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Following developments in nonlinear least pth optimization by the
authors it is possible to derive two new methods of nonlinear minimax optimi-
zation. Unlike the Polya algorithm in which a sequence of least pth optimiza-
tions as p > = is taken our methods do not require the value of p to tend to
infinity. Instead‘we construct a sequence of least pth optimization problems
with a finite value of p. It is shown that this sequence will converge to a
minimax solution. Two interesting minimax problems were constructed which
illustrate some of the theoretical ideas. Further numerical evidence is pre-
sented on the modelling of a fourth-order system by a second-order model with

values of p varying between 2 and 10000.
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1. Introduction

Various algorithms have been proposed for solving the discrete non-
linear minimax problem, some of the most relevant nf which are due to Waren,
Lasdon and Suchman [Ref.1l], Osborne and Watson [Ref.2], Bandler, Srinivasan
and Charalambous [Ref,3] and Bandler and Charalambous [Ref.4],

The firstbmethod transforms the nonlinear minimax optimization problem
into a nonlinear programming probleﬁ and solves it by wéll-established methods
such as the one by Fiacco and McCormick [Ref.5]. The second method deals with
minimax formulations by following two steps - a linear programming part which
proﬁides a given step in the parameter space, followed by a linear search along
the direction of the step. The third method uses gradient information of one
or more of the functions to get a downhill direction by solving a suitable
linear programming problem. A linear search follows to find the minimum in
that direction, and the procedure is repeated. The last method is a generali-
zation of the Polya algorithm [Ref.6]. A pth norm-like function is formed
which has the property that, if p = », the function is equal to the maximum

of the set of functions which we want to minimize.



In this paper two new algorithms are presented in which a sequence
of least pth optimization problems is constructed with a constant value of P
in the range 1 < p < », It is shown that this sequence will converge to a
minimax solution. Numerical evidence is presented to show that the scheme
works well in practice.

2. The Problem

Consider a system of m real nonlinear functions
£.(9) , iel v 1)
where ¢ 8 [¢1 9y oo ¢k]T is a k-dimensional column vector containing the

k adjustable parameters and I él'{1,2, vee, M}, Let

Mc () = max £, (9) (2)
iel
The problem of minimax optimization of system (1) consists of finding a point

v v v
$ such that Mf(Q) < Mf(Q) for all points ¢ at least in the neighborhood of ¢

2.1 Assumptions

(a) We assume that Mf(g) is bounded below, i.e., we assume the existence of
v v
greatest lower bound Mf(ﬁ) such that Mf(ﬁ) > Mf(Q) >- o |
(b) The set S 4 {$|Mf($)fc} is bounded for every finite value of c. This

ensures that any local minimum is located at a finite point.



(c) The functions fi(Q) for iel belong to class C1 (once continuously
differentiable).

2,2 Definitions

Consider the following objective function

1
@ -\ T \q

u(g,8) = M@,8)| L | ——— for M($,£) # 0
ieK M(Q’E)
= 0 for M(4,£) = 0 | | (3)
where
M(3,E) 2 max(£,(§) - £) = M.(g)- € 4)
iel
q = p x sign M(y,8) , (5)

where p has a constant value in the range l<p<ew,

J(4,8) 2 {il£,(§) - £ >0, iel} if M(%,é] >0

I if M(Q,g) <0

The objective function given in (3) is a generalization of the usual
least pth objective function. Under the assumptions (a) and (b), the continuity
of fi(g) for iel and beéause U(Q,&) > M(Q,E) (see lemmas 3.1 and 3.4) the
objective function U(%,E) is continuous and has a minimum which is located at a

finite point. Also, due to assumption (c), U(Q,g) has continuous first partial



derivatives except when both M(¢,£) = 0 and two or more of the functions

(fi(g) - &) for iel are equal to zero.

The reason why all the functions (fi(g) -&) for ieK are normalized

with respect to their maximum is to avoid numerical difficulties arising from

. ¥

i

the use of large values of p. ‘Lé;
The symbols € and n will be used to denote smaii positive numbers.
3. The New Algorithms
3,1 Algorithm 1
1. Assume a starting point Qo is given; set 51 = min[O0, Mf(go)], r =1 and
select a value of p >1.
2. Minimize with respect to ¢ the objective function U(Q,g) for § = gr,
Let %r denote the optimum parameter vector of UQ@,E) at the rth optimization.
3. Set
&0 - M) %
4, Convergence criterion: if |£r+1 -‘gr| < n stop; otherwise set r = r+l
and go to 2.
3.2 Algorithm 2
1. As in algorithm 1,
2. As in algorithm 1,



v
3. If M(Qr, gr) < 0 remain with algorithm 1; otherwise set

4
T g T ugT, €D 8)

g

(127 + 2T M (gT)

where

0<af <1 9)
4, As in algorithm 1,

3.3 Comments

It is important to note that for both algorithms the value of p is
kept constant in the range 1 < p < », unlike the algorithm presented in Refs.
4 and 7 where the value of p must be very large. Algorithm 2 is different from

\
algorithm 1 if Mf(g) > 0, otherwise it is the same. The main difference is that
in the algorithm 1 we try to push the maximum away from the level £' at the rth
. . . Vr r T+l T A .
iteration (this causes M(Q,E ) <0, and £ < & forr > 2), while in algorithm
v r
2 we try to predict the value of Mf(g) by increasing the value of & from zero
. . Yr .1 r+l T

appropriately (this causes, M(Q ,€) > 0, and ¢ > £ as long as we stay with
algorithm 2), Due to the fact that the minimax solution of the set of functions
fi(g) for iel and fi(g) + B for iel does not change when B is constant it will

\
be possible to use algorithm 2 even when Mf(g) < 0 but we have to raise all the



%
fi(%) for iel by an amount B > |Mf($)|.
' . . 1 .
The first step of algorithm 1 (£ = min [O, Mf(go)]) could be modified
1 o, - s - . . .
to § = Mf(g ). A reason for not modifying it is tne following. In engineering
problems (e.g., filter design (Ref. 4)) the sign of Mf(ﬂ) indicates whether a

particular structure can satisfy certain design specifications. That is, if,

\%

0 the specifications are violated

0 the specifications are just met
0 the specifications are satisfied

Me(9)

A

V1
By using gl = min [0, Mf(go)] the first optimum of U(Q,E)(i.e., $ ) yields the
above.

3.4 Convergence Proofs for Algorithm 1

Lemma 3.1 If y; 2 0 for iel and p > 1, then

-1
4 - p
min y. < Z Yip < min Y5
iel 1 iel iel

el

The proof is simple and is omitted.

Lemma 3.2 Let Y5 for iel be a set of real numbers and x > max Yy Then
‘ iel

1
u(s) = - (X (x-yi)'p) P, P> 1
iel

decreases as x increases and, moreover, it is convex.



-1

o=

d -
lcjb(:() = - 2 (x-yi) P

iel iel

Proof

) (x-yi)'p'1 < 0 for x>max y.
5 i
iel

Note that the maximum value of U(x) is zero.

1
Let x( ) and x(z) be two distinct points such that xcl), x(z) > max y, and
iel

0< A< 1. Then,

1
7 ca-n s e ax® oy PP

iel

- uca-y <D e ax(3)y

-

1
P

I a-na® -y e aa®oy P

iel

1
1 -P-5 -P
sa-n| T a®oyy | P e 1@y

iel iel

See Ref. 8 for the last inequality. Therefore, convexity follows.
V. V.
Lemma 3.3 For r > 2, |U($r, £y | > |U($r+1, £r+1)|.
Vr r

Proof For r > 2 we have M(% , £) < 0 and therefore q = - p. In this case

v v ' Ve o - L
ugt L, e = -l LT 5@ TP
A iel
v
< U(’tr+1’ E;r)
Vr
(because ¢ is the optimum parameter vector of U(Q,E) with respect to the

level gr)

\4
< U(}PII'H, £r+1)

1



because £r+1 < £’ and due to lemma 3.2.
Vr T

Theorem 3.1 |U($ , £7)] > 0as r > =,

Proof For r > 2

Yy T T Vy P
lugg™ , el =\ I & -£@))
_ iel

% 4
< min (£ - £,(4")) = & - max £, (")
iel iel
(From lemma 3.1)
- gr _ Er+1
Therefore,
i Vs . -
1im ] Juggt, g9 < timeE? - 8
1> =2 i-H’O
2 Vi
<87 = Mc(97)
Therefore,
4
1im [u(s” , €] » 0 (10)
0 '

V. v
T
Theorem 3.2 As T -, Mf($ ) > Mf(Q)'
Vr v v
Proof Assume that as r »> o, Mf(g ) > Lf > Mf(g). We must show that Le = Mf(g).
v
Assume Lf > Mf(g). Because Mf(i) is continuous it is possible to find a point

§' such that

v .



In other words

Since

But

This contradicts the fact that ¢r minimizes U for r + « with

respect to L

Theorem 3.3

£

f.
i

(§3 - L < 0, iel

\
Ut , €D =0as T e

o _-P
U, Lo = - L Qg - £;,(0))

lim £F = L
oo

iel i
v

N

|-

A

10.

As Tt + » , the necessary conditions for a minimax optimum are

satisfied [Ref. 9], that is,

where

[ SFE

He>

v@
) u, vE(6)=0
Al’\o 1'\' ",
ied
u. >0 , ied

1 -

I u >0

ied

{i[fi(i ) = Mf(t ) , iel}

(12a)

(12b)

(12¢)

(12d)
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and

A 9 ] 9 T
vV = [ Y ] (13)
v 00y Ay 3y

Proof Since a necessary condition that a point be a local minimum of an

unconstrained function is that the first partial derivatives vanish then

for r > 2,
v vi -pl-2+-1
(e ,e") =| ] (€ - £ ) P
N 4" n
iel
v, -p-1 v
D - £067) v 6D
" v "
iel
v
£ - £,60)\p-1
=AY - vE, (47)
r r+l i
jer\ & - ¢ Mo
=0
n
v
where - gl - fi(¢r) -p\ - 1,
A= 2 - v p (14)
» Er _ gr+1
iel
r T+l T Vr
Since £ - & = min(¢ - £.(¢7)) , A # 0 and therefore,
iel 1
v
T T
E - fi(’t ) ’P"l vr
z é:r _ Er+1 z fi(x ) = 2, s)
iel ‘



Let
r T - gr+1 p+l 1
i T\ T vr > 1€
£F - £.061)
N
then
v
T r
v f, =0
Iow VE@) =0

iel

Note that 0 < u;f 1 for iel and at least one of them is equal to one.

-

. T .
u, = lim My iel
-0

then it is clear from theorem 3.1 that lim(Er - gr+1) + 0, therefore

>0
=0 , igJ
u, "
>0 , ied
and
Zﬁ u; >0
ied
Therefore,

Vm
. V£, =0
zAul'\- 1($) n
ied

12,

(16)

7)

Let

(18)

19)

(20)

(21)



3.5 Convergence Proofs for Algorithm 2

13.

‘Lemma 3.4 Let Ys for iel be a set of real numbers such that max yi 2 0, then

max vy,

i
iel

‘where

L2 {ily; > 0, ieD}

The proof in simple and is omitted.

r+l r+1

Lemma 3.5 MtUQ,g),UQ ) > 0. Then

v
o™, &Y < ugt, €

. Vr v Vr+l
Proof For the case considered M(Q s £) >0, M(Q s &

q=p. In this case
1
v v P\ P
u@g', €9 = ] o EGD - D
ieJ(p”,e"
L
v P\ P
> z (fi(Qr) _ £r+1)
Vr r+1
ieJ (¢ ,&
v
(the inequality is due to the fact that £r+ > £* and J(,Q'r r+l c J(g?, g
v L
> ) (f.($r+1) _ Er+1) P)P

\{
: r+l
EJ@T, €

vr+
(because Qr

r+1)1

r+l

iel

) > 0 and therefore

1 is the optimum parameter vector with respect to the level €r+l)

by,



14,
- : ‘Vr T
Theorem 3.4 U(¢ ,E) >0 as r > =,
4"
Proof Here all we have to consider is the case in which the ) values are

v v
such that U(¢r,£r) > 0, because if U(¢r,£r) < 0, the proof is given in theorem 3.2.
N 4"

Let A = min Ar, then from lemma 3.4

1
v o \
U(¢1,£1) 5mp M1 , where ML = M (¢r)
f f f
4" N
1 1

V — —
2,20 P a2 _ L1 P2 1
U R <mt (Mo - A"M ) <m" (M. - A M
(97,67 <mP (M ) <mP (Mg £)

Similarly,
v L .
T EN <nP 0 -2 -0 Mg - LA M)
N
Therefore,
v . &
) U(¢r,5r)f mP(le' + (1-2) M;'l + ...+ (1-)\)1"3 Mi + (l_x)r_z Mg
n
T

1

+ (=07 M)

v
Due to the fact that E;r< Mf(¢) and because of lemma 3.5, M;. , Mi. s see s
N

sz o< o
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i 1
V. . — .
lim ] u(g’, € <o’ %.< % (22)
i R
r=1
Therefore,
. Vr .r
limU(¢", £€) » 0 (23)
>0

Theorem 3,5 As r - o, Mf(;r) -> Mf(g).

EEEEZE‘ The proof is similar to that of theorem 3.2.

Théorem 3.6 As r > « the necessary conditions for a minimax optimuy are satisfied.
The proof is similar to that of theorem 3.3.

3.6 Examples Two problems are going to be considered to illustrate some of

the theoretical ideas. To overcome the difficulty of discontinuous derivatives

which might arise when M(Q, g£) = 0, we replace step 3 of algorithm 1 by
r+l Vr
£ = Mf(% ) + € (24)

where € is a small number.

. Problem 1 Minimize the maximum of the following three functions,

42
£ =0, % 9,
£, = 267 + (2-9)° (25)
f3 = 2 exp(—cp1 + ¢2)
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The optimum minimax value of 2 occurs at ¢1'= ¢2 = 1, This point satis-

fies the necessary conditions for a minimax optimum. Fig. 1 shows contours
for this problem,

Starting from the point [2 2]T (Mf(go) = 20) and using p=2 throughout
algorithm 1 in conjunction with the Fletcher optimization subroutine [Ref, 10]

Vr
generated the sequence shown in table 1. Note that Mf(g ) asymptotically approaches
the value 2 and that after 7 steps our optimum agrees to 6 significant figures with
8

the minimax optimum. The value of e used is 10 °,

Fig. 2 shows contours of U for p = 2 and £ = 0, Fig. 3 shows contours for

el
Il

\'4
2 and £ = 2,3574 + s(=Mf($l) + €) and Fig., 4 shows contours for P = 2 and

V2
= 2,0361 + e(=Mf($ ) + €).

Al
I

The first three optima are shown in Fig., 1 as @, @ and @, respectively. The
defined objective function (3) has the property of smoothing the minimax contours.
This can be seen from Figs. 2, 3 and 4 where the partial derivatives of U are
continuous (except when M = 0 and two or more maxima are equal), unlike the
minimax contours which afe discontinuous when two or more maxima are equal,

Starting from the same point as in algorithm 1 and using the same value

of p algorithm 2 in conjunction with the Fletcher optimization subroutine generated



17.

the sequence shown in table 2. The value of A used throughout was 0.5. Observe
Vr
that £ increases from zero and Mf(g ) decreases and both of them tend asymptoti-

cally to 2. Also, the optimum parameter vector tends to [1 I]T.

V N
Mg (9) 2

v
If A(l) = VT, = = 0.8484, in other words 52 = Mf(Q) = 2, then
Me(§)

2.3574

we reach the minimax optimum in 2 steps. This was verified with algorithm 2.

Problem 2 Find the minimax optimum of the following three functions,

_ 2 4
f] =41+ &
_ 2 2
f3 = 2 exp(-¢>1 + ¢2)
When ¢, = ¢, = 1, f1 = f2 = f3 = 2 but this point is not a minimax optimum because

the necessary conditions for a minimax optimum are not satisfied. The minimax
optimum is defined by the functions fl and f2 at ¢1 = 1,13904 , ¢2 = 0.89956,
where fl = f2 = 1,95222 and f3 = 1,57408, (See Fig. 5.) This point satisfies

the necessary conditions for a minimax optimum. Using both algorithms this point

was reached.

Tables 3 and 4 show the progress of algorithms 1 and 2, respectively, from
the starting point [2 2]T. For both algorithms p = 2 and € = 10-8. For the

second algorithm A = 0.5. From table 3 it can be seen that after 6 steps algorithm
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1 reaches the minimax optimum very accurately. It is also interesting to note
. ' T . Vr .
again from table 4 how £ increases from zero and Mf(g ) decreases asymptotically
v
to Mf(Q)- The value of p = 2 and A = 0.5 were choser so as to better illustrate
the progress of the algorithms,
4. Example
Here we want o find a second-order model of a fourth-order system, when the
input to the system is an impulse, in the minimax sense. The transfer function of"

the sysiem is

(s +4)

G(s) = > 27)
(s +1) (s™ + 4s + 8) (s +5)
and of the model it is
H(s) = c (28)
(s + a)2 + 82

Therefore, we want to approximate

3
20

by (29)

S(t) = exp(-t) + %E-exp(-St) - ffgélzf) (3 sin 2t + 11 cos 2t)

F(Q,t) = %—exp(—at) sin Bt | (30)
/-1 -1 \T
where S(t) =/<; G(s) , F(g,t) = H(g,s) and ¢ = [a B c] .
The problem was discretized into 51 uniformly spaced points in the time

interval 0 to 10 sec. Let
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e, (4) éF(g,ti) - S(t;) , iel (31)

v
where I=1{1,2, ..., 51}, Therefore, our aim is “o find a point $ such

V.
that ‘max|e, ()< max]ei(%)[. The minimax optimum is at [0.68442
iel ciel

+0.95409 0.12286]T and the max?mum value of the absolute error is

0.79471 X'10‘2. Using both the algorithms in conjunction with the optimization
subroutine due to Fletcher, starting from the point |1 1 l]T, and using the
.values p=2,4,6,10, 100, 1000 and 10000 individually fhe results shown in

tables 5, 6 and 7 were obtained. Table 5 shows how many function evaluations are

required for Mf(g) to be equal to 0.79471 x 10_2 for different values of p by

using algorithm 1. Note that a very small or a very large value of p takes

relatively more function evaluations. Table 6 shows the values of Mi, M;, ceey M;
where M? = {|e§| |e§| > Iezl ; |2-i] =1 ; i, 2eI} for a different values of p.

Table 7 shows the number of function evaluations for Mf(g) to be equal to
0.79471 X 10—2 for different values of p, by using algorithm 2. The value of A
used was (Mi + M;)/ (ZMi). As can be seen again, if p is very large the convergence
slows down., For both algorithms the value of p = 10 was the best. From the

average function evaluations it can be seen that both algorithms behave similarly,
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5. Conclusions

Two new methods for nonlinear minimax optimization are presented. The
new methods abandon the linear programming subproblem which many of the other
methods require. An advantage of these methods is that it is possible to use
very efficient gradient methods such as the recent minimization algorithms by
Fletcher [Ref. 10] and Charalambous [Ref. 12].

Recently, the authors have transformed the nonlinear programming problem into
an unconstrained minimax problem which under certain conditions has the same
optimum as the original problem [Ref. 11]. The two methods presented can thus
be used to solve the nonlinear programming problem, and also constrained minimax

probiems which may be converted to the nonlinear programming formulation,
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Table 1. Problem 1 using Algorithm 1

Steps (r) ;f ; g M (Er)
1 1.01702 0.82055 2.35736
2 1.01129 | 0.97115 2.03608
3 | 1.00153 0.99654 2.00388
4 1.00017 0.99962 2.00042
5 1.00002 0.99996 2.00003
6 1.00000 0.99999 2.00001
7 1.00000 1.00000 2.00000




Table 2. Problem 1 using Algorithm 2

Steps (r) z; ;; Mf(?ér) Er
1 1.01702 0.82055 2.3574 0
2 1.02148 0.88911 2.1916 | 1.1787
3 1.01481 0.94482 2.0840 1.6851
4 1.00705 0.97709 2,0323 1.8846
5 1.00280 0.99134 2.0118 1.9584

9 1.00005 0.99985 2.0002 1.9993




Table 3. Problem 2 usigg Aliorithm 1

Steps (r) 5 i ;; | Mf(;r)
4"
1 '1.24176 0.77401 2.07800
2 1.14118 0.89563 1.95721
3 1.13896 . 0.89953 S 1.95242
4 _ 1.13904 0.89956 1.952233
5 1.13904 0.89956 1.952226
6 1.13904 0.89956 1.95222




Table 4. Problem 2 usingﬁA{gorithm 2

Steps (r) ;I ;; Mf(gr) gr
1 1.24176 0.77401 2.07800 0
2 1.19897 0.82093 2.03184 1.03900
3 1.13557 0.88307 1.99477 1.53542
4 1.13153 0.89596 1.97314 1.76510
5 1.13561 0.89791 1.96177 1.86912

10 1.13898 0.89953 1.95239 1.95161




Table 5. Results of Alggxithm 1

Parameters Starting Point Mf(io)
a 1.0
8 1.0 0.26289
c 1.0
value of p Number of function evaluations f?; Mf(z) to
reach 0.79471 x 10
2 213
4 161
6 166
10 142
100 187
1000 144
10000 302
Average function
188

evaluations




1 1 1
A
Table 6. Values of Ml’ }“2’ .y M5
1 a2 1 2 1 2 1 2 1
Value of p M1 x 10 M2 x 10 MS x 10 M4 x 10 MS x 10

2 1.2880 0.66348 0.38106 0.27946 0.00013
4 1.0194 0.72517 0.54438 0.47185 0.00779
6 0.92477 0.77198 0.62354 0.56909 0.01657
10 0.85921 0.79648 0.69289 0.65879 0.02840
100 0.79886 0.79438 0.78710 0.78646 0.04934
1000 0.79508 - 0.79466 0.79412 0.79385 0.05079
10000 0.79474 0.79470 0.79464 0.79462 0.05090




Table 7. Results of Algprithm 2

Parameters Starting point A Mf(io)
o 1.0
8 1.0 0.26289
c 1.0
Value of p Number of function evaluations for
| for Mf(x) to reach 0.79471 x 1072
2 159
4 188
6 157
10 143
100 184
1000 148
10000 289
Average function 182
evaluations




Figure Captions

Fig. 1. Contours of Mf(i) for Problem 1.

Fig. 2. Contours of U.(g,&) for Problem 1 with & = 0.

Fig. 3. Contoursof U (2,&) for Problem 1 with £ = 2.3574 + €.
Fig. 4. Contours of U (2,&) for Problem 1 with £ = 2.0361 +¢.

Fig. 5. Contours of Mf(i) for Problem 2.
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