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I INTRODUCTION

Large change sensitivities and worst-case tolerance problems dealing
with linear networks in the frequency domain have attracted much attention
recently [1]-[5]. The workers in these areas usually assume that the worst
cases occur at the vertices or the surfaces of the tolerance region and that
the acceptable region is simply connected. Although the assumptions may
be true if the tolerances are small certain conditions have to be met.

The purpose of this paper is to justify these assumptions and state
the conditions for the assumptions to be valid, We are interested in the
effect of variation of a single parameter on the overall network function.
We shall be concerned with the class of networks for which the network

function can be expressed as a bilinear function of the parameter of interest

[6]-[8].

IT THE BIQUADRATIC FUNCTION

General Properties

Consider the biquadratic function

2
F() = N(9) _ cg + 2d¢ + e . )
M(d) ¢~ + 2a¢ + b

The first derivative of F(¢) is

(co+dIM(9) - (¢+aIN(O) (2)

F (¢) = 2 2
M (4)

It may be noted that the numerator of (2) is a quadratic function of ¢ which

implies that the derivative has at most two changes of sign for finite values



of ¢. Furthermore, the function value approaches the value of ¢ as
¢ > + oo,

Take any two points ¢r and ¢s and let A¢ = ¢S—¢r. F(¢s) may be expressed

in terms of ¢r, A¢ and the coefficients of N(¢) and M(¢) as follows:
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The large change sensitivity
F A F(¢°) - F(o"
O 4 E() - F(e) @)
¢ - ¢
may be related to the first differential sensitivity F'(¢r). We have
2001 (o™ +dIM(T) - (4T +a)N(4™))
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F(¢s) _ F(¢r) = _A¢ {N(¢ ) - CM(¢ )}
M($TIM(4)
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. . . S
Given a fixed value ¢, we can find uniquely one other point ¢~ such that

1
F(¢r), except when the function F(¢r) =¢, F (¢r) = 0, or

F(¢°)

M(s")

0. The point ¢S is given, using (5) with AF = 0, by



toor T
¢s - ¢r N F (i IM(e™) (6)
F(¢7) - ¢

For the case F'(¢r) = 0, the point ¢r is either at the maximum or at the
minimum of the function. There is only one finite point ¢C such that
F(¢C) = ¢. The other points with the same value can only be at infinity.
See, for example, Fig. 1.
Assumptions

In the following discussion, we shall assume that M(¢) does not change
sign on [¢f ¢S]. We shall also exclude points where M(é¢) = 0 since the

derivative of F(¢) is not defined at such points,

ITI LEMMAS AND THEOREMS
T s T . T s . .
Lerma 1 F(6"+A(¢7-¢7)) » min[F(¢ ),F(¢”)] for all A satisfying 0 < A < 1

provided that

v
where %g— is given in (4), ¢ is ¢r or ¢S whichever corresponds to the lower
function value,
Fig. 2 illustrates this lemma.

Proof The case F(¢S) > F(¢r) will be considered first. From equation (5),

we have
. T
L E(e)- ! - .
O e L R L CR BT ICICS RS ()
where

o= ¢ + A(9%-9") , 0<A <1 . (9)



If condition (7) is satisfied, F'(¢r) = %E- >.0
o T
o=¢
then
S [F 6TMGT) - 86 (FGT) - 9] > 0
M(¢7)

implies, since M(¢) must not change sign, that

1
M(¢)

[F' (6TIM(T) - A6 (F(6T) - ¢)] > 0 |

Therefore,

F(¢) - F(¢7) > 0. | (10)

Similarly, for the case when F(¢r) > F(¢S), it is required from (7) that

F'(¢s) = %% ) ¢=¢S < 0. The equations corresponding to (5) and (8) are,
respectively,
s T .
Mee™) SELE@ ) = B (0% Ms%) + mo(F(6%)-c) (11)
and
S 1]
M(e) FOFEO) - B (65)M0%) ¢ (1-n)ae (FG6%)-c) . (12)
(1-1) 4
. AF
Since K$ <0
S IR MD) 0 (F(6%)-0)] < 0
M(6T)

implies, since M(¢) must not change sign, that

1 [F" %M%Y + (1-080(F(45) - )] < 0

M(4)



and hence that

F(¢) - F(6°) >0 | (13)

Inequalities (10) and (13) are true for all 0 < A < 1, hence the lemma
is proved.

Corollary F(¢r + A(¢S—¢r))< max[F(¢r), F(¢s)], where 0 < A < 1, provided

that
o Ey 20
A d " .
' * lo=¢ 14

~

where ¢ 1is ¢r or ¢S whichever corresponds to the higher function value,

The corollary may be proved by defining a new function G(¢) = -F(9)
and applying Lemma 1. See Fig. 3 for an illustration., Fig. 4 shows an example
where both the lemma and its corollary apply.
Lemma 2 The function F(¢) is pseudoconcave [9] on the interval [¢f @S] except
where M(¢) = 0 if the conditions of Lemma 1 are satisfied.
Proof Consider the case F(¢S) > F(¢r). The other case follows a similar
argument. Let us assume that the function has more than one turning point
in the interval. By the nature of the biquadratic function, there are at most
two turning points. If we assume that there are two turning points on [¢f ¢S],

T

there exist two points ¢a = ¢r + alA¢ and ¢8 = ¢ + BA¢, where 0 < o < R < 1 such

that the following inequalities hold:

F(™) > FoB) (15)

and

F f) >0 . (16)



As a direct consequence of Lemma 1 and inequality (16), the following inequali-

ties can be made to hold:

F(6%) > F(¢") a7
and

F(o®) > F(o™) . (18)

]
Rewriting the function values in terms of F (¢B), F(¢B) and M(¢S) as in

equation (5), we obtain

S [F PR ¢ (s FG®) -1 <0 (19)
M(6®)
—— [F PIMGH) + 8ae(F(6%) - )] > 0 (20)
M(s")
and
—— [F Pme®) - a-m)eeE®) - c)1> 0 . (21)
M(6®)

Multiply (19) by M(6%), (20) by M(¢7) and (21) by M(s").

Subtracting appropriately, we have

0 for M > 0
abé (F(6°) - <) {: 0 fg; M : 0

and

M
- (l—a)A¢(F(¢B) -c) | : 8 gg: M Z 8 .

The last two pairs of inequalities are inconsistent, therefore the assumption
that there are two turning points on the interval is false. F(¢), ¢s[¢r,¢s],

is unimodal with a positive derivative at ¢r.



Given any two points ¢a and ¢b, such that F(¢b) > F(¢a), we will consider
the following:
' a b a . . . .
(1) F (¢7) > 0, then ¢ > ¢~ because F is an increasing function
between ¢r and ¢a.
'oa b a . . .
(2) F (¢7) <0, then ¢ < ¢ Dbecause F is a decreasing function
between ¢a and ¢s.
. b a, . . v a b .a .
Therefore, in both cases F(¢ ) > F(¢") implies F (6“) (¢ -¢ ) > 0, which
proves the lemma,
Corollary  The function F(¢) is pseudoconvex on the interval hr,¢s] except
where M(¢) = 0 if the conditions of the corollary to Lemma 1 are satisfied.
minimum

T S . .
Theorem 1 The maximum of F(¢), ¢e[¢ ,4° ], lies on the boundary of the interval

if one of the following conditions is satisfied.

F (6") 0and F (%) 50 G
F (6%) > 0, F (4%) > 0 and F(¢%) < F(4°) (25)

or
F (67) <0, F (4%) < 0 and F(37) > F(¢°) (24)

See, for example, Figs. 2-4.
Proof We will prove the case for the minimum of F(¢) to be on the boundary

of an interval for the conditions of (22a), (23) and (24).

(1) Take ¢=¢r, then F(¢S) > F(¢r) and %§-> 0., Using Lemma 1,

F(o +1(6%-6T)) > min[F(67),F(6°)], 0 < A < 1,will hold

1
if F (¢') > 0. This is satisfied in (22a) and (23).



o MG L. T .S AT .
(2) 'rake ¢=¢", than F(¢ ) > I'(¢”) and Yy < 0, Using Lemma 1
!
again, the requirement that F (¢s) < 0 will be met in (22a)
and (24).
T S AF .

(3) Suppose F(¢7) = F(¢~) and hence Yy = 0. We can find one
point ¢a such that F(¢a) > F(¢r) = F(¢s). Two subintervals
are thus obtained, each of which may be considered under
cases (1) and (2) above.

It should be noted that, from Lemma 2, (22a), (23), and (24) imply
pseudoconcavity. From its corollary, (22b), (23) and (24) imply pseudoconvexity.
Let us define the upper and lower specifications by Sui’ ieIu,and Soi,

ieIl, respectively, where Iu and Il are disjoint index sets., An acceptable

interval Ia may be defined as

A | .
I = {¢|sui - F.(9) >0, iel

Fj(¢) _Slj > 0, JeIz} (25)
Theorem 2 Ia is convex if the condition (22a), (23) or (24) is satisfied by
Fi(¢), for all ieIR, and condition (22b), (23) or (24) is satisfied by Fi(¢),

for all iel .
u

Proof Consider the case ieI2 and let

A .
I, < {¢|Fi(¢) - 8,, > 0}, del,. (26)
Take two different points ¢°, ¢S5 el,. If the condition (22a), (23) or (24)

is satisfied, then from Theorem 1

Fi(0") = F, 0742 (6%-6")) > min[F, (67), F, (691,
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0« A < 1
thus
F.(6") - S,. > min[F, 47) - S F.(6%) - S,.]
i 2i i gi » Fi(e it
0 < A< 1,
Since
I S
F.(6™) - S >0 (27)
i gy > O
Therefore,
6" = o7+ 2(6%-0") eI, (28)

Hence Ii’ isIz, is a convex interval by definition of a convex set. Similarly,
for the case ieIu, if the condition (22b), (23) or (24) is satisfied, using
Theorem 1, we may prove that Ii’ ieIu, is convex,

The intersection of convex sets is convex, and since by definition

I = (A\ I
a

Ly Ia is convex.
iel
L

iel
u
If any F(¢) has both upper and lower specifications, the required

conditions for a convex acceptable interval are restricted to (23) and (24).

IV THE NETWORK TOLERANCE PROBLEM
We consider a bilinear network function [6]-[8] of the form (A + ¢B)/(C + ¢D)

where A,B,C, and D are, in general, complex and frequency dependent, Thus
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we assume a function of the form

2
_ A + ¢B _ N(¢)
B = 159 | = W)

In this case N, M > 0, The coefficients of (1) are related to the bilinear

function as follows:

CD +C.D 2
a = T 11 , b= ]CIZ )
2 D '
IDI I l

2 A B + A.B. 2
c = .’.E.l_z. s d = _E—E_...__z_l._l_ and e = -lﬂ? s
D] D] D]

where the subscripts i and r denote the imaginary and real parts of the complex
number,

‘Take the example of an LC lowpass filter shown in Fig. 5. We have
studied the behaviour of Iplz with respect to the variations of L, C, and
C3, respectively., Fig. 6 shows some of the curves for different values of
frequency. The three vertical lines on each drawing represent the nominal
values and the extreme values of * 25% relative tolerance. The nominal
values for L, C2 and C3 are 2, .125 and 1, respectively. C1 = C3 for reasons
of symmetry.

The curves for L and C2 have two turning points each. For example,

at w =1,

2
2 81L" -~ 144L + 64

lp(L)l = 3 .
82L" - 160L + 128
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The turning points are at L = .889 and L = 8.0 corresponding to the minimum
2 . 2 . . 2 81
of || = 0 and the maximum of |p|“ = 1, respectively. Setting [p|° = 5 =

4.44 at which the curve is divided

it

we can solve for one unique point L

into two parts: |p|2 > .988 for L > 4.44 and Ip[z < .988 for L < 4,44,

The maximum and minimum function values occur separately in the two parts.
The derivatives at the boundary of the tolerance region are both positive,
indicating that the curve is monotonic in the region (both pseudoconvex

and pseudoconcave),

For parameter C2 at w=1

2
2 4C2 + 4C2 + 1
leC)]" = > :
8C2 + 2

The maximum and minimum occur at values of .5 and -.5, At C, = 0, the curve
is again divided into two parts for |p]2 > .5 and [piz < .5 for positive or
negative C2 values, respectively,

The curves for C3 have only one turning point.

The biquadratic function is of the form

2
2 C3 + 2aC3 + e
le€)|® = =
ol
C3 + LaC3 +b
The minimum occurs at C, = -a. The curves are pseudoconvex on (-»,) for

3

frequencies in both the passband and stopband. For the worst case at stop-
band frequencies to occur at the boundary of an interval, it is required
that the curves corresponding to these frequencies also be pseudoconcave on

the interval, i.e., the curves should be monotonic on the interval.
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V. CONCLUSIONS

The present work deals with a one-dimensional case. Conditions for the
worst-case to occur at the boundary of an interval are given. The conditions
may be used at least to partially justify the usual assumptions for the
tolerance problem. The analysis preéented here is exact unlike an appro-
ximation procedure which makes wuse of the first-and second-order sensitivities
at the nominal point. Bandler [10] has already related a one-dimensional
-convexity assumption for the acceptable interval to that of the k-dimensional
case. It was proved that only vertices of the tolerance region need bhe tested
for.the worst-case problem if the one-dimensional assumption holds everywhere.
Thus, Theorem 1 in the present paper involves necessary conditions for the

vertices of a k-dimensional region.
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Fig. 1 A general biquadratic function.
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