No. SOC-49

WORST CASE NETWORK TOLERANCE OPTIMIZATION

J.W. Bandler, P,C. Liu and J.H.K. Chen

July 1974
(Revised January 1975)

WORST CASE NETWORK TOLERANCE OPTIMIZATION

John W. Bandler, Senior Member, IEEE,
Peter C. Liu, Student Member, IEEE,
and James H.K. Chen, Student Member, IEEE

Abstract

The theory and its implementation in a new user-oriented computer program
package is described for solving continuous or discrete worst-case tolerance
assignment problems simultaneously with the selection of the most favorable
nominal design. Basically, the tolerance problem is to ensure that a design
subject to specified tolerances will meet performance or other specifications.
Our approach which is believed to be new to the microwave design area, can solve
a variety of tolerance and related problems. Dakin's tree search, a new quasi-
Newton minimization method and least pth approximation are used. The program
itself is organized such that future additionsand deletions of performance speci-
fications and constraints, replacement of cost functions and optimization methods
are readily realized. Options and default values are used to enhance flexibility.

The full Fortran listing of the program and documentation will be made available.

This work was supported by the National Research Council of Canada under Grant
A 7239 and by a Scholarship to J.H.K. Chen.

J.W. Bandler and P.C. Liu are with the Group on Simulation, Optimization and
Control and Department of Electrical Engineering, McMaster University, Hamilton, Canada.

J.H.K. Chen was with McMaster University. He is now with Bell-Northern Research,
Ottawa, Canada.

I. INTRODUCTION

A new user-oriented computer program package called TOLOPT (TOLerance
OPTimization) is presented which can solve continuous or discrete worst-case
tolerance assignment problems simultaneously with the selection of the most
favorable nominal design, taking full advantage 6f the most recent develop-
ments in optimization practice. Our approach, it is believed, is new to the
microwave design area. Previous design work has usually been concentrated on
obtaining a best nominal design, disregarding the manufacturing tolerances and
material uncertainties. Basically, the tolerance assignment problem is to en-
sure that a design when fabricated will meet performance or other specifications.

The package is designed to handle the objective functions, performance
specifications, and parameter constraints in a unified manner such that any of"
the nominal values or tolerances (relative or absolute) can be fixed or varied
automatically at the user's discretion. Time-saving techniques for choosing
constraints (vertices selection) are incorporated. The routine involved also
checks assumptions and performs worst-case analyses. The paper also contains a
brief discussion of network symmetry and how it may be implemented to further
reduce the number of constraints.

The continuous and (optional) discrete optimization methods are programmed
in such a way that they may be used as a separate unit. This part, called
DISOP2 and incorporating several optional features, is an updated version of
DISOPT, which has been successfully applied in many different areas [1] - [3].

Dakin's tree search for discrete problems [4], efficient gradient minimization

of functions of many variables by a recent quasi-Newton method [5] and the
latest developments in least pth approximation by Bandler and Charalambous
[6] - [9] are employed. Extrapolation is also featured [10].

Another practical problem which is analogous to the tolerance assignment
problem is to determine the optimum component values to a certain number of
significant figures, which can be done with DISOP2.

The TOLOPT program is organized in such a way that future additions and
deletions of performance specifications and constraints, replacement of cost
functions and optimization methods are readily realized. Any of the two
different vertices elimination schemes can be bypassed or replaced by the user.
It is felt that the program is particularly flexible in the way that the user
may enter at any stage of the problem's solution. The user supplies the net-
work analysis subroutines. With an arbitréry initial acceptable or unacceptable
design as a starting point, the program would output the set of nominal component
parameters together with a set of optimal tolerances satisfying all the speci-
fications in the worst-case sense. The user decides on a continuous solution
and/or discrete solutions.

The package, written in Fortran IV, and run on a CDC 6400 digital computer
will be made available. Several test examples are presented here to illustrate

the theory and practice of the approach.

II., THE TOLERANCE PROBLEM

Introduction [11] - [15]

A design consists of design data of the nominal design point %oé [¢§ ¢§ ...¢§]T
and a set of associated tolerances € 2 [el €y oo ek]T, where k is the number of
network parameters. Let I é'{1, 2, ..., k} be the index set for these parameters.

¢

We take the ith absolute tolerance as € in the discussion in this section, how-

™

Y
He O] He.

ever, the discussion applies also to the relative tolerance ti & , without

any conceptual difference. An outcome of a circuit is any point

o &

ie I¢}. The constraint region Rc is the region of points $ such that all

T . . A o
o = - €. <9, < . .
[¢1 ¢, ¢, 1" in the tolerance region R, {Q|¢i e, S0, S 95 * e,
performance specifications and constraints are satisfied by the circuit. The worst-
case design requires that Rtg; Rc. The optimal worst-case design can, therefore,
be stated as: minimize some cost function C subject to Rt C Rc'
We need the following assumptions on Rc in order to make the problem tractable.

Assumptions on Rc

0 Rc is not empty.
(2) Rc is bounded and simply connected.
(3 Rc is at least one-dimensionally convex.

Assumption (1) guarantees there is at least one feasible solution and (2) is
a computational safeguard against infinite parameter values.

We say that R_ is one-dimensionally convex if for all j eI¢ [11]

Qa, %b(j) a %a +ogs € R (1)

where o is some constant and Hj is the jth unit vector, implies that

o= 0%+ 2”@ - P e @)

for all O < A< 1. ;

Let us also define the set of vertices R, é‘{gl, Qz, cees QZ }, and the cor-

responding index set I, where

rA o0
+

2 =2

uj(r) e {-1, 1} and satisfies the relation

k/fu,(r) +1 .
r=1+ 2(—3——3———-) 2J—1 (4)
j=1

Eu (1) (3

E is a diagonal matrix with e, as the ith element. Under the foregoing

assumptions,
R R = R R . 5
C £ C (5)

See [11] for the proof, and Fig., 1 for an illustration of the concepts.

Assumptions on the Constraints

Rc may be defined specifically by a set of constraint functions, namely,
R 2 (6lg.(0) >0, ielI} 6)
c - gle;(g) 20, c

where Ic is the index set for the functions. Concave constraint functions or,
more generally, quasiconcave functions will satisfy assumption (3). The function
g($), (dropping the subscript i, ieIc), is said to be quasiconcave in a region if,

for all Qa, Qb in the region,

g6® + A" - 9™ > minlg(¥®), g(¥™)] %)
for all 0 < A < 1. An immediate consequence of (7) is that a region defined as
{glg(Q) > 0} is convex [16]. The intersection of convex regions is also convex
and the multidimensional convexity implies the one-dimensional convexity of
assumption (3).

If the point Qb in (7) is defined as in (1), then, the function g(%)

satisfying (7) will be called a one-dimensional quasiconcave function. The region
defined by these functions is one-dimensionally convex. Assumption (3) is satisfied
[17]. Throughout the following discussions, we will assume the functions to have
this less restrictive property.

Under the foregoing assumptions we have the nonlinear programming problem:

minimize C subject to gi(ng >0 for all Qrbs Rv’ ice Ic.

Conditions for Monotonicity

Given a differentiable one-dimensional quasiconcave function g(9), (see, for
example, Fig. 2), the function is monotonic with respect to ¢ on an interval
[¢2, ¢b] if sgn (g'(¢a)) = sgn (g'(¢b)). Furthermore, the minimum of g(¢) is at
o = Hle® + ¢b - sgn (g'(¢a)) (¢b - ¢3)]. This may be proved as follows.

Consider the case sgn (g'(¢a)) = sgn(g'(¢b)) > 0., Suppose g(¢) is not monotonic.
Then there exist two points ¢1, ¢2 € (¢a, ¢b), ¢2 > ¢1 such that g'(¢1) < 0 and
g(¢2) > g(¢1). Thus, g(¢1 + A(¢2-¢1)) for some 0 < A < 1 is smaller than g(¢1)
which contradicts (7). The assumption that g(¢) is not monotonic is wrong, hence,
g(¢) is monotonic. Furthermore, it is nondecreasing on [¢a, ¢b]. The minimum is
at ¢a.

Similarly, it may be proved that the case sgn(g'(¢a)) = sgn(g'(¢b)) < 0 implies

monotonicity with g(¢) nonincreasing on [¢a, ¢b]. The minimum is at ¢b.

Implications of Monotonicity

Suppose g is monotonic in the same direction w.r.t. ¢. throughout Rt‘ Then
g~
the minimum of g; is on the hyperplane ¢j = ¢? - Ej sgn (5$1-). Hence, only those
j

vertices which lie on that hyperplane need to be constrained. In general, if there
are % variables with respect to which the function g; is monotonic in this way, the
2k—2 vertices lying on the intersection of the hyperplanes are constrained. In

the case where & = k, the vertex of minimum g occurs at gr, where

2g.
o7 = ¢ - ¢, i :
3 ¢J EJ sgn (3¢j), for all j € I¢ .

|
Let the set that contains the critical vertices be denoted by RV (i) C Rv'

(8)

]
The modified problem is: minimize C subject to gi(gr) >0, for all Qr € Rv(i), ie Ic.

The Vertices Elimination Schemes

Various schemes may be developed to identify or to predict the most critical
vertices that are likely to give rise to active constraints. Our proposed
schemes will eliminate all but one vertex for each constraint function in the
most favourable conditions. In this case, the subsequent computational effort
for the optimization procedure is comparable to the linearization technique
commonly used. When monotonicity assumptions are not sufficient to describe the
function behaviour, our scheme will increase the number of vertices until, at
worst, all the Zk vertices are included.

In principle, our schemes may be stated as follows:

Step (1): Systematic generation, for positive a, of sets of points
a ,b()
LA

Step (2): Evaluation of the function values and the partial derivatives at

- .
_5& u}dj

these points

Bgi

Step (3): If sgn (TN
j

agi
) = sgn (TN

8=8" j

eliminate the vertices Qr € RV on the hyperplane

)
g,‘:%b(:l)

$. = ¢ + €, sgn (EE-i-)
J J J 3¢j
If sgn (;;1 a) < 0 and sgn(;;1 b(j)) > 0 note that the
1878 jlg=g

quasiconcavity assumption is violated.

Comments

1. We have investigated and implemented two methods for step (1), involving

(a) ga = %0 - ej Hj and %b = Qo + ej gj, for all j e I¢

(b) all the vertices of Rt'

A special case which we do not consider is for Qa = %b in step (1), in which case

the first part of step (3) is applicable. R;(i) contains only one vertex.

2, It is possible to further eliminate some vertices by considering the relative
magnitudes of gig$r).

3. For method (b), a worst-case check can be accomplished as a by-product of the
vertices elimination scheme since function values are computed at each vertex.

4. The schemes are based on local information. R; should be updated at suitable

intervals.

Szmmetrz

A circuit designer should exploit symmetry to reduce computation time. The
following is an example of how it may be done in the tolerance problem.

A function is said to be symmetrical w.r.t. $ in a region if

g(S 9) = g() (9)

where § is a matrix obtained by interchanging suitable rows of a unit matrix [18].
It has exactly one entry of 1 in each row and in each column, all other entries
being 0.

A common physical symmetry configuration is a mirror-image symmetry with

respect to a center line. The § matrix in this case is

g/ \
1 {
H
'\.'
Postmultiplication of a matrix A by any § simply permutes the columns of A and

premultiplication of A permutes the rows of A. §m = 1 and S DS Rs’ where R

is a diagonal matrix and Es is also a diagonal matrix with diagonal entries permuted.

Consider symmetrical §, go'and g; By this we imply

SEN =4 o

(o} [0}

=2

on
c6e-

(12)

and
SESF - (13)

Let us premultiply the rth vertex from.(3) by S » giving

S =52 +SE R, T e I, (14)
= 4%+ 86 B8R
= R R R,
Now, § u(r) is another vector with +1 and -1 entries. Let it be denoted

by H(s), S € IV. In some cases, %(r) is identical to p(s), if the vector is sym-

metrical. In other cases H(r) # g(s). In all cases,

5ot =97 . (15)

Making use of the symmetrical property of g,

g(50") = g9 = g(4°). (16)
Let the number of symmetrical vectors y(r) and the number of pairs of nonsym-
metrical g(r) and g(s) be denoted by N(r=s) and N(r#s), respectively.
Then

N(r=s) = 25Ks 2k <k (17)

and

Nes) = 252Ky 2k < k (18)
where ks is the number of pairs of symmetrical components. There are, therefore,
N(r=s)+N(r#s) effective vertices as compared to Zk topological vertices. Take,

for example, k = 6 and ks = 3, Only 36 function evaluations are required for

all the 64 vertices.

The above discussion and results may be used to reduce computation time.

However, in general, it is not certain that a nominal design without

tolerances yielding a symmetrical solution will imply a symmetrical optimal

solution with tolerances; either in the continuous or in the discrete cases.

I1I. - OPTIMIZATION METHODS

Nonlinear Programming Problem

After eliminating the inactive vertices and constraints as discussed in

Section II, the tolerance problem takes the form:

ne>

minimize £ = £(x) (19)

subject to

=1,2,..., m. ' (20)

[N

g;(x) >0,
f is the chosen objective function (see Section IV). The vector X represents a
set of up to 2k design variables which include the nominal values, the relative
and/or absolute tolerances of the network components. The constraint functions
g1(§), gz(é), ey gm(ﬁ) comprise the selected response specifications, compon-
ent bounds and any other constraints. The constraints are renumbered from 1

to m for simplicity.

Constraint Transformation

Recently, Bandler and Charalambous have proposed a minimax approach [8]
to transform a nonlinear programming problem into an unconstrained objective.

The method involves minimizing the function

Vi) = max [£Gx), £Gp) - og, (] (21)
1<i<m

where

10.

A sufficiently large value of a must be chosen to satisfy the inequality

1
5 u, <1 (22)

1t

I o~—s

i
where the ui's are the Kuhn-Tucker multipliers at the optimum. This approach
compares favourably with the well-regarded Fiacco-McCormick technique [19].

Several least pth optimization algorithms are available for solving the
resulting minimax problem. The function to be minimized is computed in the

present paper as

1
e.(¥) - 1\ q
UR) « ME-e) jZJ (w—l—y——e—) (23)

where
M(x)« max ej(ﬁ)
jed
0 for M(x) # 0
€ <
{ small positive number for M(X) = 0
q<psgn ME) - €)
p>1
and

>0, J< {jlej(§) >0}

if M(x)
<0, J~+«{1,2,...,m+1}

The definition of the ej's, the appropriate value(s) of p and the convergence

features of the algorithms are summarized in Table I (algorithms 1 to 4).
Another approach to nonlinear programming which utilizes a least pth

objective is also detailed in Table I (algorithm 5). It is a modification of

an existing non-parametric exterior-point algorithm described by Lootsma

[20].

11,

Existence of a Feasible Solution

The existence of a feasible solution can be detected by minimizing (23)

when)
, j=1,2,...,m

f-f , § o= m+l

where T is an upper bound. on f. A nonpositive value of M at the minimum or
even before the minimum is reached indicates that a feasible solution exists.
Otherwise, no feasible solution satisfying the current set of constraints and
the upper bound on the objective function value is perceivable. Only one single

optimization with a small value of p greater than unity is required.

Unconstrained Minimization Method

Gradient unconstrained minimization methods have become very popular because
of their reported efficiency. One such program is the Fortran subroutine, which
utilizes first derivatives, implemented by Fletcher [5]. The method used
belongs to the class of quasi-Newton methods. The direction of search gj

at the jth iteration is calculated by solving the set of equations

R j
B = -V U&) (24)
where EJ is an approximation to the Hessian matrix § of U, JU is the gradient

vector and §J is the estimate of the solution at the jth iteration.

As proposed by Gill and Murray [21], the matrix %? is factorized as

. .. T
J 213 pl¢J
R=5 Rk (25)
where k is a lower unit triangular matrix and R a diagonal matrix. It is im-

portant that EJ must always be kept positive definite and, with the above

12,

factorization, it is easy to guarantee this by ensuring dii > 0 for all 1i.
A modification of the earlier switching strategy of Fletcher [22] is used

to determine the choice of the correction formula for the approximate Hessian

matrix. The Davidon-Fletcher-Powell (DFP) formula is used if

SERE & < 2Tqued™h - ey

where

S A5 S
§% % .

Otherwise, the complementary DFP formula is used.

J

The minimization will be terminated when |xi+1- xi| is less than a pre-

scribed small quantity, for all i.

Discrete Optimization

In practical design, a discrete solution may be more realistic than a
continuous solution. In network tolerance optimization problems, very often
only components of certain discrete values or having certain discrete tolerances
are available on the market. At present, a general strategy for solving
a nonlinear discrete programming problem is the tree-search algorithm due to
Dakin [4].

Dakin's integer tree-search algorithm first finds a solution to the
continuous problem. If this solution happens to be integral, the integer problem

is solved. If it is not, then at least one of the integer variables, e.g., X;5

*
is non-integral and assumes a value X;, say, in this solution. The range

* *
[xi] <X < [xi] + 1

13.

where [xi*] is the largest integer value included in x;, is inadmissible and
consequently we may divide all solutions to the given problem into two non-
overlapping groups, namely,
(1) solutions in which
*
x; < [xy]
(2) solutions in which
*
X, > [xi]+1
Each of the constraints is added to the continuous problem sequentially and the
corresponding augmented problems are solved. The procedure is repeated for each
of the two solutions so obtained. Each resulting nonlinear programming problem
thus constitutes a node and from each node two branches may emanate. A node
will be fathomed if the following happens:
(1) the solution is integral
(2) no feasible solution for the current set of constraints is achievable
(3) the current optimum solution is worse than the best integer solution
obtained so far.
The search stops when all the nodes are fathomed.

It seems, then, that the most efficient way of searching would be to branch,
at each stage, from the node with the lowest f(&) value., This would minimize
the searching of unlikely subtrees. To do this, all information about a node
has to be retained for comparison and this may require cumbersome housekeeping
and excessive storage for computer implementation. One way of compromising is
to search the tree in an orderly manner; each branch is followed until it is
fathomed.

The tree is not, in general, unique for a given problem. The tree

structure depends on the order of partitioning on the integer variables used.

14,

The amount of computation may be vastly different for different trees.

For the case of discrete programming problems subject to uniform
quantization step sizes, the Dakin algorithm is modified as follows.
Let Xy be the discrete variable which assumes a non-discrete solution, xi*,

and 9 be the corresponding quantization step, then the two variable constraints

added sequentially after each node become

*
x; > [x; /q;]a; + g4

and

*
The integer problem is thus a special case of the discrete problem with q; =
1, i = 1,2,...,n, where n is the number of discrete variables.

If, however, a finite set of discrete values given by

D, = {d

i i1’ d

420 tre dij’ di(j+1)’ cees diu}’ i=1,2,...,n

is imposed upon each of the discrete variables, the variable constraints are

then added according to the following rules:

*
(1) if dij <X < di(j+1)’ then add the two constraints
x. <d,.
i- "ij
and
%5 2 di(5e1)
sequentially

*
(2) if x. < d.,, only add the constraint
i il

X2 44

*

(3 if x; > diu’ only add the constraint

15,

The resulting nonlinear programming problem at each node is solved by one
of the algorithms described earlier. The feasibility check is particularly
useful here since the additional variable constraints may conflict with the
original constraints on the continuous problem. An upper bound, f, on f(*),
if not specified, may be taken as the current best discrete solution. For a
discrete problem, the best solution among all the discrete solutions given by
letting variables assume combinations of the nearest upper and lower discrete
values (if they exist) may be taken as the initial upper bound on £x).

The new variable constraint added at each node excludes the preceding op-
timum point from the current solution space and the constraint is therefore active
if the function is locally unimodal. Thus the value of the variable under the
new constraint may be optionally fixed on the constraint boundary during the next
optimization. See Fig. 3 for illustrations of the search procedure and a tree
structure.

IV. IMPLEMENTATION OF THE
TOLERANCE PROBLEM

The Overall Structure of TOLOPT

Fig. 4 displays a block diagram of the principal subprograms comprising the
tolerance optimization program. A brief description of these subprograms is given
in this section,

TOLOPT (TOLerance OPTimization program) is the subroutine called by the user.
It organizes input data and coordinates other subprograms. Subroutine DISOP2 is
a general program for continuous and discrete nonlinear programming problems.
Subroutine VERTST eliminates the inactive vertices of the tolerance region.
Subroutine CONSTR sets up the constraint functions based on the response speci-

fications, component bounds and other constraints supplied in the user subroutine

16.

USERCN. Subroutine COSTEN computes the cost function. The user has the option
of supplying his own subroutine to define other cost functions. The user supplied
subroutine NETWRK returns the network responses and the partial derivatives.

Table II is a summary of the features and options currently incorporated
in TOLOPT.

Some components of g and Qo may be fixed which do not enter into the
optimization parameters X. The user supplies the initial values of the tolerances
(relative or absolute) and the nominals with an appropriate vector to indicate
whether they are fixed or variable, relative or absolute. The program will assign

those variable components to vector X

The Objective Function

The objective function we have investigated and implemented is [11] - [13]

C.
C = z 3.(-1_ (26)
1 1

where X, is either e; or ti and c, are some suitable weighting factors supplied
by the user. The default value is one. To avoid negative tolerances we let

2 ' . .
X; =X, where X, is taken as a new variable replacing X .

Vertices Selection and Constraints

Two schemes of increasing complexity are programmed in the subroutine.
The user decides on the maximum allowable calls for each scheme, starting with

the simple one. He may, if he wishes, bypass either one or even bypass the

whole routine by supplying his own vertices or set up his own strategy of vertices

selection routine.

17,

The user supplies 3 sets of numbers, the elements of which correspond to
the controlling parameter wi, the specification Si and the weighting factor W, .
wi is an independent parameter, e.g., frequency, or any number to identify a

particular function. wo is given by

+1 if Si is an upper specification

-1 if S, is a lower specification.

If both upper and lower specifications are assigned to one point, the user can
treat it as two points, one with an upper specification and the other with a
lower specification. The theory presented earlier will apply in this case
under the monotonicity restrictions.

The scheme will, for each i select a set of appropriate k. Corresponding
to each K, the values wi, Si and w, are stored. This information is outputed,
and used for forming the constraint functions.

The constraints associated with response specifications are of the form

g=w(S -F) >0 (27)

with appropiate subscripts, where F is the circuit response function of $ and v,
and w and S are as before.

The parameter constraints are

60 €. -6 . >0 (28)

18.

and
6 -¢% - €. >0 (29)
uj J J -

are the user supplied upper and lower bounds.

where ¢uj and ¢2j’ j e I¢

Updating Procedure

Once the constraints have been selected, optimization is started with a small
value of p and o (p = o = 10 as default values). We have decided to call the routine
for updating constraints whenever the o value is updated or the optimization with
the initial value of p is completed, until the maximum number of calls is exceeded
or when there is no change of values for consecutive calls. For updating the
values, we add new values of K to the existing ones without any eliminations. This

may not be the most efficient way but will be stable.

V. EXAMPLES
Example 1
To illustrate the basic ideas of different cost functions, variable nominal
point continuous and discrete solutions, a two-section 10:1 quarter-wave transformer
is considered [23]. Table III shows the specifications of the design and the result

of a minimax solution without tolerances. Fig. 5 shows the contours of max | Py |

i

over the range of sample points. The region Rc satisfies all the

assumptions. Two cost functions, namely, C1= %— + %— and C2= L, 1L are optimized
z; 'z, 21 1

for the continuous case. The optimal solution with a fixed nominal point at g
yields a continuous tolerance set of 8.3% and 7.7% for Cl‘ For the same function

with a variable nominal point, the set is {12.8, 12.8}% with nominal solution at R.

19.

The tolerance set for C, is {15.0, 9.1}% with nominal solution at <. Q and e

2
correspond to the two discrete solutions with tolerance 10% and 15%. This example
depicts an important fact that an optimal discrete solution cannot always be obtained

by rounding or truncating the continuous tolerances to the discrete values. The

nominal points must be allowed to move.

Example 2

To illustrate the branch and bound strategy, a 3-component LC lowpass filter
is studied [12]. The circuit is shown in Fig. 6. Table IV summarizes the speci-
fications and Table V lists the results for both the continuous and the discrete
solutions. Two different tree structures are shown in Fig., 7 and Fig. 8. This
example illustrates that the tree structure and hence the computational effort is
dependent upon the order of partitioning on the discrete variables. A * attached
to the node denotes an optimum discrete solution. It may be noted that one of the
discrete solutions as well as the continuous solution yield symmetrical results

although symmetry is not assumed in the formulation of the problem.

ExamEle 3

Consider a S5-section cascaded transmission-line lowpass filter with characteristic

impedances fixed at the values

(o)
Z.=Z -25—0.2

Z,=2,=5.0

NO O~ O
H O WO

and terminated in unity resistances [1], [6]. See Table VI for the specificationms.

20.

The length units are normalized with respect to Qq = c/4fo, where fo = 1 GHz,

Two problems are presented here.

1. A uniform 1% relative tolerance is allowed for each impedance. Maximize the
absolute tolerances on the section lengths and find the corresponding nominal

lengths. Let the cost function be

(@]
n

w e~
|

[y
m

2. A uniform absolute length tolerance of ,001 is given., Maximize the relative
tolerances on the impedances and obtain the corresponding nominal lengths.

Let the cost function be

The filter has 10 circuit parameters which may be arranged in the order
Zl’ 22, . e oey ZS’ 21,22 o« e e 25. To simplify the problem, symmetry with respect

to a center line through the circuit is assumed. The matrix § is given by

- ~
1! R
1
1 1
R = |
1 ! '
Y 1!
which also impliés that Zi = lg and 2; = 22. The same kind of equalities are applied

to the tolerances.

21,

The first vertices elimination scheme is applied with values at the optimal nominal
values without tolerances and the relative impedance tolerance and the absolute
length tolerances at 2% and .002, respectively. A total of 46 vertices corresponding
to all the frequency points were selected from a possible set of 9 x 210. 14 were
further eliminated by symmetry. A final total of 15 constraints were chosen after
comparing relative magnitudes. These 15 constraints were used throughout the
optimization. The continuous and discrete solutions to the two problems are shown

in Table VII and Table VIII.

VI. DISCUSSION AND CONCLUSIONS

We have described an efficient user-oriented program for circuit design with
worst-case tolerance considerations embodying a number of new ideas and recent
algorithms. The automated scheme could start from an arbitrary initial acceptable
or unacceptable design to obtain continuous and/or discrete optimal nominal
parameter values and tolerances simultaneously. Optimization of the nominal values
without tolerances should, however, preferably be done first to obtain a suitable
starting point. The effort is small compared with the complete tolerance problem
when a small value of p greater than unity, e.g., p=2, is used. An exact minimax
solution is not needed. This also serves as a feasibility check. If Rc is indicated
to be empty, the designer has to relax some specifications or change his circuit.
The solution process may also provide valuable information to the designer, e.g,,
parameter or frequency symmetry.

The problem without tolerances may be solved easily by available programs
such as CANOPT [24]. The user may alternatively utilize the optimization part,

namely DISOP2, of the present package.

22,

It is good practice to first obtain a continuous solution before attempting
the discrete problem. A useful feature of the program is that, for example, de-
pending on information obtained from prior runs, the user can re-enter at a number
of different stages of the solution process.

The assumptions on the constraints may be difficult to test. For this
reason, a Monte Carlo simulation of the final solution is usually carried out.

We have presented results for two basic types of cost function. A more
realistic cost-tolerance model should be established from known component cost data
if these are unsuitable in particular cases.

The complete Fortran listing and documentation for TOLOPT will be made
available. It is very important that the user provided routine for network function
computation and the respective sensitivities be efficient. Typical running time for
a small and medium size problem (less than 10 network parameters or 20 optimization
parameters) will be from 2 to 20 minutes. The execution time on a CDC 6400, taking
the LC lowpass filter as an example, was less than 10 seconds for the continuous
case and a total of 80 to 100 seconds for the entire problem, depending on the order
of partitioning. The 5-section transmission-line example needed about 300 to 400

seconds.

23.

REFERENCES
[1] J.w. Bandler, P.C. Liu and J.H.K. Chen, '"Computer-aided tolerance optimization

applied to microwave circuits', IEEE Int. Microwave Symp. Digest (Atlanta,

Georgia, June 1974), pp. 275-277.
[2] J.w. Bandler, B.L.Bardakjian and J.H.K. Chen, 'Design of recursive digital

filters with optimum word length coefficients'", 8th Princeton Conf. on

Information Sciences and Systems (Princeton, N.J., March 1974).

[3] J.W. Bandler and J.H.K. Chen, "DISOPT - a general program for continuous and

discrete nonlinear programming problems', Int. J. Systems Science,to be published.

Also McMaster University, Hamilton, Canada, Internal Report in Simulation,
Optimization and Control, No. SOC-29, March 1974 (full report by J.H.K. Chen).

[4] R.J. Dakin, "A tree-search algorithm for mixed integer programming problems",
Computer J., vol. 8, 1966, pp. 250-255.

[5] R. Fletcher, "FORTRAN subroutines for minimization by quasi-Newton methods',
Atomic Energy Research Establishment, Harwell, Berkshire, England, Report
AERE-R7125, 1972,

[6] J.W. Bandler and C. Charalambous, '"Practical least pth optimization of

networks', IEEE Trans. Microwave Theory Tech., vol. MIT-20, Dec. 1972,

pp. 834-840.
[7] c. Charalambous and J.W. Bandler, '"New algorithms for network optimization",

IEEE Trans. Microwave Theory Tech., vol. MTT-21, Dec. 1973, pp. 815-818.

[8] J.W. Bandler and C. Charalambous, '"Nonlinear programming using minimax techniques",

J. Optimization Theory and Applications, vol. 13, June 1974, pp. 607-619.

[9] C. Charalambous, "A unified review of optimization', IEEE Trans. Microwave

Theory Tech., vol. MTT-22, March 1974, pp. 289-300.
[10] W.Y. Chu, "Extrapolation in least pth approximation and nonlinear programming",

McMaster University, Hamilton, Canada, Internal Report in Simulation, Optimi-

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

24.

zation and Control, No. SOC-71, Dec. 1974,

J.W. Bandler, "Optimization of design tolerances using nonlinear programming",

J. Optimization Theory and Applications, vol. 14, 1974, pp. 99-114,

J.W. Bandler and P.C. Liu, "Automated network design with optimal tolerances",

IEEE Trans. Circuits and Systems, vol. CAS-21, March 1974, pp. 219-222,

J.F. Pinel and K.A. Roberts, '""Tolerance assignment in linear networks using

nonlinear programming'', IEEE Trans, Circuit Theory, vol. CT-19, Sept. 1972,

pp. 475-479.
E.M. Butler, "Realistic design using large-change sensitivities and per-

formance contours', IEEE Trans. Circuit Theory, vol, CT-18, Jan. 1971,

pPp. 58-66,
B.J. Karafin, '"The optimum assignment of component tolerances for electrical
networks", B.S.T.J., vol. 50, April 1971, pp. 1225-1242,

0.L. Mangasarian, Nonlinear Programming, New York: McGraw-Hill, 1969,

J.W. Bandler and P.C. Liu, '"Some implications of biquadratic functions in

the tolerance problem'", Proc. IEEE Int. Symp. Circuits and Systems (San Francisco,

Calif. April 1974), pp. 740-744,

P. Lancaster, Theory of Matrices, New York: Academic Press, 1969.

A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Uncon-

strained Minimization Techniques. New York: Wiley, 1968.

F.A. Lootsma, "A survey of methods for solving constrained minimization

problems via unconstrained minimization'", in Numerical Methods for Nonlinear

Optimization, F.,A. Lootsma, Ed. New York: Academic Press, 1972,

P.E. Gill and W. Murray, '""Quasi-Newton methods for unconstrained optimization',

J. Inst. Maths. and its Applications, vol. 9, 1972, pp. 91-108.

[22]

[23]

[24]

25.

R. Fletcher, "A new approach to variable metric algorithms", Computer J.,
vol. 13, 1970, pp. 317-322,
J.W. Bandler and P.A. Macdonald, ''Cascaded noncommensurate transmission-line

networks as optimization problems', IEEE Trans. Circuit Theory, vol, CT-16,

Aug. 1969, pp. 391-394.
J.W. Bandler, J.R. Popovic, and V.K. Jha, "Cascaded network optimization

program', IEEE Trans. Microwave Theory Tech., vol. MIT-22, March 74,

pp. 300-308.

TABLE I

THE OPTIONAL LEAST PTH ALGORITHMS

r is defined as in 4

- Algorithm Definition of Convergence Value(s) of Number of
e, feature p optimizations
1 e f —agi,1=1,2,...,m Large 1
f, i = m+l
2 where Increment Increasing Implied by
a >0 of p the sequence
but superceded
3 Extrapolation Geometrically by the
increasing stopping
quantity
4 f -agi~£r,i=1,2,...,m Depend on
e.< ' Updating of Finite the stopping
1 r quantity
f—E,i=m+l Er .
where
a >0
. 0
min[0,M" + y], r=1
T
£ <« . .
VR Yy, T >1
r indicates the optimization
- number '
Yy is a small positive quantity
5 :
-85 i=1,2,...,m Updating of
e. « r R T
1 £-th, i=m+l
where
optimistic estimate of f, r = 1
F o : .
tr—l+ Ur-l, s 1

(NDY4SN) SOATIBATI
-op TeT3aed ITOU]l puB SUOTIdUNJ

JUTBIISUOD SYJ SUTFSP 03 dUTInoIqng

spunoq Iamol pue xaddp

(ORIMLAN) SOATIBATISP
reryaed s1T pue esuodsox yIomisu Syl

s7duexs Jo03y ‘93eINO[ED 03 dUTINOIJNS
SUOT3BITFTOadg

paatnbax se Auew sy

S3IUTBIISUOD I3Y3Q

spunoq
xojouweaed yIomioN

sxsjouwexed jaomisu
JO suoTiduny

(Louenbaxy €+8+s) sjutod oydues Iemo1 xo/pue xaddp UO SUOT1EedTITOadg S3UTBIZSUO)
5UT3INOIQNS UOTIDO[OS SOITIISA dY3. JO A893BI3S +UOT109T9S
STTEBD JO Joqunu STQBMOTTE WNWIXER UOT3O9XTP JUSTIPBIYH SOOTIION
SOATIBATISOP TeT3axed S3T pur UOTIDdUNF
oAT399(qo 9Yy3l SUTFOp 03 auIINoIqng 194310
’ SOOUBISTO3 93N
-10sqe J0/pue S9ATIEBI3X uor3ouny
sI032e3 Sur3STopN Jo 1ed0xdrosy 31509 9AT2309(qQ

S9OUBISTOI
2INT0Sqe 10 S9AT3EBTSX pue sxd3jawexed
STQBIJIBA IO POXIJF I0JF UOTIBITIPU]

. sonTeA 3urlaels

saezsweard Jo Iaquny

S38JUBIST0]

931NT0SqE I0 SATIBISY
POXTJ IO STQeIIXBA

90UBISTO] PpuUB TEBUTWON

sxejsurxed udtseq

mOQHUSOHDSm\+mHOU®ENHd&

suo13dQ

adA,

saanilesq

aIIINDIY SANILNOYEANS ANV SYALIAWVIVA ‘SNOILAO ‘STUNIVIA J0 AUVWWAS

11 379vVL

‘pessedAq oq Aew pue TeUOTIdO 8IB S9INIBOF 9S9Y], «

*pe31STT AT131o1TdXe J0u oxe suotido 8yl Y3TM P23IBIDOSSE SISISWRIBR]

soz1s de3s uorjezriuenb
WIOFTUNUOU JO WIOFTUN

uoil
-nros o3819s1p wnuwrido

SOTQBIIBA 9318IDSTP JOJ UOTIIBITPUL ordrarnu xo o13uTg
Sutuot3irixed Jo I9pIQD uoTl

S9OUBISTO3 SNTBA 832I0STJ -dUnjy 9AIId2({qo U0 punoq

SOTQBTJIBA 938XJSTp Jo JoqumyN xaddn TBIZTUT POUTWISISP

soz1s de3s uo sanTea 2381dsTtq wexSoxd xo perrddns assp
sepou Jo Jaqunu 9TqISSTuxad UMWIXEN A3TTBUOTS . ; suotaezturido
UOT3oUNy 9AT3O8[(qo uo punoq xoddp -uswIp JO UOTIONPSY YOIBSS-9913 UTINE(Q 938X2S1(

UGTIRUTWIS) IOF SOTI3TIuenb 3s9]

aAT1d9(qo .
yad 3seST U0 punoq JI9MOT JO 93BWIISH uotaeqanizad TedTISUWNU poy3au
poMOTT® Aq 3utod Sutixess UOT3BZTWIUTW
SUOT3IBNTBA® UOTIIOUNI JO Joquny 1e SUIY20YD JUSIPEIY UOIMBN-TSENY pauTBI1SUODU(
, weTqoxd
d 3o entep 910I0STIpP PUB SNONUTIUO) £]09Yd
9JUBISTO03 UOTIBIOTA JUTBIISUO)D wotqoad 21013STIQ yad 3seor £31TTTQISEBSF UOTINTOS
d 3o ontep
uoT3oungy
9AT399(qo O 93eWI}SS OT3ISTWIIdQ jutod-I0TI93XY
UOTJBUTWIS] JO0F SOT3Tjuenb 3sag 1 e1qel 89S
d 30 (s)entep swyalTIodre XBWTUTW Sutuweadoxd

0 xo3swexed SUITTOIIUOD uotyezturtido yad 3seenq snoqueTBIBY)-IS]pUBY IBSUTTUON

98Z4°'0 = _a_ (seduri9103 OU) UOTINTOS XBUTUIR

zeddn SS*0 S'T “*** 9°0 ‘S°0 %001
(zH9)
UOT3BOTITIOadS JeRi g ol yapImpueg
adA JUSTIOTIFO0) UOTIDDTFSY ardweg QATIEBTSY

YIWYOASNVIL HAVM-YILIYVND T:0T NOILIIS-OML

IIT T4Vl

gp 9z pueqdoas
gp £S°'0 pueqgssed

(seduBIaT03 OU) UOTINTOS XBWIUTK

(pueqdo3s) zemot 5C $'2 , $*z
(puegssed) zeddn S'1 0'T “9°0°S5°0 ‘s'0 I-0
(gp) (s/pea) {s/pr1)
uoT3EBITIIOAdg S3UTOg a8uey
adL, SSOT UOT3IISSUT o1dureg Aousnbaag

WALTId SSVAMOT DT

Al d714VL

666°T 829°1 wu - %
9060 060" T Q= L%
6661 879°1 o= Sx
z
5 S % 0T % 0T % 6°6 % §'¢ [ERE
50T %6 % 0T %5 9°L 5 7°¢€ o - Tk
1
501 % 0T %S % 6°6 % 5'¢ T, - %
> z 1 _
%{ST0T°S‘Z 1} woxi TBUTWON STqeTIBA TBUTWON POXTA
UOTINTOS 938I0SI(UOTINTOS SNONUTIUO) SI9]oWRIB]

mﬁuu NOILVZIWILAO HONVYHIOL
YHLTId SSVAMOT D1

A dT4V1L

(pueqdols) zamot sz 0T ‘S'z

-0T - §°¢C
- (pueqssed) xoddn z0* C'T°G8° ‘8" SL ‘Sp"prse” 1-0
(gp) (zH9) (zH9)
uoT3®BOTIIoadg S3UTOd a8ury

adA], SSOT UOT3IaSUT srduweg Aousnbaaxg

¥ALTId SSVAMOT ANIT-NOISSIWSNVYL NOILOHS-HAI4

IA 3T9VL

m n..-qNaH = T nHOO.O = 3
v, _C ooy = 9, -2, _ 1
q = ON om Z'0 om = ON = ON
. . ¢
9¢LT'0 od
T v, _ ¢
STIvI'O ob = ¥
. S, _ 1
98.L0°'0 ol = ot
o mN
% C % 86°1 3
1% Z
% Z % L2°C NH = Nu.
) T
% ¢ % 95°¢ 921
%{S ‘¢ ‘7z ‘S'T ‘1 ‘g"} woxy UOT3INTOS SNONUTIUO) sIojsueaed

UOTINTOS 938I0STI(

(') NOILVZIWILAO FONVYITOL
YALT1Id SSVAMOT INIT-NOISSIWSNVYL NOILDAS-dAAIA

IIA d7T749VL

mA-Q-QNﬂH = nm” QO\O.H = Np
S = vN‘u NN ‘20 = mN = mN = HN
T o o) T 0% T 0% " o
. | ¢
LT 0 L&
. vz
PTHT 0 Ve = Sy
. S T
88/0°0 o= Ly
£y
5200°0 L200°0 3
¥ z
0£00°0 82000 [P
S I
0£00°0 $£00°0 (PR
az1g ds3S 000" . UOT3INTOS SNONUTIUOY SI9]0WRIRY

UOTINTOS 9318IDST(

: mNUU.ZOHH<NHZHH&O JONVEITOL
JdLTId SSVAMOT INIT-NOISSIWSNVYL NOILDAS-HAIA

ITIA d19VL

(a)

(b)

(c)

Fig.

1.

Possible regions Rc’

(a) RV is a subset of RC implies that Rt is a subset of Rc‘
(b) RV is a subset of RC implies that Rt is a subset of Rc'

(c) RV is a subset of Rc does not imply that Rt is a subset of Rc.

g(e)

Fig., 2.

!

A one-dimensional quasiconcave function.

| 4 initial upper bound
- - 0 .
d22 ‘ 7
/%/\
g
o) 2 |,
A dp di3 d4

Fig. 3. An illustration of the search for discrete solutions.
(a) Contours of a function of two variables with grid and intermediate

solutions,

continuous
solution

no feasible upper bound discrete
solution exceeded solution

*optimal discrete uppér bound
solution - exceeded

(b) The tree structure,

—=1 DISOP2 |————={ COSTFN
TOLOPT CONSTR USERCN
-~ VERTST | NETWRK

Fig. 4. The overall structure of TOLOPT. The user is

responsible for NETWRK and USERCN.

6
N
¢, {128,128} %
5_..
Z,
4._..
' N
7 65 6 55 5
% 45 5 .
| R
N
N
§
D A§
N
3 N |

for Example 1 indicating a number

and 22

Fig. 5. Contours of max Ipi[w.r.t. Z1

of relevant solution points (see text).

Fig. 6. The circuit for Example 2.

Fig. 7. Tree stucture for Examplebz, partitioning on X4 first (see Table V).

*Denotes optimal discrete solutions,

v 2
D . ¥ e

17

xlf 2

Fig. 8. Tree structure for Example 2, partitioning on Xz first (see Table V).

*Denotes optimal discrete solutions.

