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Abstract

CSDSLE is a package of forty-eight subroutines for solving sparse
linear equations for the iterative simulation of very large systems.
The equations are assumed to be in decomposed form as required by the
main subroutine. Zollenkopf's bi-factorization-type algorithm is used
to represent the solution of different submatrices. Different options
of the package, when utilized properly, may save a significant amount of
computer time and memory compared with the standard sparse-matrix sub-
routines, including those which utilize simple decomposition or block
decomposition. The package and documentation have been developed for
the CDC 170/730 system with the NOS 1.4 level 552 operating system and
the Fortran Extended (FTN) Version 4.8 compiler. The report includes 17
illustrative examples, including the use of mass storage, the implemen-
tation of changes in the coefficient matrix and changes in the right-
hand side. Local area changes and their effects on the rest of the
system are discussed. A comparison with the Harwell package MA28 not

using decomposition is reported.
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I. INTRODUCTION

The main aim of this package is to serve as an efficient tool in
the solution and optimization of extremely large electrical or elec-
tronic networks. However, it may be utilized to solve any very large
scale problem, which requires the solution of linear equations. The
method developed to achieve this goal considers two aspects of the
problem. Firstly, the size of the problem makes necessary the use of
decomposition to fit the requirements to the available computer memory.
Secondly, changes in coefficients and/or right hand side values
occurring in a local area may cause local effects only, therefore the
solution outside this region remains essentially unchanged. Accord-
ingly, the method operates with a decomposed system of equations, in
which changes in the coefficient matrix can be introduced 1locally and
the solution can be obtained for a specified local area. The other
important feature of the method is that, because hierarchical decomposi-
tion is employed, the computations can be executed in a parallel pro-
cessing mode, thus further reducing the time necessary to obtain a
solution.

The package is written in Fortran IV for the CDC 170/730 system.
At McMaster University it is available in the form of a library of
binary relocatable subroutines, which is linked with the user's program
by the appropriate call of the main subroutine in the package. The name
of the library is CSDSLE. The library is available as a group indirect
file under the charge RJWBAND. The sequence of NOS commands to use the
package can be as follows:

/GET(CSDSLE/GR) = fetch the library,



/LIBRARY(CSDSLE) - indicate the library to the loader,

/FTN(...,GO) - compile, load and execute the program.

The user should prepare:
- the main program which defines parameters and calls the main

subroutine of the package,

- random access file containing the data describing submatrices.

IT. GENERAL DESCRIPTION

Flowgraph Representation

Matrix decomposition is based on its Coates signal-flow graph

representation [1], in which a square matrix A = [aij]nxn is represented

by a graph with n nodes and k edges, and k is the number of nonzero

coefficients in A. A Coates graph edge which goes from node Xj to node
Xy has a weight equal to aij'
Example 1

Coates graph of a coefficient matrix

1 2 0
’.5.’: 3 4 5
6 0 7

is shown in Fig. 1.

Graph Decomposition

A signal flow graph is decomposed through its nodes into two sub-

graphs (subnetworks). Each of these subgraphs can be decomposed further

down to a sufficiently small size. This kind of graph decomposition is

called hierarchical decomposition. The structure of hierarchical

decomposition can be illustrated by a tree of decomposition. Nodes of




Fig. 1 Coates graph of the matrix A of Example l.



the tree correspond to subgraphs obtained on different levels of
decomposition. If a subgraph Gj was‘obtained during decomposition of
subgraph Gi’ then there is an edge from the node cdrresponding to Gi to
the node corresponding to Gj' Fig. 3 shows the tree of decomposition
corresponding to Fig. 2.

In the decomposition tree we have one initial node - the one which

is only the starting point of edges. Terminal nodes are those which are

only the end points of edges. All nodes that are not terminal nodes are

middle nodes. Subgraphs associated with terminal nodes are called

proper blocks. We 1limit ourselves to bisection as the only graph

partition so that every middle node has exactly two descendants. If m
is the index of a middle subgraph then two of its descendants have
indices 2m and 2m+1, respectively. This way of numbering the graphs

makes the analysis of interconnections easier.

Matrix reordering

After all subgraphs have been numbered according to the structure
of the decomposition tree, the nodes of a graph are renumbered con-
secutively in descending order starting from the partition nodes of the
1° then the partition nodes of graph G2 and G3 up to the last
partition and then the internal nodes of the proper blocks. After the

graph G

renumbering, the numbers associated with the graph nodes are called

original indices of the nodes. Such renumbering corresponds to

reordering the coefficient matrix. An example for the matrix
partitioned according to Fig. 2 is shown in Fig. 4.
In Fig. 4, only the shaded areas may contain nonzero coefficients.

Jj denotes the index set corresponding to the partition nodes of graph



Level of decomposition:

first
\ A B
Go Gz second
n-1
Gg
third
n-4
G,

%%"'%

Fig. 2 Three level hierarchical decomposition
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Gj (if Gj was further partitioned) or the internal nodes for proper

blocks.

Obviously, if some nodes were partition nodes of a graph from the
higher 1level they will not be included into Jj' For example, for
hierarchical decomposition of Fig. 2, J2 = {n-2, n-3}, as the node (n-1)
is a partition node of G1.
There is a strict correspondence between the set of partition nodes

of a middle graph and submatrices of the reordered coefficient matrix.

These submatrices are called interconnection matrices as they represent

interconnecticn of two subsystems.

Example 2
Consider a system of linear equations
Ay=pb

having its coefficient matrix and right-hand side vector equal to

1 2 0 0 0 0 0 0 017 10
2 2 1 1 0 0 0 0 O 1
0 2 3 1 0 0O 0 0 O 0
0 0 2 & 2 0O 0 0 O 9
A=l o0 0 0 1 5 -1 0 0 0|, b=|1
0 0 0 O© 3 6 2 0 O 0
0 0 0 0 =1 1 7 2 0 0
0 0 0 0 0 o 1 8 1 2
Lo 0 0 0 0 o 1 2 9] -1

Coates graph G, of the coefficient matrix is shown in Fig. 5. G1

1
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has been partitioned into G, and G, at the node yu and this node has

2 3
been given the index 9, then G2 has been partitioned into Gu and G5 at

the node y2 renumbered to 8 and G, has been partitioned into G6 and G

3 7
at the node y7 renumbered to 7. Finally, we obtain proper blocks Gu.
G5, G6 and G7, as shown in Fig. 6. In this case, the tree of decomposi-
tion is very simple, as shown in Fig. 7. The renumbered coefficient

matrix has the nonzero pattern shown in Fig. 8. 1In fact, the renumbered

matrix A is actually more sparse than is shown in Fig. 8, namely

(9 2 o o o o 1 0 0
18 o 0o o 0o 1 0 o0
0o 0 6 3 0 0 2 0 0
o o0 -1 5 0 0 0 0 1
a={0 o0 o 0o 3 o 0 2 1
0o o0 o o o 1 0 2 o0
0o 2 1 -1 0 0 7 0 0
o o0 o o0 1 2 0 2 1
Lo o0 o 2 2 o0 0 0 4 J

and the renumbered right hand side vector is

[-1 2 0 1 0 1 0 1 9

W
1]

Sets of indices Jj according to the partition of signal-flow graph G1

are as follows:
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Fig. 7 Tree of decomposition for Example 2.



- 14 -

> [
° Z m
4 oA 5//
5 7 ) i
. v,
7 7
-y
0 v/

Fig. 8 Nonzero pattern of the coefficient matrix of Example 2.
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[
i

(9}, J, =18}, Jy=(TH 4, = (6},

{3,41, Jo = {1,2}.

(5}, I

Hierarchical Decomposition in Bi-factorization Approach

The set of n linear equations

éz:B (@D)
can be solved effectively, if A is a sparse matrix, by the use of the
bi-factorization method [2]. The inverse of A can be expressed by a

multiple product of 2n factor matrices
A~ o R'R2 L. R L. TOT (2)

where the left-hand factor matrices EJ are very sparse and differ from

the unity matrix only in column j:

[ 0 ]
10
3.
) JJ
IR e X (3)
~ J+1,3
e 1
. n’J -

The right-hand factor matrices BJ are also very sparse and differ from

the unity matrix only in row j:
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rJ - 1 i )

t -
The solution of the system (1) can be obtained by multiplying the

product form of the inverse (2) by the right-hand side vector

1

y=RR .. B ... TT' b . (5)

ey

After §1 is multiplied by b, we obtain the updated vector 31 = §1 E,
then we calculate 32 = 22 31 and after n steps Sn = En gn‘1. Then the
2n-j+1 RJ cZn—J ,

right-hand factor matrices are employed to obtain ¢

j=n, n=1, ..., 1 and finally y = SZn.

Following the technique proposed in [2] we can decompose each

1eft;hand factor matrix ‘EJ J

~

into a modified matrix L and a diagonal

matrix Bl, namely

d=Jpd, (6)

~

where the modified matrix EJ differs from the unity matrix in only

column j. This column is
J 3 ¢J ]T

e o o 2 o e 0o
[0...01 25.4,5 *e2u3 nj

where

23, =7 /A, 1= (G+1), cauym
1] 1 JJ
and the diagonal matrix Qj differs from the unity matrix only in the ith

diagonal term
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dJ.. = ZJ
JJ JJ
Let Ej denote a column vector which contains elements of the jth column
o J
j+1,3°
J

contains elements of the jth row of EJ starting from rj 417

of EJ starting from and let Bj denote a row vector which

A very common way of storing the factor matrices EJ and BJ is
storing vectors kj and Bj only together with the diagonal elements dgj

in the matrix form

1
R
414 ki
2
422 R,
F . : @
L, .
s
dn
nn

By grouping together subsets of rows and columns, E can be expressed in

the form

E = »'I::I“ \ . . ’ (8)

where I, = f{m,, m. + 1, ..., 2.} and I' = I, - {2.}.
J J J J J J J

Such groupings will help when the system is very large and kI , BI , R

i T3
can be calculated and stored separately. Then we can execute (5) step



- 18 -

after step, each time taking a group of matrices QJ and QJ or BJ. This
will save computer storage and allows us to analyse very large systems.

If the system is extremely large, even the updated vectors EJ may be too

big to be stored as a whole. In this case, we should partition the

updated vectors SJ and groups of rows of EI and columns of BI . This
J J

can be done very efficiently while a system is decomposed into blocks

according to its topological signal-flow graph representation.

Let matrix F-be written in the form

. L] . R
I
L] R
e
F = (9)
b
L L }
<1 51
K1 ko

where Lp ; (Ry ;) denotes a submatrix of L; (Bg ) which contains
iy Ji J
elements of rows (columns) I..

Let column s of L

L1 (s ¢ Ij) represent a matrix which differs from
17

the unity matrix only in column s:
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= 0 1 , (10

wherem, ,m. ., ..., &, ¢ 1., m, > s.
i i+t i i i

Let row s of R; 1.(s ¢ Ij) represent a matrix which differs from
j-i
the unity matrix only in row s:

I.
i
A—/\’_\ -
F"1 l I
. | |
10 ojrzm r; lo. o
i il
RS = 1 | | (11
~L l |
T
B |
| |
| .
| .
| T
_ 1 |1
where Wiy My g9 soes Z.eli, m, > S. Then, F will represent a set of
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- - - s
f = [2(I1k + I2(k—1) + .. + Ik—k)+n] factor matrices kI .
i i

where - denotes the cardinality of the corresponding set. The nonzero

pattern of matrix F, according to the way F is obtained from A, will be

the same as for A (see Fig. 4), so only those L and R will be

nonzero, which correspond to the graph having the set of nodes Jm = Ij’

and to all of its descendants.

Example 3
The renumbered coefficient matrix from Example 2 has its factor

matrices represented by matrix F as follows:

— N
o _2 _1
9 9
I
19 8 ’
9 70 70
1 1 1
[ -2 -3
1 2 2 2 I
6 1 - 33 K
F = 1 2 1 I
3 -3 -3 3
1 -2 Iu
9 1 3
-3 -3 = .15316 -.04177 I
1 3 1
-3 =2 -3 T Ie
4 2 1
-— - = .01856 = = .3785 I
L 1 3 2 B 7

It can be seen that the nonzero pattern of F is the same as that of the

coefficient matrix shown in Fig. 8.

According to the partition scheme of matrix F shown in (9) we have

- 1 - -2
bpgg = gl Lpgp =00 -5l

R



~I2I5

~I31g

)-lIé

R
~I6I7

where I1 =

1 1 3
= [=], L = [-=z =1
6 ~1512 6 11
4 1
= [0 - 'ﬁ] ’ E16I3 = [- § ’
2
= [— —"] ' I—j = [— 2] 9
= [.01856] - -3
I7I6 2
1 1
) 0 5 i % 0
9/’ ~I, " 2
° 70 2 10 7
1
=1, D = [11], D = [.15316] ,
3 ~I)4 ~I5
3
[" g]’ 'QI = [ 3785] ’
7
o
2 "9 1
=[-3]’ BII = g1 EII"[—2]’
175 - 75 2
B 1] 7
- 0
T3 e
= 2 v ~I I __2[ ’
l_- '3'§J 2T IL 11
2 1
-2, R o=l-4,
3 I3I7 3
= [-2] R = [-.041771 ,
' ~I I
I5 7
1
= [E]'
J7, I2 = J6, I3 = Js, Iu = Ju, 5 = J3, I6 = JZ' and I7 = J1,
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where Jj is as defined in Example 2.
Let us define the multiple products:

2. 2.-1 g2 .-1 m. m,

pJLy DY .o L7 DI x for j=i
A)T L ~yor
1 1. °X=94 . m+1l m, (12)
i L .. L J L J X for j#i
I I, I
1 1 1
and let
m, m.+1 2 .-1
Ry Rp3 U for j=i
A i i i
°11. ° X34 n, m,+1 [ : (13)
I RJ BRI ... RIx for j#1
i i

In a particular case, if

I, = {m.}
J
then
m,
gt 12x=2D ’ X,

373
and

*11, X=X

J J

Lemma 1

1

The inverse g' (2) can be obtained as a multiple product of f

factor matrices according to the formula

-1

A x = ®I1I1 o ®I1I2 0 ... 0 ¢I1Ik o

o) ®I212 0O ... O ¢12Ik O 4o QIka o] EIka o]

cee O gIkIZ O «¢. O EIZIZ o] gIkI1°

«es 0E; ; O0EL L OX. ()

271 171
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Lemma 2
Multiple product
O ... 0 & 0 ... 0 & o}
11
(15)

o) EI I © -0 g 1 © EI o X
k 1 IZ 1 1I1

can be obtained as a sum of vectors

k
z= I 27, (16)
J=1 J
where
z = £ o (g oz. + & oz + e
~I °I1.I 1.1 ~I 1.1 ~I
J J J J 1 je 2
+& 1 ©0zp o+ [51.]) , (1mn
J i1 J-1 J
T T .
where [51 1 =10, ... 0, X1 0, ..., 01" . For a particular case
J J
z: = § oflx: 1. (18)
I1 I1I1 I1
Example 4

Using LR factorization as in Example 3, and x equal to renumbered

right-hand side vector b as in Example 2, vectors EI are as follows:
J
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i i ] 0 ) r—o‘ﬁ [ o |
9
19
70 0 0 0
0 0 0 0
2
0 T 0 0
zr =| 0 > 21 % 0 , % =| 01, Zr = 0 {
1 2 3 4
0 0 0 1
0 0 -0 0
0 0 0 0
L0 _ 0 L9 L 9
o 0 M -~ 0 =) ~ 0 =
0 0 0
0 0 0
0 0 0
z = 0 z = Z =
~I > X1 ! ~I *
5 6 0 7
-0.041374 0 0
0 0.375 0
g o L 0 B _3'”562

So, on the basis of (16), we have

1 T
z=l-3 7% 0 T3 0 1 -0.081374 0.375  3.45691 .

Assume that all the multiple products of £I I °2 (j=1,..,k) in
i"e
(17) have been previously calculated and stored. If now the coeffi-

cients in only one proper block have been altered (for example in G”l of
Fig. 3) then according to the formula (17) and the nonzero pattern of

Fig. 4, we must calculate new values of =z y Z. 4 2 and z._. , to
My Y s ~

obtain a new value of 2z. We have
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I B [’}5‘]11 ' (19)
9, €J7J7 ° <gJ7J15 PR gJ7‘114 SRy [£J7]) ' 20
I3 aJ3J3 ° (£J3J15 SRt EJ3J14 O

+E5 5 ©02Z; +&; 5 o0z;+lx; D, (21)

z. =§g o (g oz + £ oz + £ oz
I N9 Iidis Mg TIday Py Ty Yy
+ £ oz + Z 0z, +¢ oz, +¢ A
J1J1O ~J10 J1J9 ~J9 J1J8 ~J8 J1J6 ~J6

+ £ 0z, +E& 0z, +E& 0z, +& oz
J dJ ~dJ J d ~dJ J ~d J J ~J
17 7 15 5 1Ju 4 13 3

+ g o Zz
J1J2 J2 1

Observe that all the multiple products with variables z y 2 z

Jqg5" ~qq7 Mg

Z Z Z. EJ are known and do not have to be recalcu-
9 8 6 5 ) 2
lated.

In this simple example we have to calculate only 10 multiple
products out of 41 to update z. Whenever a certain block has updated
coefficients we must repeat the bifactorization for this block and all
submatrices representing its interconnections according to the
decomposition tree. What is even more important is that the analysis of

only one proper block must be repeated, while multiple products

corresponding to the substitute subgraphs are not so time-consuming.
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Lemma 3
Multiple product

Y= o) o ¢ O ... 0 ¢ o
I1I1 1112 I1Ik

o¢r 1 0...00¢;r 7 O ... &7 7 02
22 2 k k k

can be obtained as a sum of vectors

Kk
=T ¥y > (23)
Jj=1 J
where
yp =0 p oflzp I+ oy ..o+ o0y, (2B
J 373 J JTi+1 J+1 Jk k
T T X
where [zI 1 =100, ..., 0, Zr s 0, «.., 017 . For a particular case
J J
y. = & olz, 1. (25)
Lo L Iy

In a very similar way, we can show that if we are interested in the

solution for any submatrix then only those multiple products QI I o} 52

j 2
must be calculated which correspond to the set of indices Jj’ Jg for

submatrices from a given one to the top of the decomposition tree.

The main advantage of this type of partial analysis is a great
reduction in computer time, which is proportional to the number of nodes
in the subgraph representing the updated submatrix rather than to the
number of all nodes, when the coefficient matrix is being partly
updated. When our goal is to recalculate the solution in a particular

subnetwork only, rather than in the whole network, again the computa-

tional time will be proportional to the number of updated unknowns and
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not to the total number of variables.

Example 5

On the basis of LR factorization from Example 3 and the vector 2z

obtained in Example 4, we obtain vectors Yp, as follows:
J

Y =21, =z + ¢ oz
I7 I7 I6 I6 I6I7 I7

=[0 0 0O 0 0O 0 0 1.2392 OJT ’

ZI =z o+ @I I 0z = [o 0 0 0 0 0 -0.18577 0 O ]T,
5 5 5-7 7
T
V. =z_ + @ oz, =[0 0 0 0 O -1.488 0 0 01 ,
y =z + 9 oz + 9 oz
X ~1I I ~1 ~I
Iy ~Ig 3l ~le 317 g

=0 0 0 0 -1.978 0 0 0 01° ,

i1 =% 1 °Z; 11

y =93 oz + oz
11 I1I1 I1 1115 I 5

= [-0.1555 0.29266 0 0 0 0 0 0 0
The final solution is
Y = [-0.1555 0.29266 0.27966 -0,43546 -1.9785 -=1.4785

~0.18577 1.2392 3.456917 .

III. STRUCTURE OF THE PACKAGE

There are 2 different entries to the package and two corresponding
main subroutines:

1. subroutine CSDSLE1 - standard entry for analysis of decomposed
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systems of linear equations,

2. subroutine CSSLE1 - entry for analysis of systems of linear

equations without decomposition [31.

A block diagram of the package is shown in Fig. 9. Checking the input
parameters and subdivision of the working areas (defined by the user as
variables of indicator vector IN) is performed in CSDSLE1. Subroutine
ASDNSR organizes the partial analysis process for updated submatrices.
Submatrices to be analyzed have to be stored in random access file No. 2
or in the working area CMPLXWA as described in Section V. ABSUB organ-
izes and stores information about the hierarchical structure, CHEBSUB
checks if a subgraph has been previously analyzed. STOREF and READF are
used to store and read integer vector IN in and from the mass storage
file, respectively. Different submatrices are read with the help of
READSB and checked in CHEDEL if all diagonal elements exist in the sub-
matrix. If certain nodes are common to two or more submatrices, then
diagonal elements must be nonzero at least in one of them. If any dia-
gonal element is not defined then the user is notified by the statement

ALL DIAGONAL ELEMENTS SHOULD BE DEFINED IN THE SUBMATRIX NO. nr
and execution of the main subroutine is stopped with IN(3)=1, where nr
denotes the index of the corresponding subgraph as numbered at the tree
of decomposition.

Subroutine ASUBSR organizes partial analysis of one subgraph and
stores the results of partial analysis in the basic record BREC. If the
user changes the nonzero pattern of a submatrix such that a new
submatrix requires more space in the basic record then the message

MODIFIED SUBGRAPH NO. nr REQUIRES MORE STORAGE THAN THE PREVIOUS ONE

REPEAT ANALYSIS FOR ALL SUBGRAPHS
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JL

PRINTI

PRINTS

PRINT

.

CHNGE

<

DATACN

SORDCN

REDUCN

kY

DATBCN

SYMCN

N ¢

D

Fig. 9(a) Block diagram of the package.

CSSLE1
\
INVCN
PABIDES
SSLECN
<<:>>—<5—— MSLECC
6 MSLERC
MSLECN
< RSLECN
Z
\
USUB1 FINDSYM
USUB2 READL

SOLVCN

ASLECN
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o
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ABSUB

% CHEDEL
>

MS2 READSB

Fig. 9(b)
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-
MS5 CSDSLE 1 —
STOREF 4
CHEBSUB PRINTIN —9—<6>
/ /
< ) —
MS1
ANSUBSN |le MS3 @é PSHDS MS7
MS5
N——
¢ )< ~ —_—
CASRHS MS1
—
SMSSUB < /
@—@— CONNECT @
/ >
RMRHS ¥51
\’ ° |
MS3 \
EEDSUB
MS5
RMERHS
CONNUMB
RMIRHS
ADDSUB
PRINTRS —>—<5>
>
CASSOL MST

Fig. 9(c)
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is printed 9ut and execution of the main subroutine is stopped with

IN(3)=1. If the user updates some coefficients in the submatrix with

row and column indices ouﬁside the nonzero pattern then the message
ELEMENT OUT OF THE MATRIX AREA

is printed out and execution of the main subroutine is stopped with

IN(3)=1.

Partial bifactorization of decomposed submatrices for internal
nodes of a subgraph is performed in PABIDES called from CSSLE1 with
IN(8)=6. For a description of other options with IN(8)=1, ..., 5, see
[3]. DATAC, DATACN and DATBCN are used to prepare the proper form of
data for library subroutines. SYMCN checks the structural symmetry and
ordering of columns of the coefficient matrix. If the matrix 1is not
symmetrical, new zero coefficients are added to create symmetry. The
user is informed by the statement

INITIAL COEFFICIENT MATRIX NONSYMMETRICAL
Each column is checked to see whether the elements are stored
according to increasing indices of their row numbers. If not, the
program will reorder them and the user will be notified by the statement
REORDERING OF COLUMNS

SORDCN and REDUCN simulate, order and execute Gauss elimination as
described in [2]. REDUCN is also used to perform partial bifactoriza-
tion for the submatrix, corresponding to internal nodes of its subgraph
only.

SOLVCN and ASLECN solve the 1linear equations by a sequence of
matrix multiplications (2) for the original and adjoint (transpose)
system respectively.

CHNGE changes the value of one element in the coefficient matrix.
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If the user tries to update a coefficient which was not previously
stored, he will be notified by the statement

ELEMENT FROM ROW rnr AND COLUMN cnr WAS NOT STORED IN THE PREVIOQUS

COEFFICIENT MATRIX
where rnr, cnr denote row and column indices, respectively.

Subroutines PRINTIN, PRINTNC, PRINTRS, PRINT, PRINTI and PRINTS are
used to print output information on the file No. 6.

LMIRHS multiplies the left part of the LR factorization by the
right-hand side (RHS) vector X according to the formula

& o EIk_1 j 0 ... 0 ng+1Ij o ngIj o X, (26)
where j 1is the index of the subgraph describing a given submatrix and
EIin is defined in (12). Subroutine ANSUBSN organizes the partial
analysis process for updated submatrices corresponding to the partition
nodes of middle graphs, according to the notation described in Section

II. These submatrices, called interconnection matrices, have their

corresponding graphs called substitute graphs. Only those substitute

graphs are analyzed which are necessary for updating the results of a
previous solution if the system was previously solved.

A sequence of modified substitute graphs to be reanalyzed is
determined in SMSSUB. CONNECT combines the results of analysis of two
subgraphs to obtain the description of substitute graph. EEDSUB is used
to extract the external description of subgraphs represented at the
partition nodes of their ascendant. CONNUMB generates original indices
of the nodes for substitute graph. ADDSUB adds two submatrices to
obtain the interconnection matrix. CASRHS calculates addresses and
stores the RHS vector for the substitute graph. CASSOL calculates

addresses and stores the solution vector for a subgraph.
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The partial solution at the nodes incident with updated submatrices
is calculated in PSHDS. RMRHS organizes multiplication of the right
part of the LR factorization by the z vector (15) according to the

formula

Y; =% 71 0% 1 O0...0% 1 02z, (27)
A Rt TR R P ik

where j is the index of the subgraph describing a set of nodes where the

solution is calculated ¢I I is defined in (13). RMERHS executes a
Jj-i
part of (27) for QI I.° ie {j+1,...,k} and RMIRHS executes the last
j7i
of (27), i.e., the multiple product with @I I

JJ

IV. LIST OF ARGUMENTS

Standard entry (subroutine CSDSLE1)

The subroutine call is
CALL CSDSLE1(IN,INTWA,CMPLXWA,IM,SOLR)
The arguments are as follows:
IN is an integer indicator vector. Its length is at least
IN(4) + IN(5) + IN(9)/2 + 26.
Arguments of IN have the following values:
IN(T) =N, number of unknowns in the current subgraph.
IN(2) =LES, maximum area predicted for the sparse matrix describing
the current subgraph.
IN(3) =IAR, flag for insufficient area.
IN(W) number of subgraphs where the solution will be recalculated.
IN(5) the number of all proper blocks.
IN(6) =NINT, the number of internal nodes in the current subgraph.

INCT) indicator for printing intermediate results



IN(8)

IN(9)

IN(10)

INCIT)

IN(12)

IN(13)

IN(1Y)

IN(15)

INC(16)
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=0 only part of the intermediate results will be printed,

=1 results will not be printed,

=2 all intermediate results will be printed,

=3 only the solution will be printed.

the indicator for the kind of job

=6 the complete bifactorization process is executed for all
proper blocks,

=7 the solution is calculated for an altered coefficient matrix
and/or right-hand side vector (previous use of the main
subroutine CSDSLE1 with IN(8)=6 is required),

=8 the solution is calculated for an altered right-hand side
vector (previous use of the main subroutine CSDSLE1 with
IN(B)=6 is requifed).

=MNS, the highest index of the subgraphs (according to the

decomposition tree.

=NMS, the number of modified subgraphs, must be 1less than

IN(12) /2.

=LREC, the length of the basic record in double CM words, must

be greater than 256.

=LADR, the length of the addressing record in CM words, must be

greater than 2¥NMS,

current number of stored basic records.

=NSBR, current number of subgraphs in the basic record.

maximum predicted number of basic and solution records to store

the results of analysis of all subgraphs.

maximum number of equations for any subgraph.



INCTIT)

IN(18)
IN(19)

IN(20)

IN(21)

IN(22)

IN(23)

IN(24)

IN(25)

IN(26)

IN(27)
-IN(L)
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maximum area predicted for sparse matrix analysis of subgraphs,

usually 1-2 times the number of nonzero elements in the maximum

submatrix.

the number of nonzero elements in the maximum submatrix.

the lowest index over all decomposition nodes.

the number of data records storing the information about

modified subgraphs.

current number of RHS records.

the indicator for the RHS updating formula

=0 the complete solution will be recalculated,

=1 the solution for modified proper blocks only will be
recalcul ated,

=2 only the solution for the subgraphs specified by the user
will be recalculated - if the user specifies substitute
subgraphs only then the solution will be recalculated at the
partition nodes only.

the indicator for operations on random files

=0 random access multi-records files will be created,

=1 random access multi-records files will be updated,

=2 the program will be executed without creating random access
multi-records files,

=3 random access multi-records files will be extended.

current number of stored addressing records.

the length of data and RHS records in double CM words, must

greater than 2¥IN(10).

number of all decomposition modes.

store numbers of external nodes for the substitute subgraphs



IN(L+1)
-IN(M)

IN(M+1)
=-IN(X)

™M)

IM(2)

M(3)
IM(4)

IM(5)

INTWA
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where L = 26 + IN(9)/2.

If the substitute subgraph is spanned over the partition nodes
of the graph number NG, then the number of its external nodes
(partition nodes of the ascendant) must be stored in IN(26+NG).
Obviously, substitute graph number 1 will always have a number

of external nodes equal 0, so IN(27)=0.

store the indices of all proper blocks in decreasing order,

where M=L+IN(5).

store the indices of subgraphs, where the solution will be
calculated, in decreasing order, where K=M+IN(4).

=MS1, mass storage indicator

=0 mass storage files will not be used,

=1 mass storage files will be used,

=2 mass storage file No. 2 (data file) will not be used,

=3 mass storage files will be extended.

=NRI, flag denoting a reference to the main subroutine, must be
initialzed by the user to 0 in conjunction with the first call
and must never be subsequently altered.

the size of working area INTWA.

the size of working area CMPLXWA.

the size of the solution record in double CM words. At the
output IM(5) contains the number of elements of the solution
vector.

is an INTEGER working area. Its length is at least

9*IN(9)/2 + (IN(9)-1)/IN(12) + IN(9)/50 + 2*%IN(12) + 2¥IN(15) +

LEIN(16) + 2*(IN(17) + IN(18)) + IN(20) + (IN(26)/IN(25)/+1)%2 +
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19
For small problems of up to 10 submatrices, the user is advised
to set standard values IN(9)=20, IN(12)=20, IN(15)=11,
IN(20)=10, and use INTWA of length
4EIN(16) + 2*(IN(1T) + IN(18)) + 181,
CMPLXWA is a COMPLEX working area. Its length is at least
1 + IN(11) + 3¥IN(16) + 4*IN(17) + IN(18) + IN(25).
SOLR solution record. For small problems, it contains the solution
vector. In this case, its size must be not less than the total

number of variables.

Entry for analysis without decomposition (subroutine CSSLE1)

For a description of subroutine parameters and different job

options, see [3].

V. DATA STRUCTURE

There are two different forms of data describing the decomposed
system. The first is used principally when initial information about
large decomposed systems is needed to obtain the first or nominal
solution. In this form, data is assumed to be stored in random access
multi-record files in the local file No. 2. Each record contains IN(25)
complex numbers. The second is used when the system is not so large or
principally when the changes in the coefficient matrix or the right-hand
side vector are made in a local area and information about those changes
can be stored in one data record. This data record can be stored
directly in the working area CMPLXWA from element [IN(11) + 3*IN(16) +

4%#IN(17) + 1]. This will save time needed to execute the mass storage
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read subroutine, The structure of data file No. 2 is shown in Fig. 10.

1... IN(25)1... IN(25)1... IN(25)

{
directory|
I

record 1 record 2 record 3 . e

Fig. 10. Structure of data file.

The first data record DREC in file No. 2 contains the directory for
all the modified subgraphs. The directory is a COMPLEX vector of length
2¥IN(10). Information about the NBSth modified subgraph is described by
four integer numbers A, B, C, D, stored in the real and imaginary parts
of the DREC elements'as follows:

DREC(NBS) = CMPLX(A,B)

DREC(NBS + IN(10)) = CMPLX(C,D)
where
A is the original index of the subgraph,

B is the index of the record containing information about modifications
in the subgraph A,

C is the length of complex area storing this information,

D 1is the address in the record B where this information is stored.

The information about modifications in the subgraphs is stored in the

form of COMPLEX matrices CE starting from element 2¥IN(10)+1 in record 1

and starting from element 1 in other records.

There are two different forms of information, depending on whether
the changes are done in the éoefficient matrix or the right-hand side

vector,
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structure for altered coefficient matrix

calcu

the s

This structure is also used when the first or nominal solution is
lated. A COMPLEX matrix CE describing the modified subgraph has

tructure shown in Fig. 11.

1 2 NEL NEL N (N=1)/2 + 1
— n — —m— M
N LES NROW NON (1), NON(3),
NON(S)’ o
AK '
NINT NEL NCOL NON(2), NON(4),
NON(6), ...

Fi

g. 11. Structure of a matrix CE for updated coefficient matrix.

The first two complex elements of CE are as follows:

where

N

NINT

LES

NEL

Next

CE(1) CMPLX(N,NINT)

CE(2) CMPLX(LES,NEL)

is the number of nodes in the subgraph describing the altered
matrix,

is the number of internal nodes (those which are not partition
nodes) in the subgraph,

is the length of the area predicted for the sparse matrix

operations (2 to 5 times more than NEL),
is the number of updated elements in the submatrix (for the first
analysis of a subnetwork NEL is equal to the number of nonzero
eléments in the submatrix).

NEL elements of CE contain the nonzero coefficients of the
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submatrix. NEL elements starting from the elements NEL+3 contain row
and column indices of consecutive nonzero coefficients, stofed in the
real and imaginary parts of the CE elements, respectively. Row and
column indices must refer to the internal numbering of nodes within each
subgraph, i.e., they must be numbered consecutively starting from 1 up
to N. A COMPLEX vector V stored in CE starting from the element 2¥NEL+3
contains the right—hand’side (RHS) vector, and finally, the INTEGER
vector NON stored in CE starting from the element 2*NEL+N+3 contains the
original indices of the nodes as obtained after graph partition.
Elements of NON are stored consecutively in the real and imaginary parts
of the CE elements, as illustrated in Fig. 11. While updating the
coefficient matrix and RHS vector (with IN(8) = 7), the user may specify
as many changes in the coefficient matrix as he wants to by storing NEL
updated elements. If a certain element is updated in more than one
place, the latest value will replace the old element in the submatrix.
In this case, (IN(8) = 7) the user may not store the vector NON, as
these values should not be changed during successive solutions. New
values of the whole vector V must be stored even if its value is not

updated.

Data structure for altered RHS only

Previous use of the main subroutine with IN(8) = 6 is required
before this kind of data can be accepted by the program. When the main
subroutine is run with IN(8) = 8, data records are organized as shown in
Fig. 10 with the directory in record 1. Each subgraph remains unchanged
and only the RHS vector is updated. Complex matrix CE describing the

modified subgraph only contains the updated RHS vector as shown in Fig.
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12. Again, the entire vectors V must be stored for all those subgraphs

for which RHS is updated.

Fig. 12. Structure of a matrix CE for updated RHS only.

Data describing the graph decomposition and the type of job

In the vector IN, the user must assign values to the following
variables: IN(4), IN(5), IN(7), IN(8), IN(9), IN(10), IN(11), IN(12),
IN(15), IN(16), IN(17), IN(18), IN(19), IN(20), IN(22), IN(23), IN(25),
up to IN(K), where

K = IN(4) + IN(5) + IN(9)/2 + 26.
The user must decide whether or not he will use or create random access
multi-record files. These files are‘necessary when the system is big,
so that only part of the information describing it can be stored in
central memory. Fig. 13 shows the scheme of memory organization as used
by the library subroutines when random files are necessary.

Data records have been described at the beginning of this Section.

Each basic record may store information about a partial solution of up

to 255 subgraphs. Each subgraph in a basic record has specified its
number of nodes N, the number of internal nodes NINT, the length of area
predicted for the sparse matrix operations LES, a full description of

its bifactorization as generated by the Zollenkopf algorithm [2], the
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vector NON of the original indices of nodes, and the result Z of the
multiple product (26) for the subnetwork. The structure of the
information describing each subgraph as stored in a basic record is

shown in Fig. 14.

1 2 N N LES L¥LES 2%N N
— i —— ”MM”
LCOL(1) - ITAG(1) -
N . NON
LCOL(N+1) ITAG(LES)
CE DE Z
LCOL(N+2) - ITAG(LES+1)
NINT LES
LCOL(3N+1) ITAG(Z2LES)

Fig. 14. Structure of the information describing a subgraph
in a basic record.

Vectors LCOL, ITAG, CE and DE are as described in [3]. Each basic

record has the structure shown in Fig. 15.

L1 L2
MM
1 ... 256 A1 , A2
directory subgraph 1 subgraph 2 .« o o

Fig. 15. Structure of a basic record.

The directory in a basic record is a COMPLEX vector of the length 256.

Information about the kth subgraph (k = 1, ..., 255) stored in this

basic record is described by two integer numbers Ak and Lk stored in the

real and imaginary parts of the kth complex element of a basic record,
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where Ak denotes the address from where the information describing the
kth subgraph starts and Lk is the length of the area storing the kth
subgrapn. Subgraphs are numbered consecutively as they are stored in a
basic record, so k is not the original index of a subgraph according to
the decomposition tree, |

Original indices of graphs refer to the addressing records. Each

addressing record is an INTEGER vector of length LDDR g 2%LADR =

2*%IN(12). If a graph's original index is NSUB, then its address can be
found in the addressing record number NR = (NSUB-1)/LADR + 1. Element
IADR = NSUB ~-(NR-1)*LADR of this record contains the index of the basic
record storing the information about the subgraph NSUB, while element
(IADR+LADR) is the index of the subnetwork in this basic record.

Addressing records are stored in random access file No. 5. The
last record in file No. 5 contains information about stored multi-
record random access files.

Multirecord random access file No. 1 contains information about the
RHS vector at the nodes of substitute subgraphs (external nodes of
proper blocks) or the solution vector at these nodes after the analysis
is completed. Each RHS record is a COMPLEX vector whose length 1is
IN(25). The first element in the first RHS record corresponds to the
RHS at node IN(19). The number of RHS records is equal to
IN(26)/IN(25) + 1. The next IN(26)/IN(25) + 1 records in file No. 1
store the z vector (15) for the nodes of the substitute subgraphs and
are used when CSDSLE1 is executed with IN(8) = 7 or IN(8) = 8.

The complete solution vector is stored in the multirecord random
access file No. 7. The number of components of the calculated solution

vector is available in IM(5). Each solution record contains pairs of
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complex numbers (A,B). The real part of each complex number A is the

original index of a variable and B is the value of the solution for this

variable.

Use of COMMON:

Workspace:

Input/output:

Subroutines:

Restrictions:

Date:

VI. GENERAL INFORMATION

None.

Provided by the user.

Input from workspace or random access files., Output as

defined by the user; see IN(T).

CSSLE1, DATACN, DATBCN, SYMCN, SORDCN, REDUCN, CHNGE,

PRINT and:

a) for standard entry: CSDLSE1, ASDNSR, ABSUB,
CHEBSUB, STOREF, READF, READSB, CHEDEL, ASUBSR,
LMIRHS, ANSUBSN, SMSSUB, CONNECT, EEDSUB, CONNUMB,
ADDSUB, CASRHS, PSHDS, RMRHS, RSBR, RMERHS, RMIRHS,
CASSOL, PABIDES, DATAC, PRINTIN, PRINTNC, PRINTRS;

b) for entry for analysis without decomposition:
SSLECN, MSLECN, INVCN, MSLECC, MSLERC, SOLVCN,
ASLECN, RSLECN, FINDSYM, READL, PRINTI, PRINTS.

IN(9) > IN(5) > IN(4) > O

IN(5) > IN(10) > 0, IN(11) > 20, IN(12) > 2*IN(10)

IN(15) > 0, IN(16) > 0, IN(17) > O, IN(18) > O,

IN(19) > 0, IN(20) > O, IN(25) > IN(9), IN(26) > O

January 1983.
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VII. EXAMPLES

Example 6
the system of linear equations of Example 2 has been partitioned
into 4 subsystems according to the partition of flow-graph G (see Fig.
6). Proper blocks GU’ G5, G6 and G7 are represented as a data record in
random access file No. 2. This file has been created by execution of
the program DECSYS1 listed on the p. U48. As required by the Record
Manager, the size of vector INDEX2 and the value of IREC2 must be not
less than the number of data records +1. After file No. 2 (TAPE2) was
created the main program EXAMP6 was executed. In this case the sizes of
the basic record, the addressing record, and the data record were chosen
sufficiently large and only one record of each type was created. All
intermediate results are printed and the solution is calculated for all
subgraphs. The user's program EXAMP6 and the results are shown on pp.
49-59, For each subgraph, the matrix E of (7) is presented in the form
of 3 matrices:
(1) Lower triangular part - elements of this matrix are equal to
—iij/igj, i=1(j+ 1, ..., n and have opposite signs to those of
L of (6).
(2) Upper triangular part - elements of this matrix are equal to -rgi,
i= (j+1), ..., n and have opposite signs to those of Bj of (4).
(3) Diagonal elements equal to dgj as elements of Qj of (6).

Compare the matrix F obtained in Example 3 with the one described

by the output shown on pp. 51-58.
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PROGRAM DECSYS1(TAPE2)
THIS PROGRAM CREATES THE RANDOM FILE CONTAINING INFORMATION
ABOUT THE SUBGRAPHS OF THE DECOMPOSED GRAPH

INTEGER INDEX2(2)
COMPLEX CE(103)

DIRECTORY

DATA CE/(4.,1.),(5.,1.),(6.,1.),¢(7.,1.),(13.,9.),(25.,22.),
+(32.,47.),(25.,79.),

SUBGRAPH G4
+(2.,1.),(2.,4.),(1.,0.),(2.,0.),(2.,0.),(2.,0.),
+(1.,1.),(2.,1.),(1.,2.),¢(2.,2.),(1.,0.),(1.,0.),(6.,8.),

SUBGRAPH G5

+(3.,1.),(6.,9.),(3.,0
+(0.,0,),(1.,0.),(1.,0
+(2.,2.),03.,2.),(1.,3
+(5.,8.),(9.,0.),

SUBGRAPH G6
+(4.,2.),012.,12.),(6.,0.) ,(-1.,0.),(1.,0.),(3.,0.),(5.,0.)
+,(-1.,0.),(2.,0.),(2.,0.),(0.,0.),(0.,0.),(1.,0.),(09.,0.),¢1.,1.
+(2.,1.),(3.,1.),(1.,2.),(2.,2.),(3.,2.),(4.,2.),(1.,3.),(2.,3.),
+(3.,3.),(2.,4.),(4.,4.),(0.,0.),(1.,0.),(0.,0.),(0.,0.),(3.,4.),
+(7.,9.),

SUBGRAPH G7
+(3.,2.),(6.,9.),(9.,0.),(1.,0.),(0.,0.),(2.,0.),(8.,0.),
+(2.,0.),0(1.,0.),(1.,0.),(7.,0.),(1.,1.),(2.,1.),(3.,1.),(1.,2.),
+(2.,2.),(3.,2.),01.,3.),€2.,8.),(3.,3.),(-1.,0.),(2.,0.),(0.,0.)

+(1.,2.),(7.,0.)/

IREC2 THE NUMBER OF RECORDS IN RANDOM FILE NO.2. HAVE TO BE

NOT LESS THAN IN(20)+1

IREC2=2
CALL OPENMS (2, INDEX2, IREC2,0)

STORE INFORMATION ABOUT SUBNETWORKS TO BE ANALYZED
CALL WRITMS (2,CE,206,1)

STOP
END

090901
0000662
000063
000004
000005
000996
600007
000008
039009
000010
000011
000012
009913
000914
090015
060016
000017
0900918
0900019
090026
009621
200022
000623
090024
0000235
000026
096927
00900628
000029
000030
0090031
006032
096033
000934
0660335
0606936
090037
600038
000039
000040
000041
060942
000943
000944
0609435
099046
006047
0009048
000049
000050
090051
000052
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PROGRAIM EXAMP6( INPUT, OUTPUT, RESULT, TAPE4= INPUT, TAPE6=RESULT, TAPE1,
1TAPE2, TAPE3, TAPES, TAPE?)

THIS IS TEE MAIN PROGRAM FOR EXAIMPLE 6

DIMENSION IN(33), IM(5), INTWA(137)

COMPLEX CMPLXWA(716),SOLR(20)

DATA IN/0,0,0,4,4,0,2,6,7,4,549,10,0,0,1,4,12,12,7,1,0,0,0,0,103,3
1,0,1,1,7,6,5,4/

DATA 1M/1,9,187,716, 10/

WRITE (6, 19)
10 FORMAT (1H ,/," EXAMPLE 6",/)
CALL CSDSLE1 (IN, INTWA,CMPLXWA, I, SOLR)
STOP
END

009001
606962
66069003
065004
060005
960006
900007
000608
060009
095010
009611
000012
036013
060014
060915
6006916
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Example 7

The sysﬁem of linear equations of Example 2 has been partitioned
and stored in random access file No. 2, as for Example 6. The sizes of
the basic record, the addressing record and the data record are the same
as for Example 6. Only part of the intermediate results are printed
out. The solution is calculated at the partition nodes only, which are
internal nodes of the subgraphs 3, 2 and 1. The user's main program

EXAMP7 and the corresponding results are shown on pp. 61-65.



[e¥olv]

19

PROGRAN EXAHP?(INPUT.OUTPUT,RESULT,TAPE4=INPUT.TAPE6=RESULT,TAPE1,
1TAPE2, TAPE3, TAPES, TAPE?)

THIS IS THE MAIN PROGRAM FOR EXAMPLE 7

DIMENSION IN(36), IM(5), INTWA(13?7)

COMPLEX CHMPLXWA(716) ,SOLR(20)

DATA IN/0,0,0.3,4,0,0,6,7,4,540,10,0,0,1,4,12,12,7,1,0,2,0,0,1@3,3
1,0,1,1,7,6,5,4,8,2,1/

DATA IM/1,0,187,716,10/

WRITE (6,19)

FORMAT (1H ,/," EXAMPLE 7",/)

CALL CSDSLE1 (IN, INTWA,CMPLXWA, IM, SCLR)
STCP

END

6090691
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200603
QOCLO%
209905
960006
[ alvirird
200008
S000%
060010
669911
Q09012
000013
0060 14
620015
000616
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Example 8

The system of linear equations of Example 2 has been partitioned
and stored in random access file No. 2 as for Example 6. Smaller basic
and addressing records were chosen and, in this example, 2 of each were
necessary.

The data record was the same as for Example 6. Only the solution
vector 1is printed out. The wuser's main program EXAMP8 and the

corresponding results are shown on pp. 67-68.
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PROGRAM EXAMPS( INPUT, OUTPUT, RESULT, TAPE4= INPUT, TAPE6=RESULT, TAPE1,
1TAPE2, TAPE3, TAPES, TAPE?)

THIS IS THE MAIN PROGRAM FOR EXAMPLE 8

DIMENSION IN(33), IM(5), INTWA(139)

COMPLEX CIMPLXWA(586) ,SOLR(20)

pATA IN/0,0,0,4,4,0,3,6,7,4,410,5,0,9,2,4,12,12,7,1,0,0,6,0,103,3,
19,1,1,7,6,5,4/

DATA IM/1,0, 136,586, 10/

WRITE (6,10)
19 FORMAT (1H ,/," EXAMPLE 8",/)
CALL CSDSLE1 (IN, INTWA,CIPLXWA, IIM, SOLR)
STOP
END

000001
506002
0009063
090004
006005
000006
090097
000008
2900009
000010
060011
650012
000013
6069014
000015
060016
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IN SUBGRAPH NO 1

VARIABLE

9

VALUE
REAL IMAGINARY
.345698E+01 9.

IN SUBGRAPH NO 2

VARIABLE

8

VALUE
REAL IMAGINARY
. 123924E+61 9.

IN SUBGRAPH NO 3

VARIABLE

7

VALUE
REAL IMAGINARY
=.183777E+00 9.

IN SUBGRAPH NO 4

VARIABLE

6

VALUE
REAL IMAGINARY
-.147849E+01 9.

IN SUBGRAPH NO 5

VARTABLE

5

VALUE
REAL IMAGINARY
-.197849E+91 9.

IN SUBGRAPH NO 6

VARIABLE

3

VALUE
REAL IMAGINARY
.2796358E+00 0.

IN SUBGRAPH NO 7

VARIABLE

1
NUMBER OF

CPU TIME:

VALUE
REAL IMAGINARY

-.153505E+00 0.
VARIABLES IN THE SCOLUTION VECTOR

. 179 SECONDS:

VALUE

REAL
=.435464E+00

9.

VALUE

REAL
.29266CE+00

9.

IMAGINARY

IMAGINARY
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Example 9

The system of linear equations of Example 2 has been partitioned
and stored in complex vector CE. The data record is read directly into
the working area CMPLXWA, starting from element 4¥IN(7) + 3¥IN(16) +
IN(11)  +1, The main program EXAMP9 is executed without creating or
updating any mass storage files. It is possible to read the data record
directly into CMPLXWA and to create or update mass storage files. 1In
the latter case, IM(1) must be equal to 2. Only the solution vector is
printed out. The user's program EXAMP9 and the corresponding results

are shown on pp. 70-71.
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PROGRAM EXAMPO( INPUT, OUTPUT, RESULT, TAPE4= INPUT, TAPE6=RESULT, TAPE1L,
+TAPTEZ, TAPES, TAPES, TAPET)

THIS IS TEE MAIN PRCGRAM FOR EXAIMPLZT 9

DIIINSIOW IN(33), ITI(3), INTWA(124)
COMPLEX CiPLXWA(716),SOLR(29) ,CE(183)

DIRECTORY

DATA CE/(4.,1.),(5.,1.),(6.,1.),(7.,1.),(18.,92.),(25.,22.),
+(32.,47.),(25.,79.),

SUBGRAPH G4

+(2.,1.),(2.,4.7,(1.,0.),(2.,0.),(2.,0.),(2.,0.),
+(1.,1.),(2.,1.),(1.,2.),(2.,2.),(1.,0.),(1.,08.),(6.,8.),

SUBGRAPH G5
+(38.,1.),(6.,9.),(3.,9.),(1.,0.),(2.,0.),(2.,0.),(0.,0.),
+(0.,9.),(1.,0.),(1.,0.),(4.,8.),(1.,1.),(2.,1.),(3.,1.),(1.,2.),
+(2.,2.),(3.,2.),(1.,3.),(2.,3.),(3.,3.),(9.,6.),(2.,0.),(9.,6.),
+(5.,3.),(9.,0.),

SUBGRAPH G6
+(4.,2.),012.,12.),(6.,0.) ,(-1.,0.),(1.,8.),(3.,0.),(5.,0.)
+,(-1.,0.),(2.,0.),(2.,0.),(0.,0.),(6.,0.),(1.,0.),(0.,0.),(1.,1.),
+(2.,1.),(3.,1.),(1.,2.),(2.,2.),(3.,2.),(4.,2.),(1.,3.),(2.,3.),
+(8.,3.),(2.,4.),(4.,4.),(0.,0.7,(1.,6.),(5.,0.),(0.,0.),(3.,4.),
+(7.,9.),

SUBGRAPH G7
+(8.,2.),(6.,9.),(9.,0.),(1.,0.),(0.,0.).(2.,08.),(3.,0.),
+(2.,2.),¢1.,0.),(1.,0.),(7.,0.),(1.,1.),(2.,1.),(3.,1.),(1.,2.),
+(2.,2.),(3.,2.),(1.,8.),(2.,3.),(3.,3.),(-1.,0.),(2.,0.),(0.,0.),
+(1.,2.),(7.,0.)/

DATA IN/%,0,0,4,4,0,3,6,7,4,540,10,0,0,9,4,12,12,7,0,9,0,2,0, 13,3

+,9,1,1,7,6,5,4/
DATA IMN/0,9, 124,716, 10/

TA=4INC1?)+3%INC16)+INC11)

DO i® I=1,188

CMPLEWA(IA+I)=CE(I)

WRITE(6,29)

FORMAT(1H ,/," EXAMPLE 9",/)

CALL CSDSLE1CIN, INTWA, CIfPLXWA, IM, SOLR)
STOP

END

60096 1
000062
020003
03004
626005
29006
080207
G098
69606909
000919
000011
000012
099613
Q000 14
660915
930016
630917
0329018
900919
200929
06302

00922
20623
025024
000025
050326
Q)27
V0023
296029
200938
000931
020932
050633
000934
606935
0038036
$50037
006838
€00u39
000049
Co0041
030042
006043
000044
006045
650946
000047
000048
000949
60060950
90895 1



EXAMPLE 9

SOLUTION

IN SUBGRAPH RO 1

VARIABLE VALUE
REAL IMAGINARY
S .345698E+01 9.
IN SUBGRAPH NO 2
VARIABLE VALUE
REAL IMAGINARY
8 . 123224E+01 9.

IN SUBGRAPH NO 3
YVARIABLE VALUE
REAL IMAGINARY
K4 -.185Y77E+00 0.
IN SUBGRAPH NO 4
VARIABLE VALUE
REAL IMAGINARY
[ =.14734%9E+01 0.
IN SUBGRAFH NO 5
VARIABLE VALUE
REAL IMAGINARY
5 -.197849E+01 9.
IN SUBGRAPH NO 6
VARIABLE VALUE VARIABLE VALUE
REAL IMAGINARY REAL IMAGINARY
3 .279658E+09 9. 4 -.435464E+00 Q.
I SUSGRAPH NO 7
VARIABLE VALUE VARIABLE VALUE
REAL IMAGINARY REAL IMAGINARY
i -.1555065E+60 9. 2 - 292660E+09 0.
NUMBER OF VARIABLES IN THE SOLUTION VECTOR 9

CPU TIME: .083 SECONDS
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Example 10

The system of linear equations of Example 2 has been partitioned
into 4 subsystems according to the partition of flow-graph G (see Fig.
6). Proper blocks Gu, G5

record in random access file No. 2, while proper blocks G6 and G7 are

and the directory are stored in the first data

stored in the second data record. File No. 2 has been created by
execution of the program DECSYS2 listed on p. 73. After creating file
No. 2 the main program EXAMP10 was executed. Smaller basic and
addressing records were chosen. Only the solution vector is printed

out., The user's program EXAMP10 and the corresponding results are shown

on pp. TH4-=T75.
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PROGRAM DECSYS2(TAPE2)
THIS PROGRAM CREATES THE RANDOM FILE CONTAINING INFORMATION
ABOUT THE SUBGRAPHS OF THE DECOMPOSED GRAPH

INTEGER INDEX2(3)
COMPLEX CE(46) ,DE(57)

DIRECTORY

DATA CE/(4.,1.),(5.,1.),(6.,2.),(7.,2.),(13.,9.),(25.,22.),
+(32.,1.), (25.,33 ),

SUBGRAPH G4

+(2.,1.),(2.,4.3,(1.,0.),(2.,0.),(2.,0.),(2.,0.),
+(1.,1.),(2.,1.),(1.,2.),¢(2.,2.),(1.,0.),(1.,0.),(6.,8.),

SUBGRAPH G35

+(38.,1.),(6.,9.),(3.,0.),(1.,0.),(2.
+(06.,0.),(1.,0.),(1.,0.),(4.,0.),(1.
+(2.,2.),(3.,2.),(1.,8.),(2.,8.),(3.
+(5.,8.),(9.,0.)/

SUBGRAPH Gb6

DATA DE/(4.,2.),(12.,12.),(6.,0
+,(-1.,0.),(2.,0.),(2.,0.),(0.,0
+(2.,1.),03.,1.),(1.,2.),(2.,2.)
+(3.,3.),(2.,4.),(4.,4.),(9.,0.)
+(7.,9.),

SUBGRAPH G7

+(3.,2.),(6.,9.)
+(2.,0.),(1.,0.)
+(2.,2 ),(3.,2.)
+(1.,2.),(7.,0.)

»(9.,0.),(1.,0

»(1.,0.),(7.,0.

»(1.,3.),(2.,3.

/

IREC2 THE NUMBER OF RECORDS IN RANDOM FILE NO.2. HAVE TO BE
NOT LESS THAN IN(20)+1

IREC2=3
CALL OPENMS (2, INDEX2, IREC2, )

STORE INFORMATION ABOUT SUBNETWORKS TO BE ANALYZED

CALL WRITMS (2,CE,92,1)
CALL WRITMS (2,DE, 114,2)
STOP

END

069001
660002
009003
0906004
0660905
090066
000007
000908
090009
000010
000011
066012
090013
96069014
0606915
000016
006917
090018
0608919
000029
000021
006022
0690623
0000624
096625
066026
000027
000628
090629
960030
2920031
000532
966633
000334
009035
099036
0309037
060638
096939
860040
566041
600942
066043
000044
000645
0960646
000047
0069048
000649
000050
000951
036052
000053
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PROGRAM EXAMP1O( INPUT, OUTPUT, ZESULT, TAPE4= INPUT, TAPES=RESULT, TAPE 1
s TAPE2, TAPES, TAPES, TAPE?)

THIS IS THE MAIN PROGRAM FOR EXAIMPLE 19

DIMENSION IN(33), IIK5), INTWA(131)

COMPLEX CITPLEWA(540) , SOLR(29)

bATA IN/6,0,9,4,4,9,3,6,7,4,410,5,0,0,2,4,12,12,7,2,0,6,0,0,57,3,9
1,1,1,7,6,8,47

DATA IM/1,9,131,5490, 10/

WRITE (6,19

FORMAT (1H ,," EXAMPLE 10",/

CALL CSDSLE1 (IN, INTWA, CIPLXWA, IM, SOLR)
STOP

END

000091
0020682
9329093
600304
000095
Q90686
080297
960608
600609
0000190
000011
920012
206613
068014
000015
099916



EXAMPLE 190

SOLUTION

IN SUBGRAPH NO 1
VARIABLE VALUE
FEAL IMAGINARY
) .345698E+01 0.
IN SUBGRAPH NO 2
VARIABLE VALUE
REAL IMAGINARY
8 .123924E+01 0.
IN SUBGRAPH NO 3
VARIABLE VALUE
REAL IMAGINARY
7 -.185777E+60 0. '
IN SUBGRAPH NO 4
VARIABLE VALUE
REAL IMAGINARY
6 -.147849E+01 0.
IN SUBGRAPA N0 5
VARIABLE VALUE
REAL IMAGINARY
5 -.197849E+61 0.
IN SUBGRAPH NO 6
VARIABLE VALUE
REAL IMAGINARY
3 .279658E+00 0.
IN SUBGRAPH NO 7
VARIABLE VALUE
REAL IMAGINARY
1 -.155505E+00 0.

75 -

VARIABLE

VARIABLE

2

NUIBZR OF VARIABLES IN THE SOLUTION VECTOR O

CPU TIME:

. 192 SECONDS

VALUE
REAL
=.435464E+09

IMAGINARY
0.

VALUE
REAL
-292660E+00

IMAGINARY
9.
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Example 11
The system of linear equations of Example 2 has been partitioned
into 4 subsystems according to the partition of flowgraph G1 (see Fig.

6). Proper blocks G G_. and the directory describing these two blocks

4’ -5

only, are stored in the first data record in random access file No. 2.
File No. 2 has been created by execution of the program DECSYS3 listed
on p. T7.

After creating file No. 2, the main program EXAMP11 was executed.
In this program, IN(10)=2, which means that two subgraphs will be
analyzed. As a result, local files called TAPE1, TAPE3 and TAPE5 have
been generated by the program. These files store information about the
partial analysis of the proper blocks Gu and G5 and they must be
preserved by the user to complete analysis after the rest of the network
is analyzed.

The remaining part of the system is represented by proper blocks G6
and G7 stored in file No. 2 after execution of the program DECSYS4
listed on the p. 78.

Next, the program EXAM11A was executed. This program uses
information about the system stored in files 1, 2, 3 and 5. Indicators
IN(5), IN(9), IN(12), IN(15) up to IN(20), IN(25) and IN(26) must not be
changed in EXAM11A as they determine the partitioning of the working

areas and indicators evaluated in the previous run. User's programs

EXAMP11, EXAMP11A and the corresponding results are shown on pp. 79-82.
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PROGRAM DECSYS3(TAPE2)
THIS PROGRAM CREATES THE RANDOM FILE CONTAINING INFORMATION
ABOUT THE SUBGRAPHS OF THE DECOMPOSED GRAPH

INTEGER INDEX2(2)
COMPLEX CE(42)

DIRECTORY -
DATA CE/(4.,1.),(5.,1.),(13.,5.),(25.,18.),

SUBGRAPH G4
+(2.,1.),(2.,4.),(1.,0.),(2.,0.),(2.,0.),(2.,0.3,
+(1.,1.),(2.,1.),¢1.,2.),(2.,2.),(1.,0.),(1.,0.),(6.,8.),

SUBGRAPH G5
+(3.,1.),(6.,9. <50

+(2.,2.),(03.,2.

)
+(90.,0.),(1.,0.)
)
+(5.,8.),(9.,0.)

}
IREC2 THE NUMBER OF RECORDS IN RANDOM FILE NO.2. HAVE TO BE
NOT LESS THAN IN(20)+1

IREC2=2
CALL OPENMS(2, INDEX2, IREC2,9)

STORE INFORMATION ABOUT SUBNETWORKS TO BE ANALYZED
CALL WRITMS(2,CE, 100, 1)

STOP
END

096691
©9006002
000003
330804
©0908E3
950006
CoCeO7
3900608
220009
236010
000011
028912
056013
096014
096015
560016
000017
0C9018
0o09019
060020
020021
000622
020923
256024
000925
000026
696627
000028
059029
600939
000831
006032
006633
000934
000035
©00036
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PROGRAM DECSYS4(TAPE2)
THIS PROGRAM CREATES THE RANDOM FILE CONTAINING INFORMATION
ABOUT THE SUBGRAPHS OF THE DECOMPOSED GRAPH

INTEGER INDEX2(2)
COMPLEX CE(61)

DIRECTORY
DATA CE/(6.,1.),(7.,1.),(32.,5.),(25.,37.),

SUBGRAPH G6
+(4.,2.),012.,12.),(6.,0.),(~-1.,0.),(1.,0.),(3.,0.),(5.,0.)
+,(-1.,0.),(2.,0.),(2.,06.),(0.,0.),(6.,0.),(1,,0.),(0.,0.),(1.,1.),
+(2.,1.),(3.,1.),(1.,2.),(2.,2.),(3.,2.),(4.,2.),(1.,3.),(2.,8.),
+(3.,3.),(2.,4.),(4.,4.),(0.,0.),(1.,0.),(0.,0.),(0.,0.),(3.,4.),
+(7.,9.),

SUBGRAPH G7
+¢(3.,2.),(6.,9.),(9.,0.),(1.,0.),(0.,0.),(2.,0.),(8.,0.),
+(2.,0.),(1.,0.),(1.,0.),(7.,0.),(1.,1.),(2.,1.),(3.,1.),(1.,2.),
+(2.,2.),(38.,2.),(1.,3.),(2.,8.),¢(38.,8.),(-1.,0.),(2.,0.),(0.,0.),

+(1.,2.),0(7.,0.)7

IREC2 THE NUMBER OF RECORDS IN RANDOM FILE NO.2. HAVE TO BE
NOT LESS THAN IN(20)+1

IREC2=2
CALL OPENMS(2, INDEX2, IRECZ2,0)

STORE INFORMATION ABOUT SUBNETWORKS TO BE ANALYZED
CALL WRITMS(2,CE, 122, 1)

STOP
END

000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
200012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
009026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
0060037
0690038
000039



ana

AP 11 INPUT, OUTRYUT, RESULT, TAPT4= INPUT, TAPEG6=RESULT, TATT
E3 , TAPES, TAPE?)

THIS I8 THE MAI PROGRAIT FOR EXAIPLI 11
IM(5), INTWACI3?)

74) , S0LR(20)
’ ,

COMPLEX CIPLINA
3,6,7,2,549,19,0,0,1,4,12,12,7,1,9,1,9,9,61,3,

DATA IN/9,9,0,2
10,1,1,7,6,5,4/
DATA II/1,0,187,674,107/

&

DINEZSION IN(33),
{6

WVRITZ (6,19)
19 FORMAT ( 111 ,/," EXAMPLE 11",
CzLL CSBSLEL (IN, INTVA,CIIPLXWA, I, GOLR)
STOP
ZND

9 19008
930009
Q00010
GO’JG! 1



EXAIMPLE 11

HIERARCHICAL STRUCTURE IS NOT COMPLE
SOLUTION CAINNOT BE CALCULATED

=
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PROGRAIT EXAMI1ACINPUT, OUTPUT, RESULT, TAPE4= INPUT, TAPE6=RESULT, TAPT!
+, TAPE2, TAPES, TAPES, TAPEY)

THIS IS THE IMAIN PRCCRAM FOR EXAIPLT 11A

DIMENSION IN(32), IM(5), INTWAC137)

COITPLER CIPLEWA(ETA)Y , SOL7(0D)

DaTi IN/D,0,0,2,4,0,8,6,7,2,549,10,0,0,1,4,12,12,7,1,0,1,8,0,61,3
+,0.1,1,7,5,5,4/ )

DATA 1M/S,0Q, 127,674, 10/

WRITE(6, 1G0)

FORMAT(1H ,/," EXAMPLE 11A",/)

CALL CSDSLE1(IN, INTWA, CITPLXVA, IT1, SOLR)
STO?

ERD

0Ce0o1
Q00002
690093
090064
olezoraknlst
620606
033097
2CeolE
00809
026910
CCBe11
0I001&
080013
000014
So0018

Go09 106



EXATPLE 11A

SCLUTION

I SUBGRAFH FO 1

82 -

VARIABLZE VALUE
REAL IMAGINARY
o .3436928E+01 Q.
IN SUBGRAPH NO 3
VARIABLE VALUE
REAL IMAGINARY
7 ~.183777E+00 9.
IN SUEBGRAPH NO 6
VARIAEBLE VALUE VARIABLE VALUE
REAL IMAGINARY REAL IMMAGINARY
3 .279658E+00 9. 4 -.435464E+069 9.
IN SUBGRAPH NO 7
VARIABLE VALUE VARIABLE VALUE
FEAL IMAGINARY REAL ITIAGINARY
1 -.155505E+60 6. 2 . 2920650E+60 8.
NUIBER OF VARIABLES IN THE SOLUTION VECTOR 6

CPU TIIME: . 124

SETONDS
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Example 12

To test networks of different size and different partition types,
the program LADDER, listed on pp. 86-89, was used. LADDER generates
data for a decomposed system of linear equations which are the nodal
equations of a ladder network. As input data for LADDER, the user must
supply 3 integer numbers LEVEL, NN and IN25, where LEVEL is the number
of decomposition levels, NN is a number of nodes in each proper block,
and IN25 is the length of the data record. As a resulé, LADDER will
generate data, which is stored in file No. 2 in the form required by the
subroutine CSDSLE1. To prepare data for the user's main program
EXAMP12, LADDER was executed with input data as follows: LEVEL = 2, NN
= 10, and IN25 = 1500. At the output, LADDER writes the following
information:

LENGTH OF WORKING AREA INTWA MUST BE NOT LESS THAN IA7

LENGTH OF WORKING AREA CMPLXWA MUST BE NOT LESS THAN IB5

NUMBER OF DATA RECORDS + 1 = IREC2 |

NUMBER OF ALL NODES = NALL

NUMBER OF ALL PROPER BLOCKS = IN5

THE HIGHEST INDEX OF ALL THE SUBGRAPHS = IN9

MAXIMUM AREA FOR SPARSE MATRIX = IN17

NUMBER OF NONZERO ELEMENTS IN MAX SUBMATRIX = IN13

THE LOWEST INDEX OVER ALL DECOMPOSITION NODES = IN19

NUMBER OF ALL DECOMPOSITION NODES = IN26

This information is necessafy to run the user's program EXAMP12,

where indicator vector IN must be as follows:
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IN(5) = IN5, IN(9) = IN9, IN(10) = IN5, IN(16) = NN, IN(17) = IN17,

INC18) IN18, IN(19) = IN19, IN(20) = IREC2, IN(25) = IN25,

IN(26) = IN26.

With LEVEL = 2, NN = 10, and IN25 = 1500, LADDER generated the
decomposed graph of a ladder network having 37 nodes, partitioned into 4
proper blocks. Each proper block represents a section of the ladder
network having 10 nodes (plus reference), 18 unit resistors and one unit
current excitation, as shown in Fig. 16. Such sections are connected in
cascade and the nodes are renumbered according to the decomposition
tree., User's program EXAMP12 and the corresponding results obtained are

shown on pp. 90-92.
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PROGRAM LADDER( INPUT, OUTPUT, TAPE4=INPUT, TAPE6=0UTPUT, TAPE2) .
THIS PROGRAM GENERATES DATA FOR THE DECOMPOSED SYSTEM
OF LINEAR EQUATIONS WHICH ARE THE NODAL EQUATIONS OF
A LADDER NETWORK

INTEGER INTWA(2000)
COMPLEX CMPLXWA( 16000)

READ SIZE OF THE NETWORK

WRITE (6, 10)

16 FORMAT (1H ,/," NUMBER OF DECOMPOSITION LEVELS:",11X,/," NUMBER OF
1 NODES IN PROPER BLOCK:",~/," LENGTH OF DATA RECORD:"',.)
READ*, LEVEL, NN, IN25
CALL SYSTEM (LEVEL, NN, IREC2, NALL, IN5, IN9, IN17, IN18, IN19, IN25, IN26,
1INTWA, CMPLXWA)
WRITE (6,20) IREC2,NALL, IN5, IN9, IN17,IN18, IN19, IN26

20 FORMAT (,/," NUMBER OF DATA RECORDS + 1 =",16,/," NUMBER OF ALL NO
1DES =",16,/," NUMBER OF ALL PROPER BLOCXS =",16,/," THE HIGHEST IN
2DPEX OF ALL THE SUBGRAPHS =", 16,/," MAXIMUM AREA FOR SPARSE MATRIX

=",16,7," NUMBER OF NONZERO ELEMENTS IN MAX SUBMATRIX =",16,,/," T
4HE LOWEST INDEX OVER ALL DECOMPOSITION NODES =",16,,/," NUMBER OF
S5ALL DECOMPOSITION NODES =", I4)

STOP

END

SUBROUTINE SYSTEM (LEVEL, NN, IREC2, NALL, IN5, IN9, IN17, IN18, IN19, IN25
1, IN26, INTWA, CMPLXWA)

INTEGER INTWAC(1)

COMPLEX CMPLXWA(1)

IN9=2%*%(LEVEL+1)-1

ISBS=IN9/2

INS=1ISBS+1

NALL= IN5S*NN-ISBS

IN18=3%NN-2

IN17=1IN18

IN19=NALL-ISBS+1

IN26= ISBS

IREC2= (2% INS+ ING*(2+(3*x*NN-2) %2+ NN+(NN-1) /2+1) ) /IN25+5

IAl=1

IA2=TA1+2% INS

IA3=T1A2+2%IN5 .

1A4=1A3+IREC2

IA5=1A4+IN18

IA6=IA5+IN18

IA7=TA6+(NN-1)/2+1

10 FORMAT (1H ,/," LENGTH OF WORKING AREA INTWA MUST BE NOT LESS THAN

1",16,7)

WRITE (6,10) IA7? -

IB1=1

IB2=1+2+2%IN18+NN+(NN-1) 72+1

IB3= IB2+ IN25

IB4=1IB3+IN18

IB3= IB4+NN

WRITE (6,20) IBS

26 FORMAT (1H ,/," LENGTH OF WORKING AREA CMPLXWA MUST BE NOT LESS TH

1AN", 17/)

CALL SYSGEN (INTWA(IA1), INTWA(IA2), INTWA(IA3),CMPLXWA(CIB1),CMPLXVA
1(1B2), IREC2,CMPLXWA( IB3) , INTWA( 1A4) , INTWA( IAS) , CMPLXWA( IB4) , INTWA(
21IA6) ,NN, INS, IN9, IN25, ISBS, NALL, IN17)

_RETURN

000001
000002
060003
000604
0000605
000006
000007
060008
0906009
060010
000011
000012
000013
000014
0690015
000016
090017
000018
000919
000029
000021
000022
000023
000024
000025
000026
060027
0060028
060029
000930
000031
000032
009033
000034
000035
000036
099037
000038
0009039
096040
090041
000042
000043
000044
000943
000046
090947
000048
000049
0006050
000051
000952
000053
000054
0000<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>