes of a new element and consist of eliminating and/or
changing incidence nodes of scme edges.

In Annex 1 the nonautonomous transitor models of electrical
elements and directives for changes when these elements are incorporated

to the flowgraph are presented.
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It is to be noticed that changes caused by connection of nonauto-
nomous models are easily implemented algorithmically. The use of non-
autonomous models in the topological analysis can considerably reduce
the computation time, especially when the analysis without decomposition

is performed.

Transitor Models Derived from Tableau Equations

The tableau method of numerical analysis of linear networks [26]
leads to system of equations with sparse matrix of coefficients. If
sparse matrix techniques are applied to solve the above system of
equations, good accuracy and speed of computations are achieved.

The characteristic feature of tableau equations is the surplus of
independent variables which are currents and voltages of elements and
nodal voltages. Tableau equations of a network with b edges and n nodes
have matrix of coefficients with dimensions (2b+n-1) x (2b+n-1).

Formal transitor models derived from tableau description have no
fundamental differences in comparison to those obtained from modified
nodal approach. The essential difference lies in the model of two-
terminal elements. In Fig. 14, the formal transitor model of two-
terminal element derived from the tableau equations is shown.

In [65], the results of testing both two-terminal models are
presented. Graphs obtained with the use of models in Fig. 14 have
considerably less number of terms in its determinant than the one
obtained with an aid of the model from Fig. 7. Nevertheless, the
computation time was smaller when the models of Fig. 7 were used in
canparison with the other representation because of the less number of

flowgraph nodes.
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Coates Graph of a Linear Transmitting Network

Having connected the transitor model of network elements the flow-
graph should be completed with sources and auxiliary edges m and 21, 22,
e 2n' In Fig. 15 the transitor models for independent current and
voltage sources are presented. Node xo is common for all independent
sources (see Fig. 3) and is called a source node. The response in any

graph node, current or voltage (except xo) can be calculated for all

sources simultaneously or for part of them only.

Remark: when superposition rule is to be used the edges J and -J or -E

corresponding to the removed sources are removed from the graph.

Definition 4

A transitor graph of an electrical network is a Coates graph

obtained by connecting transitor models of elements, completed with
auxiliary edges m and 21, 22. e zn and removing the reference node.

In the transitor graph the only considered edges 21 can be those
incident with nodes corresponding  to currents and voltages to be
calculated.

Example 4

Let us calculate the voltage transfer function

u
< 25
1

. for the circuit shown in Fig. 16.
In Fig. 17 the transitor graph of this circuit containing a source
u, is shown. The determinant A of transitor graph calculated from (12)

is equal
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az DT LEDY M 21 ) (DT + (<102 2, (v ) (=Y ) (T )
2
+ (=1) 24(-v1)(-Yc)(-1)(Ya+Yb)].
and so nodal voltage uy is equal to

. o=y Ya(Yc-r-Yd) - Yc(Ya+Yb)
4 1 Yd(Ya+Yb)

and the voltage transfer function

YaYd"YcYb
Yd (Ya+Yb)

u
Kuza-,i:
1

Remark : the use of nonautonomous models (see Annex 1) gives for the
above circuit a transitor graph with less number of edges and nodes

(Fig. 18).

IV. TOPOLOGICAL FORMULAS

The notion of topological formulas is connected with the ability of

calculation transfer functions of electrical networks with an aid of
topological methods. The form of topological formulas is different for
direct analysis and analysis with decomposition. It depends also on the
type of partition and on the kind of topological representation. In
practice the two-terminal immittances and two-port transfer functions
are the most frequently calculated. In general, the ability of
calculation of any matrix pofactor gives us the opportunity to have the
description of any multi-terminal element.

As the basis for topological dependencies we consider evaluation of
network immittances and transfer functions as functions of the

determinant and cofactors of nodal admittance matrix.
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Driving point admittance of a two-terminal (Fig. 19), with

terminals p and q and indefinite admittance matrix Y, is equal to:

i(s)  ‘uy
= = ’ (17
u(s) Ypp,qq

where
Y , Y% - are cofactors of matrix Y obtained by deleting columns and
uv PP,qq ~
rows according to the indices (first index in a pair means
row and second column)
u,v - chosen voltage and current reference nodes.
For a description of nondegenerated two-port it is sufficient to

evaluate one of its matrices or generally (this covers also degenerated

cases) characteristic polynomials [122].

The following formulas determine transfer functions of a two-port

network presented in Fig. 20.

u2(s) i er sq
K =—<— 1| =23 (18)
u u1(s) ! 12_0 Yrr,ss
i (s) | Y
K = 2 | = rp,sq (19)
ui " u,(8) | u,=0 T Y -Y -Y +Y ’
1 P2 rr,ss,pp rr,ss,pq rr,ss,qp rr,ss,qq
u,(s) | Y
Kiu=i—(_sT;1-o='—rp—’ﬂ ' (20)
1 VT2 uv
i,(s) | LS
- =1 - =
i * T | u=0 "% : (21)
1 P2 PP,qq

Characteristic polynomials of this two-port can be expressed as follows:

n =Y , (22)
o] e] uv

n =Y y (23)
os ppP,qaq 3

n =Y , 2n)
so rr,ss
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n =Y -Y -Y + Y . (25)
ss rr,ss,pp rr,ss,pq rr,ss,qp rr,ss,qq

. In the case of three-terminal (q=s) the last formula is reduced to

n =Y . (26)
ss rr,ss,pp

Additional polynomial (the transfer function denominator) is equal to

m(s) = Y 27

rp,sq

Second additional polynomial m2 (denominator of transfer functions when

the transmission in other direction is considered) which is related to

others by equation mm = n_n - n_n  can be calculated from the
2 00 S8 S0 ©0s

formula

m_ =Y . (28)
2 pr,qas

Direct Topological Analysis

Equations (18) to (28) do not depend on the topological representa-
tion. They can be taken as a basis when topological formulas for
different representations are established. It is also possible to
derive topological formulas directly from transfer functions or
characteristic polynomials definition.

Let us denote W a set of pairs of nodes in the Coates graph Gc:

W = {(v1, r1). oo (v, rk)}, vl¢vm, v

’ f .
K ¢rm rl¢rm or lim

1

Definition 5

We call a k-connection (multiconnection) of a graph Gc a subgraph
pw, composed of k separated paths and disjoint with them loops incident
with all graph nodes. The starting node of i-th path is vi and the
terminal node is ri (pairs of nodes from the set W).

In Fig. 21 a flowgraph and its 1-connection pw is presented. 1In
this case W = {(5,1)}. O-connection or simply connection is denoted by

p, because W=@. When vizri the multiconnection has the isolated node
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Multiconnection is natural generalisation of terms "connection" and
" -connection" defined by Coates [29] and is useful for the topological
analysis of decomposed network. This notion corresponds to that of
k-tree (multitree) occuring in the analysis (with decomposition) when
the representation with pair of conjugated graphs or directed graph is
used.

A tree can be obtained from» the k-tree, by adding k-1 edges,
analogically k-connection can be transformed into connection by adding k

edges. A set of all k-connections Py will be denoted by P,.

Definition 6

Weight function !Pw: of multiconnection set Pw of Coates graph with

n nodes is defined as follows:

{Pw: = I signp ™ y_ , (29)
peP eep €
W
n+k+1
where sign p = (-1) P ord (v1,...,vk) ord (r1,...,rk) ,

1 when the number of permutations
ord (X., Xoy ees X,) = ordering the set is even,
1 2 k . .
1 in the opposite case,

lp - number of loops in multiconnection p ,
Yo ~ weight of element e.
Consider a transitor graph of a two-port network in Fig. 20 with removed

reference nodes.

It can be demonstrated that cofactors of admittance matrix are
equal:

Y, = P, (30)

er.ss ) }P{(P,p)}{’ r¥s, p¥s , (31)
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Y qurr.ss = Pi(p.q).(ryry} 0 PES» GFS, rEs, pEr, gdr . (32)

With an aid of above formulas we have the following result.

Result 1
Characteristic polynomials of two-port represented with an aid of a

flowgraph can be evaluated from the following topological formulas

n =Pl , ’ (33)
[e]e]
n =Y =Y + Y -Y - Y
os PP,qq PpP,SS qq,SsS Pq,sSsS qp,SsS (34)
= Pt Prgor T Ty T Pt
Uso © {P{(r,r)}= ’ (35)
n = |P I = |P o+
ss {(r,v),(p,p)} {(r,r),(p,q)} (36)
P amtt P @)
=Y - - - o :
™= bsq T Trpss T trayss C ite,mt T i) (37)

In formulas (30) to (37) Pw denotes set of respective multiconnections
of a graph Gc with symbols as in Fig. 20.

When the direct topological analysis is performed it is more
convenient to operate with topological formulas using the connection
concept only. In this case the computer realization needs only the
generator of connections. The above demand can easily be satisfied in a
similar way in the case of solving linear equations (Sec. III). The
auxiliary edges (a,b,c,d,e,f,g) with weights -1 are connected to the
flowgraph as schematically shown in Fig. 22 [65].

If P is a set of all flowgraph connections and Px means its subset
containing only connections with an edge x, then characteristic
polynomials of a two-port can be evaluated as follows:

noo = P} ,

Nos = iPTl o+ (P - 4P - 0P,
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- 1p3,
nSO = |P [ (38)
n - =Pa,b= . =Pa,c= _ }Pa'f{ _ =Pa,e} \
ss
and
m= P4 _ 1p8; . (39

Computer programs SNAP and NASAP [26] are based on direct
topological analysis of flowgraph representing the electrical network.
These programs can be used for networks having no more than 30 nodes (in
practice 10 nodes, 30 edges). This is due to the great number of terms
in direct topological formulas. Computer time needed for realization of
direct topological formulas is proportional to the number of connections
in a flowgraph.

Let D(G) = [dij] be a matrix denoting the connection of a Coates
flowgraph; dij is equal to the number of edges directed from the node i
to the node j. D is a square matrix with the dimension equal to the

number of nodes. Number of connections in a graph is equal [20]

card P = per [D(G)] , (40)
where per é is a permanent of matrix/é [191.
The very rough estimation for the number of connections for the
graph with n nodes and k edges is [111]

k
card P < (21 _ ", (41

Although (41) is only an upper estimation, it expresses correctly
the characteristic of changes in the number of terms. The exponential
increase of number of terms is observed in practice for the direct
topological analysis, which causes that direct analysis of large

networks is inexecutable.
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V. THE GRAPH DECOMPOSITION

The graph of electrical network can be analysed directly with an

aid of formulas (38), (39) and the transfer function of analysed network
can be obtained in all symbolic form. From the previously presented
discussion, it is evident that the number of terms in symbolic function
is too large. This is the reason why the analysis of medium and large
networks is a formidable task and very often inexecutable. This
introduces the necessity of a network decomposition and consequently the

graph decomposition.

Types of Partition

Procedure of graph partition and determination of parts called

blocks will be called decomposition.

A flowgraph can be decomposed in one of three manners:

1. Node decomposition. A graph is divided into edge disjoint

subgraphs (blocks) (Fig. 23). Nodes common for two or more blocks are
called block nodes. A notion of block graph [123] is connected with
this type of decomposition. Block graph is exploited in the topological
analysis and algebra of the second category structural numbers [6]. A
node decomposition can be used for all types of network representation.
A particular case of node decomposition is bisection or decomposition

into two subgraphs.

2. Edge decomposition. In a graph we isolate a node disjoint blocks.

Blocks are connected together by the means of edges which form cutsets
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of the graph (Fig. 24). These edges are called cutting edges. In the

case of edge decomposition nodes incident with cutting edges are called

block nodes.

3. Hybrid decomposition. This partition is a combination of two

previous decompositions (Fig. 25). Nodes incident with cutting nodes or
common for more than one block are block nodes.

In both edge and hybrid decompositions, a bisection can be
distinguished as a special case.

We can focus our attention on bisection because of its special
usefulness for the hierarchical decomposition. It is evident that any
decomposition can be represented as a sequence of bisections, and for
computer algorithms such assumption produces simple data structures and

organization of computations.

Definition 7

Complete symmetrical directed graph with self loops spanned on

block vertices of subgraph Gi is called a substitute graph for that

block and is denoted Gi (Fig. 26).

Definition 8

d . .
Graph G~ obtained when replacing blocks Gi by their substitute

graphs is called a decomposition substitute graph.

In the case of edge or hybrid decomposition, cutting edges belong
to the decomposition substitute graph (Fig. 27).
A decomposition substitute graph should not be too complex because

cost of its analysis depends on the number of edges and nodes exactly as
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estimated for the case of proper graph (40), (41). Hence, it appears
necessary to 1limit the number of blocks and block nodes. This

limitation causes uneffectiveness of simple decomposition method for the

case of very large networks. For large networks either decomposition
sSubstitute graph c? is too complex for analysis or blocks Gi are still
too complex for direct topological analysis.

| When simple decomposition is applied to subgraphs, we deal with

hierarchical decomposition.

Algorithms of Graph Partition

Decomposition of network graph should be executed automatically.
There are two reasons for that: firstly, the graph structure is not
known when network data are provided and a priori decision about block
partition regarding only network structure could be nonoptimal, and
secondly elaborating of data would be cumbersome for the program user
and would demand the knowledge of decomposition methods and calculations
regarding whether the partition is profitable or not.

There is a lot of graph decomposition methods and they can be
classified in four main groups:

1) isolating of k-connected subgraphs (ecliques) [40,53,75],
2) exchanging of nodes among two subgraphs, up to the moment when

local minimum of quality index is reached [57],

3) solving equivalent system of mathematical equations [U451],

4) finding a graph contour [93,100,1091].

Any of the above methods does not provide us with the efficient
algorithm that gives optimal solution (global minimum). Only part of

them has efficient heuristic algorithms.
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Problem of graph decomposition is of the non-polynomially bounded
class which means that the time 1 of finding an optimal decomposition
cannot be limited by a polynomial of nodes (w) or edges (k) number.

Taking the above into account we should not expect efficient
algorithm giving optimal solutions. 1Investigations should be performed
for finding algorithms providing correct and nearly optimal solution in
a short time.

One of such efficient algorithms has been presented in [100], and a
modification of it proposed in [109] gives better partitions than [100]
with the simultaneously improved efficiency of computations. The time
of graph decomposition by the aforementioned algorithm depends linearly

on the number of nodes.

VI. HIERARCHICAL ANALYSIS

Let us consider the case of node decomposition.

In Fig. 28 an example of hierarchical decomposition is presented.
The hierarchical decomposition structure can be illustrated by a tree
of decomposition. Nodes of the tree correspond to subgraphs obtained on
different levels of decomposition. If a subgraph Gk was obtained during
decomposition of subgraph Gi’ then there is an edge from Gi node to Gk

node. Fig. 29 shows the tree of decomposition from Fig. 28.

In the decomposition tree we have one initial node which is only

the starting point of edges. Terminal nodes are those which are only

the ending points of edges. All nodes that are not terminal nodes are

middle nodes.

For middle nodes we determine decomposition level which is equal to
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the number of nodes in the path from the initial node to that node.

Range of hierarchical decomposition is equal to the maximal

decomposition level.

Blocks associated with terminal nodes are called proper blocks.

Every middle node has its descendants and every node except the initial
one has its ascendant.

If we limit ourselves to the bisection as the only graph partition,
every middle node has exactly two descendants. As remarked previously,
every decomposition can be considered as a sequence of bisections in
hierarchical structure. Hence, in further consideration and without a
loss of generality, we shall examine this case only. This results in a
simpler form of formulas and easier algorithm organization.

When the hierarchical decomposition analysis is to be performed,
the following problems have to be solved:

a) direct topological analysis of proper blocks (terminal nodes),
b) analysis of middle blocks which consists of how to combine results

from the lower level of decomposition to get description of a

subgraph on the higher level.

Analysis of Proper Block

Let us consider a connection of Coates graph evaluated when the
topological formulas are realized. When we deal with decomposed graph
we can see that the part of the connection contained in a particular
proper block, forms a multiconnection in this block.

The incidence of the block nodes notified in the set W determines
the kind of multiconnection. It means that topological analysis of

proper blocks will consist of enumeration of multiconnections, with
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paths 1linking different block nodes. Analysis on middle nodes 1level
will consist in combining together various kinds of multiconnections.

It is evident that combining multiconnections one by one will not
reduce considerably the computation time. Multiconnections should be
generated in groups and whole groups should be combined together. The
larger the groups of multiconnections are the simpler the proper block
analysis is, and the more efficient intermediate level analysis is. One
rule should be obeyed, namely, the resulting multiconnections should be
generated without duplications.

Therefore it is to be decided which kind of multiconnection type
characterization should be chosen.

The most detailed characterization is that presented in definition
5, which 1is the generalization of Coates definition of 0- and
1-connections. For a block the different multiconnections may be

grouped in sets P, of multiconnections characterized by the same set of

W

nodes W.

However, it should be noted that block with nb block nodes has

nb nb 2
M(nb) = = (,7) i (42)
i=0
different types of multiconnection sets. This dependence could

seriously limit the decomposition method. This led us to investigate
other characterizations of multiconnection set. After some trials [65,

661 the following type of characterization was chosen.

Definition 9

P(B,E) is a set of multiconnections which have the following

properties:
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a) the only incidence of block nodes is defined by sets B, E - nodes
of B are origins and E are ends of multiconnection edges,

b) all other nodes (internal nodes of a block) have full incidence,

where B = {b1.b ,...,bm}, E:{e1,e2,...,em} and B u EcCNB - set of block

2
nodes.

Remark 1 Block nodes which are not included in B u E are isolated
nodes.
Remark 2 In the sense of this definition in the set P(B,E) we can find

k-connections with k=card (B-B n E) = card(E-B n E).

Example 5
Let us consider the block shown in Fig. 30. If NB = {1,2,3,4}, B =
{1,2,}, E = ({3,4}, the set P(B,E) is equal to {{1,5,3}, {2,4,6}}.
According to the definition 5, each of these multiconnections has
different characterizations by sets W.

{1,5,3} ¢ P{{1,4}, {2,3}},

{2,}4,6} € P{{1s3}9 {2”"}}'

The weight function of multiconnection set P(E,B) is defined as in (29).

It is to be noted that for a block with nb block nodes, the number of

different types of multiconnection sets P(E,B) is

2
MR(nb) = £(7®) (43)
which means an important reduction in comparison with (42). It will be
shown that at the same time formulas can be elaborated permitting
generation of connections without duplication with the use of their new

characterization.
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Analysis of Middle Block

Analysis on intermediate level consists of evaluation of multi-
connection of a block that results from the association of two (or in
general more) blocks. Let us denote the sets of block nodes for both
blocks and the resulting block by NB1, NB2 and NB respectively. When
connecting two blocks, some of their block nodes become internal nodes,

which means that no other blocks are connected to these nodes on upper

levels. These nodes will be called reducible nodes.

Let us denote

CoM

NB1 n NB2 - the set of common nodes ,
(uu)

1]

RED COM - NB - the set of reducible nodes ,

P1(B1,E1), P2(B2 E2) and P(B,E) - the design sets of multiconnections

for both blocks and resulting block, respectively.

Theorem 2
Any set of multiconnections P(B,E) can be obtained according to the
following rule

P(B,E) = U P (B E ) x P2(B2 E2) ) (45)

where summation is performed over all sets of multiconnections P1 and P2

satisfying conditions:
B nB,.=¢,E nE_=9,

12 o2 (46)
RED c (B1 u BZ) n (E1 u E2) .

Sets B and E are in this case equal to:
B=B uB_-RED, E=zE_ uE_ - RED.
1 2 1 2
If all element weights are different, there are no duplicate terms in

the formula (45). For every multiconnection p € P, the sign of p can be

calculated as follows
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sign p = sign p, ° sign p, ° (—1)k « A u7)
where

P=pyup, PyE P, pPy,E P,
k = min (card (E1 n 82 n COM), card (E2 n B1 n COM)) + card (COM)
A = ord (b11. b22, ceey b1m1) ord (e11, €yor sees e1m1)

Ol"d (b21, b22, oo 0y b2m2> Ol"d (e219 622, 00y e2m2)
By = {byys Bypr vee b1m1} v Ep=legg e e e1m1} '
B, = {b21. Doos wee bop b, Ey o= {e21, €oor +ee S } .

2

Remark An important feature of (45) is the possibility of obtaining a
set of multiconnections P(B,E) by combining whole groups of multi-
cbnnections from the lower level. At the same time, from (47) we can
notice that the new sign is attributed simul taneously to the whole group
of terms P1 X P2, as k and A depends only on sets B1, E1, B2, E2. These
features are of great importance in the computer realization because we

do not have to deal with each multiconnection on a separate basis.

Example 6
Let us consider an association of two blocks presented in Figs. 31
and 32.
N31 = {1,2,4}, N32 = {2,3,4}, NB = {1,2,3}, COM = {2,4}, RED = {4},
Let us calculate multiconnections of the type P({1,2}, {2,3}) of the
resulting block. From the formula (45), with the condition (46), we

obtain
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P({1,2}, {2,3D) = P1({1,4}, {2,4}) x P2({2}, {31 u

P1({1}, {2h x P2({2,H}, {3,4}) u

P1({1,2}, {2,4}) x PZ({M}. {3H u

P1({1}. {4} x P2({2,4}, {2,3h.
A formula similar to that of Theorem 2 can be derived for the case of
edge decomposition. Analysis of proper blocks is realized in the same
way as described previously. An edge bisection will be considered. We
denote:

E - cut
out cutset of a graph G,

G1(E1,V1), G2(E2,V2) - two disconnected graphs obtained from G after

removing edges Ecut'

- sSets of block vertices for G, G, and G, respectively,

NB, NB,, NB 1 >

1" P2
= - NB,
RED = NB, u NB,

P - set of multiconnections formed only by edges Ec

cut ut”’

Theorem 3 [65]

Any set of multiconnections P(B,E) can be obtained according to the
*
following rule

P ’ = ’ ’ ’ ) 4
(B,E) 0] P1(B1 E1) X P2(B2 E2) X Pcut(Bc Ec) (48)

where summation is performed over all sets of multiconnections Pcut'

with sets B1, E1, BZ’ E2 satisfying the following conditions:

nB =B nB_=E nE =E nE =290
1 c 2 c 1 c 2

u B2) n (Ec u E1 u E2)

o]

RED € (B u B
c 1

Sets B and E are then equal to

*
This form of the formula (48), being a modification of the formula

presented in [65], have been proposed by M. Bonn.



-39-

B =B B B - RED; = - RED.
1 u 5 u A s E E1 u E2 u Ec E
If all element weights are different, there are no duplicate terms in
the formula (48). For every multiconnection p € P, the sign of p can
be calculated as follows:

sign p = sign Py sign P, sign Pout (49)

Downward and Upward Hierarchical Analysis

When the method of analysis of terminal blocks and middle blocks is
elaborated, it remains to organize the exploration of hierarchical
structure to obtain description of the initial network.

Two approaches are possible and are called downward and upward
method of analysis. The name 1is connected with the direction of
exploration of the decomposition tree as represented in Fig. 29.

The upward method presents many advantages over the downward method
for algorithm organization, saving of computer time and memory, so the
later will be only briefly outlined.

In the downward method, the analysis starts from the 1-level
(initial block) and proceeds down to the next levels according to
connections in the hierarchical tree. The substitute graphs of blocks
corresponding to middle nodes are analysed. On each intermediate level
the type of necessary functions from the next level is determined.
Arriving to the terminal node the analysis of the subgraph is executed
to get the necessary function of this block. Then the way up is
performed. For each passing by the middle node, the multiplication of
two functions from the lower level is executed. When the way back is
accomplished, we obtain a part of the function of the initial network.

In fact, many down and up processing have to be pérformed. The formula
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(45) expresses a set of multiconnections of the middle block as a sum of
products of multiconnection sets from the lower level. Each term of
this sum requires the described above up and down procedure.

The downward method presented in [65] permitted the hierarchical
analysis of large networks but at the same time had some disadvantages.
These disadvantages consisted mainly of:

(a) multiple passes through the hierarchical structure which cause
multiple calculations of the same function,

(b) complicated organization schema and some practical problems with
efficient storage of all-symbolic results.

For these reasons a new form of hierarchical tree exploration was
elaborated. In the new method, only one passing along the hierarchical
structure 1is necessary. The name of upward method is due to the
direction of exploration.

Let us describe the process more in detail. Firstly, to facilitate
the further organization of the algorithm, a specific numeration of
blocks is introduced. If N is the number of blocks (i.e. terminal and
middle nodes), we shall number them from 1 to N. The only condition for
that numeration is that ascendant should have lower number than its
descendants. Such a numeration is easy to be performed, e.g., we can
numerate nodes starting from the 1-level and sequentially to the lowest
level (as in Fig. 29). With this numeration the initial block has
always number 1.

The upward method of analysis starts from the block having the
number N and is performed sequentially to number 1. When the terminal
node is met, the analysis that is presented in Section VI is executed.

When we arrive to the middle block, where its descendants have been
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previously analysed, the formula (45) is executed. Two approaches are

possible:

(a) using the substitute graph, the coﬁbinations fulfilling conditions
of the Theorem 2 are found,

(b) after examination of all possible combinations of descendant blocks
functions only those fulfilling conditions of the Theorem 2 are
retained.

Since simple test of combinations has been found (see Section VII) the

second solution was chosen for the algorithm and the program. The

procedure ends when the initial block is analysed. At that moment the

functions of initial networks are calculated.
VII. ALGORITHM OF UPWARD HIERARCHICAL ANALYSIS

As can be noted from the general presentation of the method, there
are two distinct parts to be executed: analysis of terminal blocks and
analysis of middle blocks. These two problems are resolved separately

and each part can be ameliorated without affecting the other.

Analysis of Proper Block

The algorithm of generation of multiconnections of Coates graph
will be presented. This part of the method corresponds to the methods
of direct topological analysis of electrical circuits. The generation
of O-connections of flow-graph can be converted to the problem of
generation of disjoint cycles of a graph (see [26,50]).

Among different methods of generation we should notice techniques

consisting of the generation of cycles of the graph and sets of disjoint
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cycles, and afterwards finding all O-connections of the graph. The
technique presented in [26] has been applied in program SNAP [74]. The
disadvantage of the method is the necessity of storing in the computer
memory all cycles and all sets of disjoint cycles. Other methods of
cycle generation can be found in [43,118,124,127]. Now the algorithm
used in the program of hierarchical analysis will be presented.

Let us consider a Coates graph with n nodes. Let M be an incidence
matrix defined as follows

m = set of edges starting from the ith node and ending

M= [m, ] yom,
~ nxn ij

ij
h
at the jt node.

Set of O-connections of a flow-graph can be calculated from the formula

P = U M, XMy X oo XMW, (50)
(i,4000,i ) eI 1 12 nin
1 n
where I - set of all permutations of numbers (1,2,...n). There is no
duplication in the formula (50). A sign of O-connection pem X

1, T2t

X oo mnin is equal to number of permutations necessary to order set i1,
.o-y i multiplied by (-1)",

In the formulas for the hierarchical analysis, not only set of all

O-connections 1is necessary but also sets of multiconnections

characterized in Definition 9. This problem can be easily transformed

to the generation of all O-connections of the modified graph.

Lemma 2

The set of multiconnections P(B,E) of a graph with an incidence
matrix M is equal to the set of O-connections of a graph described by a
matrix M(B,E). The matrix M(B,E) is obtained from the matrix M by
deleting:

- all columns corresponding to nodes from B,
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- all rows corresponding to nodes from E.

The complete description of the block with nb block nodes 1is
covered by weight functions of all possible sets P(B,E) with B u EcNB.
The different sets B,E can be generated in the manner described below.

Let us numerate nodes of NB from 1 to nb. For i=0,...,nb, all
i-element subsets of the set {1,...,nb} are generated. For a given i,
let (n?) such subsets form a set K(i). To each pair m, k € K(i) (note
that m may be equal k) corresponds a set of potential multiconnections
P(B,E) with B=m and E=zk. Such sets of multiconnections are generated
and stored. Each set may be identified by its type B,E. This type may
be coded on a one computer word. The 2*nb bits would be occupied.
Successive pairs of bits describe block nodes from 1 to nb. A1l
elements b from B produce 1 on position 2%¥b-1 and elements e from E
produce 1 on position 2%e. All other positions are equal to 0. The
code C of a set of multiconnections P(B,E) can be thoroughly calculated
from the formula

C = T 2%%(2b-2) + I 2%%(2e-1) . (51)
beB eek

Example 7
For the set of block nodes NB = {1,2,3,4} 8 bits will be occupied
to code different sets of multiconnections. If B = {1,2} and E = {2,3}
the code for P(B,E) will be equal
c =20 + 22 + 23 + 25 = 45,
This coding permits an easy identification of multiconnection set by one

integer number and furtherwards a simple practical realization of

formula (45).
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Analysis of Middle Block

In the upward hierarchical method, the analysis of middle block is
per formed at the moment when both its descendants have been analysed.
The sets of multiconnections of these blocks are stored in the computer
memory each having an identification code.

Let us follow certain rules of block nodes numeration (execute
renumeration if necessary):

- first group is formed of reducible nodes RED

- second group is formed of other common nodes COM-RED

- third group is formed of other block nodes.

Both first and second group should have the same numeration in blocks to
be associated.

We examine all possible combinations of functions deseribing two
blocks. Let us denote the following bit fields in a computer word

containing the code of a multiconnection:

RED1, RED2 - corresponding to the nodes RED in both blocks (first
group) ,
CRT' CR2 - corresponding to the second group of nodes,

REST1, REST2, - corresponding to third group of nodes.
The following tests are executed
AND (RED1, RED2) = 0,
AND (CR1, CRy) =0, (52)
OR (RED1, REDZ) = field having 1 on each bit.
For the chosen code of multiconnection (51) conditions (52) are
equivalent to (46). 3So if any of these conditions is not fulfilled, the
combination is rejected. In the contrary case, we retain the

combination, which is characterized by sets of nodes according to the
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formulas (46).

The code for resulting multiconnections can easily be composed from
parts of codes of component multiconnections. As the first group of
nodes is no more block nodes, there is no information concerning this

CR1 +

CRZ' As nodes from the third group are distinct in two blocks, their

description remains REST1, RESTZ.

group. Nodes from the second group have code equal OR(CR1, CR2)

General Organization of Algorithm

General organization of the algorithm is presented in the Table
ITI. Once the proper numeration of block nodes is established, the
analysis can be carried out as presented. In fact with this numeration,
analysis of any middle block is pgrformed when both his descendants have
been analysed. The last analysed block is the initial block.

The all-symbolic or semi-symbolic descriptions for large networks
are only intermediate results which are elaborated further with the
object of performing different types of network analysis.

Symbolic form of transfer function for large network contains a
very large number of terms. To make possible the storage and to
facilitate further elaboration decomposed form of results will be
preserved. This form was proposed in [14] and it is particularly
convenient for the upward hierarchical method.

Description of a terminal block is formed of characteristic

functions as presented in section IV. Each term of function has the

form

t = r'-sk m y (53)
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where: r - numerical factor; s - Laplace variable; yi - symbolic
admittances or symbolic element parameters.

Any characteristic function is stored in the form of three vectors with

successive elements equal: r, k, coded yi. Each different function can

be identified by its code (51).

From formula (45) we see that any function for a middle block is
expressed as a sum of products of functions from the lower level. For
upward hierarchical method, the analysis of any middle block is
performed, when two blocks being its descendants have been previously
analysed and resulting functions stored. The function of middle block
can be stored in an unexpanded form containing only addresses of
functions to be multiplied. A term of such function is of the form:

m=v . F(i) « F(k) , ., (54)
v - sign of term equal + 1,
F(i), F(k) - functions describing descendants of analysed block.

The term m can be memorized by three numbers: v and addresses of
F(i) and F(k) stored previously.

The analysis is terminated by analysing the initial block. To
profit of these results the whole structure should be run through. From
the functions of initial block we only choose the necessary ones. The
given addresses send us to next blocks. At the end we find functions of
terminal block. On these functions different kinds of operations can be

performed, depending on what kind of analysis is requested.

Example 8
Let us take a practical network to illustrate the successive parts

of the algorithm. In Fig. 33 the scheme of analysed band-pass filter is
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presented. Operational amplifiers are considered ideal. The Coates
flowgraph corresponding to this network can be found in Fig. 34. This
graph has been decomposed into 5 terminal blocks (Fig. 35). The
hierarchical structure of successive associations is presented in Fig.
36. Symbolic results for the network are in Table IV. The results are
presented in the unexpanded form as they are computed by the program.

The voltage transfer function for the considered filter can be expressed

as
_F(2W)
Ku = F2) (55)
Examining once again the whole structure, the symbolic transfer
function can be found. They can be exploited in compact form or

expanded if necessary. This network has 44 elements and consequently 44
symbolic parameters in symbolic results. All symbolic analysis of
networks of this size can take quite a considerable computer time when
direct topological methods are applied. In the case of hierarchical
analysis, it is even possible to obtain these results by hand
calculations.

It can be noticed that for this specifical structure graphs of 4
blocks: block 9,8,7,6 are isomorphiec. If an isomorphism of graphs is
detected, it is possible to execute block analysis only once because the
symbolic description of both blocks is identical. This permits to make

savings in computer time and the memory needed for storing the results.
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VIII. COMPUTER PROGRAM OF HIERARCHICAL ANALYSIS

Technical Description of Programs

Two computer programs were realized on the basis of presented
algorithms. Program FANES [65] realizes the downward analysis of
hiearchical structure. The edge decomposition is used in this program.
Some comparisons between SNAPEST, NAPPE, SNAP [74,121] and FANES are
presented in [65].

First results of the program FLOWUP realizing the upward
hierarchical method were published in [66]. Program FLOWUP is written
in FORTRAN and is implemented on CDC Cyber 73 and CIIHB DPS/8 computers.
Memory demands for the program are not important and additionally two
parts of the program, namely, terminal and middle block analysis can be
separated and overlayed. The BASIC version for the minicomputer HP9835
(or HP9845) with standard memory was realized.

For the terminal block analysis matrices of the range nxn are to be
stored. Where n-number of block nodes (in general not greater than 10).
The demand for middle block analysis is due to the number of block
nodes. In the case of large networks analysis the most important memory
demand is connected with the storage of results. Three vectors (53),
each with length equal to the number of terms are necessary. As the
compact form is used the all-symbolic form for quite large networks can
be calculated. In the minicomputer version the successive transfer of
results to the other memory supports may be performed during the

execution of the program.
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Results and Comparisons

Let us present now some comparative results of analysis with the
FLOWUP program.

At first 1let us examine the 1ladder structure decomposed into
different terminal blocks as shown in Fig. 37. Time of computer
analysis and number of terms in results are presented in Figs. 38 and
39. The isomorphism of terminal blocks was not exploited. Both time
and memory depends linearly on the number of nodes of analyzed ladder.
Linear dependence is characteristical for all cascade connections of
blocks. It can be noticed that both time and memory depends on the kind
of partition performed. These computations have been performed on CDC
Cyber 73.

Analysis of the filter presented in Fig. 40 was executed on DTS/8
GCOS. Time of analysis of this filter was 0.165 sec. In the case of
cascade connection of Sections we have the linear growth of computer
time as presented in Fig. 41. The isomorphism of sections has not been
taken into account. When connections of block is more complicated than

cascade the analysis is expected to be more time consuming.

IX. CONCLUSIONS

We discussed new method that increases computational power of
topological analysis due to the reduction in the computer time needed
for the analysis of 1large electronic networks. The approach will
significantly affect the applications of topological methods to the
analysis of large networks, which was impossible, even with the help of

the fastest computers.,
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New possibilities of using the topological analysis towards
solution of network design problems, with the help of the fully symbolic
form of results, arise. They can be used for sensitivity analysis,
tolerance analysis and approximate symbolic analysis [115,1161.

The method preserves the advantages of direct methods of
topological analysis such as high accuracy of computations and
possibility of generating fully symbolical results.

Besides, any system of liner equations can be analyzed symbolically
after representing it in the form of a Coates flowgraph.

The restriction of the presented method in its application to large
networks lies in the number of block nodes in each block. This is
usually overcome by using effective decomposition algorithm which

minimizes the number of partition nodes.
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ORGANIZATION OF ALGORITHM OF HIERARCHICAL ANALYSIS
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TABLE IV

RESULTS OF SYMBOLIC ANALYSIS

Characteristic Function Block
Number

F(1) G37(G38 + GMO) 5

F(2) GuO(G37 + G39)

F(3) | Gpql359C35(Gpg *+ G3p)

F(4) (628 + G3O)[G32G3uG36 + G31sC35(G33+sC33)] 8

F(5) G28G325C35(G29 + G31 + G36)

F(6) G20G235C26(G19 + Q21)

F(7) (G19 + G21)[G23625G27 + G223026(G2u + sczu)] 7

F(8) G19G235C26(G20 + G22 + G27)

F(9) G11G1HSC17(G16 + G12)

F(10) (G10 + G12)[G14G16G18 + G1BSC17(G15 + sC15)] 6

F(11) G1OG1USC17(G11 + G13 + G18)

F(12) G2G5808(G1 + G3)

F(13) (G1 + G3)[G5G7G9 + GHSCB(GG + sC6)] 5

F(14) G1G55C8(G2 + Gu + G9)
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" TABLE IV (continued)

F(15) |-F(3)F(1) + F(4)F(2)

F(16) |-F(5)F(1)

F(17) [F(5)F(2)

F(18) |F(8)F(16)

F(19) |F(T)F(15) - F(6)F(17)

F(20) |-F(8)F(15)

F(21) |F(11)F(18)

F(22) |F(10)F(19) - F(9)F(20)

F(23) |-F(11)F(19)

F(24) [FOIBHF(21)

F(25) |F(13)F(22) - F(12)F(23)




a) b)

Fig. 1 Matrix graphs for (a) primitive, (b) compact Mason flowgraph.

Fig. 2 Coates graph associated with the system of equations (7).

Fig, 3 Matrix Coates graph of extended system of equatiomns (9).
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Fig. 4 Coates graph of extended system of equatioms.

Fig. 5 Symbol for transitor.
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a)

Fig. 6(a) Model of transitor,

b)

(b) Equivalent unistor model.
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Fig. 7(a) Transitor model of two-terminal, (b) Transitor model of VCCS.

Fig. 8 Formal transitor models (a) VCCS, (b) CCVS.
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Fig. 9 Matrix Coates graph of multiterminal described by (15).

Fig. 10 Connection of two multiterminals.

Fig. 11 Matrix Coates graph of the multi-terminal connection.
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Fig. 12 Consideration of a current in an admittance.

-1

Fig. 13 Consideration of a current in a short circuit.

Fig. 14 Formal transitor model of two-terminal.
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Fig. 15 Transitor models for independent sources (a) current, (b) voltage.
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Fig. 16 Circuit with ideal operational amplifier.
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Fig. 17 Transitor graph of the circuit.

Fig. 18 Transitor graph obtained with an aid of nonautonomous

models.
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Fig. 19 Two-terminal.
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Fig. 20 Two-port.

Fig. 21(a) Flowgraph, (b) l-connection.

Fig. 22 Connection of auxiliry edges to the flowgraph of two-ports.
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Fig. 23(a) Node decomposition, (b) Fourterminal bisection.

Fig. 24 Edge decompositiom.

Fig. 25 Hybrid decomposition.
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Fig. 26 Substitute graph spanned on 4 block nodes.

Fig. 27 Decomposition substitute graph.
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Gy First level of decomposition

Second level

Fig. 28 Two level hierarchical decomposition.

First level of decomposition

Second level

Fig. 29 Tree of decomposition shown in Fig. 28.



Fig. 31 Blocks to be connected.
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Fig. 32 Association of two blocks.
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Fig. 33 Band-pass filter.
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Fig. 34 Flowgraph for band-pass filter.
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Fig. 35 Block graph.
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Fig. 37 Terminal blocks of ladder decomposition.
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Fig. 38 Relationship between the analysis time and the number of nodes.
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Fig. 39 Relationship between the number of terms and the number of nodes.
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Fig. 41 Relationship between the analysis time and the size of the network.
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Annex 1

In the Table A1, the nonautonomous formal transitor models of some
electronic elements are presented. These models can be connected
together and/or with autonomous models. The resulting flow-graph
comprises nullators and nolators which should be removed from the
network accordingly to the following rules:
1. Edges starting from nodes connected by nullator get the common
starting node (one of original ones)
2. Edges arriving to nodes connected by norator get the common ending
node (one of original ones)
3. Following pairs of nodes should be connected: node having only

arriving edges and node having only starting edges.
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