INTERNAL REPORTS IN

SIMULATION, OPTIMIZATION
AND CONTROL

No. SOC-4
A GENERAL PROGRAM FOR DISCRETE OPTIMIZATION
J.H.K. Chen and J.W. Bandler

June 1973

FACULTY OF ENGINEERING
McMASTER UNIVERSITY

HAMILTON, ONTARIO, CANADA

A General Program For Discrete Optimization
J.H.K. Chen and J.W. Bandler
Department of Electrical Engineering

McMaster University
Hamilton, Ontario, Canada

Abstract A general user-oriented computer program for
nonlinear discrete optimization problems is presented. The
program is based on Dakin's tree search algorithm for mixed
integer programming problems. The constrained problem at

each stage of the search is transformed into an unconstrained
objective by the Bandler;Charalambous technique. The resulting
nonlinear programming problem is then solved by the Fletcher-

Powell or Fletcher gradient minimization algorithms.

INTRODUCTION
The nonlinear programming problem may be stated

as follows. Minimize f(x) subject to
s
g.(x) >0,i=1,2, ..., m
iy -

where f(x) is the objective function, the vector x represents
N n

a set of k parameters,

e
e

This work was supported by the National Research Council
of Canada under grants A7239 and C154.

and g, (x), gz(x), vees 8 (X) are the inequality constrai
1 "N m°,
Both f and the gi's are, in general, nonlinear functions of

the parameters. Since minimizing a function is the

maximizing the negative of the function, there is no
generality in considering only minimization.

When all the variables in an otherwise nonlinear
programming problem are further restricted to take on

integer values only, we have a nonlinear integer programming

problem. When only some but not all variables are further

constrained to integer values, we have a mixed integer

programming problem. More generally, when some of the va:

are required to have certain discrete values, we have a

discrete value programming problem.

In practical circuit design problems, a compromise
between maximum performance and minimum cost is often

necessary because usually only components of certain discrete

values are available on the market. Components of other values

have to be custom-made and are therefore costly. This is but
one of the many possible applications of discrete
optimization,
INTEGER PROGRAMMING
One approach to integer programming woulcd be to

evaluate the function at all integer combinations x

N

satisfying the given constraints. 1In most practical cases,

because of the vast number of such possible combinations,

[#A]

this technique would be computationally disastrous. Random
search techniques may greatly reduce the amount of computation
required but there is no guarantee that the optimum integer
solution would be obtained.

Although truncating the fractional part or rounding
off of a continuous solution to the nearest set of feasible
integers may sometimes yield an excellent approximation of
the optimum integer solution when the solution values are
large numbers, it does not, in general, provide a solution to
the integer programming problem either. Figure 1 illustrates
why this is so. By rounding off or truncating the continuous
solution 0, we would arrive at one of the four possible integer
solutions A, B, C or D. However, it is obvious that the
optimum integer solution is point I.

The need for a systematic procedure which will
identify the optimum integer solution is thus apparent. In
1958, R.E. Gomory [1] developed the cutting plane algorithms
for both the all-integer and the mixed linear programming
problems. Another way of solving integer linear programming
problems is to reformulate them as O, 1 problems [2] and then
solve via implicit enumeration. In an n-variable 0, 1 problem
there will be 2" possible solutionms.

In 1960, Land and Doig [1] proposed another algorithm
for solving linear all-integer or mixed programming problems.

the procedure consists of a systematic search of continuous

solutiors in which integer variables are successiﬁely forced
to take integer values. The successive iterations are made
in an orderly manner so that it is never possible to by-pass
a superior integer point in the solution space. The optimum

solution is reached at the kth iteration if, for the first

- time, all the integer variables assume integer values. As it

stands the algorithm gives rise to substantial practical
difficulties for computer.implementation becuase of large
storage requirements. In 1966, R.J. Dakin [3] presented a
modification of the same algorithm which makes it more
amenable to computer coding. The new algorithm is applicable
to both linear and nonlinear programming problems. The
computer program presented in this report is based on this
latter algorithm and it will thus be considered in greater

detail in the next section.

DAKIN'S TREE-SEARCH ALGORITHM FOR MIXED INTEGER PROGRAMMING

PROBLEMS

The procedure falls into the general

classification of branch and bound techniques, as described

by Mitten [4] or Lawler and Wood [5]. The algorithm first
finds a solution to the continuous problem. If this solution
happens to be integral, the integer problem is solved. If

it is not, then at least one of the integer variables, e.g.,

L . .
xi, is non-integral and assumes a value Xss say, in this

solution. The range
* *
[x;) <x; <[x;] + 1

* %*
where [xi] is the largest integer value included in X
is inadmissible and consequently we may divide all solutions
to the given problem into two non-overlapping groups, namely,
(1) solutions in which
Y]+ 1
xiz[xi]-l-.
(2) solutions in which

*
. < .
x1 - [x].]

Each of the constraints is added to the continuous problem

and the corresponding augmented problems are solved. The
procedure is repeated for each of the two solutions so obtained.
Each ﬁode represents a solution to a continuous problem anc
only two branches may emanate from a node. The tree will al-
ways terminate either with an integer solution or with a non-
feasible solution which violates the current set of constraints.
The best solution is then selected from among all the feasible

solutions.

It may not be necessary, however, to exhaust all
the branches of the tree before the optimum integer solution
is attained. Once a feasible integer solution is obtained

for one of the branches, its:-corresponding objective function

value is used as aﬁlﬁépefm;oﬁﬁdASO that any new branch
yielding a larger objective function value would be
terminated. Further addition of parameter constraints would
only increase the function value. The upper bound has to be
updated, of course, if a better integer solution is
encountered.

It seems, then, that the most efficient way of
searching would be to branch, at each stage, from the node
with the lowest objective function value. This would
minimize the searching of unlikely subtrees. To do this,
all information about a node has to be retained for comparison
and this may require excessive storage for computer
implementation. One way of compromising is to search the tree

in an orderly manner; each branch is followed until an

infeasible or integer solution is reached, or until the
objective function value equals or exceeds that for the
current best integral solution. All pertinent information
regarding the current status of the search isAreduced to a
list. Each list entry corresponds to a node and at any stage
the list represents the chains of nodes leading from the
continuous solution node to the current node. A list entry
is marked when both branches emanating from a node have been
explored. Other information in a list entry includes the

name of the specific integer variable considered, the value

of tﬁe upper bound ;Aéwth;vﬁdsitiéﬁ 6}";he node. Fié&re 27
shows the flow diagram for the computational procedure.

The tree is not, in general, unique for a given
problem. The tree structure depends on the integer variable,
X5 used to form the parameter constraint at any stage. The
amount of computation may be vastly different for different

trees,

DISCRETE OPTIMIZATION

For discrete optimization, the algorithm is
modified as follows. Let g be the quantization step and
x5 be the discrete value variable which assumes a non-
discrete solution x;, then the two parameter constraints

added alternatively at each node become

1 X, 2 [x;/q] q+q

2) x; < [x;/a] g

The integer problem is thus a special case of discrete
optimization with q = 1. -

To solve the nonlinear programming problems at
the beginning and at each subsequent stages, the
Fletcher-Powell [6] or the Fletcher [7] gradient mini-
mization algorithms are employed. The constraints in the
problems are taken care of by the Bandler-Charalambous

transformation technique [8].

THE COMPUTER PROGRAM

The discrete optimization program is written in
the FORTRAN IV language. A number of subprograms were taken
from OPTISEP [9] and CONOPT [10] and modified as necessary
to fit in with the present package. Figure 3 displays the
overall structure of the package. A list with brief

description of all the subprograms is given below.

ADDPC Supplies additional parameter constraints

for discrete optimization

ORGNLP Defines the objective function and the
constraints
GRADPC Returns the gradients of the additional

parameter constraints

MINMAX Transforms the constrained problem into an
unconstrained objective by the Bandler-
Charalamobus method

FUNCT Defines the unconstrained objective function
and the gradients of the objective function
and the constraints

VMMO1 Minimizes a function using the Fletcher
optimization algorithm

FMFP Minimizes a function using the Fletcher-Powell

method

DATA

INPUT

WRITE1 and WRITE2

FINAL

OUTPUT

GRNLP

DISOPT

Reads the input data

Prints the input data

Print the intermediate results

Outputs the optimum solution after function
minimization at each stage

Outputs the optimum discrete solution in

a standard form

Optimizes the original and augmented
nonlinear programming problems by one of
thé two above mentioned gradient
minimization methods

Solves the discrete optimization problem
based on Dakin's tree-search algorithm.
The problem must be formulated in such a
way that the discrete variables are the
first k design variables of the problem
where k is the number of discrete variables.
The optimum solution does pet have exact
discrete values. The program treats any
value, which does not differ from the
discrete value‘by more than a prespecified

amount, as the discrete value.

A user of the package has to write a small main
program to define the input parameters and provide proper
dimensioning for the various working arrays and matrices.
He also has to write the service subroutines ORGNLP and
FUNCT to define the objective function, the original
constraints and the gradients of his problem. Other
subroutines are general subprograms and may be stored on
permanent file. Detailed instructions for programming as

well as the listing of the package are given in the appendix.

EXAMPLES

Five minimization problems have been included here
to demonstrate the use of the program. The problems were run

on a CDC 6400 computer.

Example 1
Minimize f(x)= x2 + 4x2
~ 1 2
subject to

x1 + 2x2 -1.2=0

Xys Xy = k to within 0.001

where k is an integer.

10.

There are two optimum integer solutions % = [2 0] or
% = [0 I]T with £=4 as shown in Figures 4, 5, 6 and 7. A
much simpler tree is obtained by forcing, at each stage, the
variable x, to integer value first. This illustrates that the
choice of a different integer variable to form the next para-
meter constraint can have a large effect on the amount of comp-
utation required. The Fletclier method was found tb be more
efficient than the Fletcher-Powell method; the former method
“required less function evaluations.

If, instead of being integers, the variables %

and x, are subject to the constraint

X, = 0.5k to within 0.001

10 %2

where k is an integer, then the optimum discrete solution
v v

is given by x = [0.5 0.5]T and f = 1.2500. The cor-
N

responding tree is shown in Figure 8.

In this example, the optimum discrete solution
can actually be obtained by rounding off or truncating the
continuous solution to the nearest set of discrete solutions
in the feasible region and comparing the corresponding function
values. To show that this technique is not always applicable,

a slightly different problem will be considered next.

Example 2
Minimize £(x) = xz + 6x2
. 1 2
subject to
X; v 2% - 1.2>0

X5 X, = k to within 0.001

where k is an integer.
. . . .Y T .
The optimum integer solution is x = [2 0] and
Y

v
f = 4. The contour plot and the tree structure are shown in
Figures 9 and 10, respectively. In this case, the optimum
integer solution is not obtainable by rounding off or truncating the

continuous solution x = [0.7200 0.2400]T.

")
ExamEIe 3
3 .
i
Minimize f(x) = 2 C, - x, (1 -x,))2
" i 1 2
i=1

where C, = 1.5, C, = 2.25 and C; = 2.625,

i

2

subject to

= k to within 0.001

where k is an integer.

The objective function has a narrow curving valley

approééhing X, =A1. The contour plot and the results of
the problem are shown in Figures 11 and 12, respectively.
v
v
The optimum integer solution is z = [2 O}T with £ = 0.7037.

Examgle 4

Minimize f(x) = 9 - 8x, - 6x2 - 4x, + 2x2 + sz
~ 3 2

1 1

+ x2 + 2X.X., + 2x1x

3 172 3

subject to

and, in addition, X15 X, and X5 are nonnegative integers.
For this problem, there are altogether 13 feasible integer

solutions as shown in Table I.

All the three optimum integer solutions of unity
function value are detected by the algorithm. However,
exhaustive enumeration may seem more 8ttractive for this
problem because of the small number of possible integer

combinations. In a larger problem, one involving more

variables and less restrictive constraints, or if the
quantization step is reduced, exhaustive enumeration
becomes impractical and the efficiency of'the algorithm
would be more apparent.

The tree structure for Example 4 is shown in

Figure 13.

Exaggle 5
Minimize f = l/e1 + 1/e2

with respect to €15 €55 xg, xg subject to R, C R,

where
Rt=(r:§}xg-eii xi_<x2+ei,i=1, 2)
R.= (x|x>+x%< 4, x, > 0.5, x. > 0.5)
c IV | - 1 - 2 -

and

€5 €, = 0.1k to within 0.001
where k is a nonnegative integer.
This can be treated as a tolerance design problem

[11] if we take e and e, to be the tolerances of the parameters

Xy and xz,respectively. The optimum discrete solution is

: = 0.4

e; = 0.

L = 0.5

e, = 0.
X2 = 0.9046

xS = 1.0060

2

%

f = 4.5001

The tree structure is shown in Figure 14. The feasible and

acceptable regions of the design are shown in Figure 15.

CONCLUSIONS

A general user-oriented computer program for
discrete value optimization is presented. We have assumed
that all discrete variables in a problem are subject to the
same quaﬁtization step. This can easily be relaxed by
considering a quantization array Q, each element of which
applies to a discrete variable, instead of a single
quantization step q. Areas of application envisaged include
digital filter design, tolérance considerations, and other
computer-aided circuit design problems such as the design of
lumped-element circuifs where discrete values ofbcomponents
are often sought.

Parameter constraints are added or replaced at each
stage, hence a current point is most likely to be a
nonfeasible starting point for the following minimization
process. The Bandler-Charalambous constraint transformation
technique is therefore particularly advantageous in this case
because the method does not require a feasible starting point.
If other transformations, such as the Fiacco-McCormick
technique, were used, much effort might be wasted in searching

for a feasible starting point at each stage.

In spite of the fact that the program works quite
satisfactorily, the efficiency of the algorithm is not
exceedingly attractive because of the large number of function
evaluations required for each minimization. For unimodal
functions, a new scheme based on the general branch‘and
bound technique and the validity of Kuhn-Tucker relations
at an optimum point is under investigation. Figure 16
illustrates how the scheme works for a simple two-parameter
problem.

The scheme starts by finding the continuous solution
0. Then the four nearest lattice points, with parameter
constraints as shown, are examined. It is obvious that the
Kuhn-Tucker relations are satisfied for all but one point

which is C. Let C be defined by (xi s xg). The objective

function value increases along X, = xi but decreases along
X, = xg , hence the next lattice point E along X, = xg is

checked. Kuhn-Tucker conditions are satisfied and the search
is terminated. The optimum discrete solution is then selected
by comparing the four feasible discrete solutions A, B, D and
E. Extension of the scheme to n-parameter problems would be

the next objective.

ACKNOWLEDGEMENT

Many useful suggestions from B.L. Bardakjian,

C. Charalambous and P.C. Liu are acknowledged.

[1]

[2]

[4]

[s]

(6]

(7]

REFERENCES

H.A. Taha, Operations Research --- An Introduction,

New York: MacMillan, 1971,

C. McMillan, Jr., Mathematical Programming. New York:

Wiley, 1970.

R.J. Dakin, "A tree-search algorithm for mixed integer
programming problems', Computer J., vol. 8, pp. 250-
255, 1966.

L.G. Mitten, "Branch and bound methods: general

formulations and properties'’, Operations Research,

vol. 18, pp. 24-34, 1970.

E.L. Lawler and D.E. Wood, '"Branch and bound methods:

a survey', Operations Research, vol. 14, pp. 699-719,
1966. |

R. Fletcher and M.J.D. Powell, "A rapidly convergent
descent method for minimization", Computer J., vol. 6,
pp. 163-168, 1963.

R. Fletcher, "A new approach to variable metric

(8]

(9]

(10]

algorithms", Computer J., vol. 13, pp. 317-322, 1970.
J.W. Bandler and C. Charalambous, "A new approach to

nonlinear programming'', Proc. 5th Hawaii Int. Conf.

on System Sciences (Honolulu, Hawaii, Jan. 1972,

pp. 127-129.

J.N. Siddall, "OPTISEP-Designers' optimization
subroutines", Faculty of Engineering, McMaster University,
Hamilton, 1971 (revised).

J.W. Bandler, J.H.K. Chen and V.K. Jha, "CONCPT-

A package for solQiﬁérhéniiﬁear programming problems
using a new (minimax) approach with efficient gradient

methods', Department of Electrical Engineering, McMaster

University, Hamilton, 1973.

[11]

J.W. Bandler, '"Optimization of design tolerances using

nonlinear programming'', Proc. 6th Princeton Conf.

Information Sciences and Systems, (Princeton, N.J.,

March 1972), pp. 655-659.

No.

X1 2
1 0 0 9
2 10 3
30 1 5
4 1 1 1
5 2 0 1
6 o0 2 5
7 2 1 1
8 1 2 3
9 3 0 3
0 0 3 9
11 0 0 6
12 10 2
13 0 1 2

Table I.

3
7
//’
/ |
2 ,,0~-~<N. —
ptimum
integer
solution
1
0

Figure 1. Optimum integer solution not obtainable
by roundingoff or truncating the optimum continuous

solution in this case.

3]
[s%]

START: 1list empty

Solve original continuous problem

Solution
feasible &
below uppe

Solve augmented

problem

Solution
integral

Add one parameter
constraint

Make list entry

Record current
solution if
best so far

Output
best

integer
solution

Remove constraint
corresponding to last
list entry and add al-
ternative constraint
Mark last list entry

Erase last list entry
and remove correspond-
ing constraint

Figure 2. Flow diagram for

Dakin's algorithm.

N

MAIN
/F
OUTPUT DISOPT / :
— DATA ~m4/ INPUT
1 GRNLP =71 wrITEL
/
FINAL
/
1 VMMO1 -
— }{- f
7]
i | WRITE2
ADDPC s ORGNLP e M
FMFP —
. |
FUNCT
1
s i
| GRADPC i MINMAX

Figure 3.

Overall structure of the package.

0N
|92}

Starting point x% = [1] , o = 10.
I\’ 0

0.5999

bl
L]

0.3000

0.7200
%
nf = 53

Continuocus solution

Hy %
[] L]

x1 = (0.0000
X, = 1.0000

= 4.,0000
nf = 31

Optimum integer solution

= 2.0000
- 0.0001

4.0000
nf 18

Optimum integer solution

Won

No feasible

solution

Figure 4. Tree for Example 1: q = 1. The Fletcher method was

used (EPS = 1074y,

*
nf stands for the number of function evaluations taken in the

minimization process

Starting point x° = [1},) 10.
~n 1 o]

0.6000
0.3000

0.7200
nf = 88

Optimum continuous solution

Hh M K
[3]
i il i

x1 = 0.0000
x2 = 1.0000
f = 4.0000
nf = 52

Optimum integer solution

= 2.0000

X, = - 0.0003
f = 4.0000
nf = 40
No feasible - Optimum integer solution

solution

Figure 5. Tree for Example 1: q = 1. The Fletcher-Powell

method was used (EPS1 = 10-5). More function evaluations are

required by the Fletcher-Powell method.

Starting point x°
. Ny

= 0.0000

= 0.6000

= 1.4400

= 53
X; = - 0.0009
x2 = 1.0006
f = 4.0051
nf = 81

Optimum integer

solution

No feasible

solution

Figure 6. Tree for Example 1:

used (EPS = 10

-4

).

q:

1.

X, = 0.5999
x2 = 0.3000
f = 0.7200
nf = 53

Optimum continuous solution

X, = 1.0000
X, = 0.1000
f = 1.0400
nf = 82
1.2000 9 X, = 1.0007
0.0000 Xz > 1 xz = 1.0008
1.4404 f =5.0078
40 nf - 72
Search discontinued
X, = 2.0000
X, = - 0.0001
£f = 4.0000
nf = 19

Optimum integer

solution

The Fletcher method was

Optimum integer
solution

~.

Optimum continuous

_Optimum integer solutiog
2

o Contour plot for Example 1.

=
= JJ
x
)
"
[¢]
\‘

—

Starting point %o [1}, a = 10.

1
Xy = 0.6000
x2 = 0,3000
= 00,7200
nf = 88
x, = 1.2000 5 X, = 0.2000
x, = 0.0000 x, 20.5) *2 = 0-°000
£ = 1.4400 LT 0mo
nf = 109
x1 = 1.,5000
x2 = 0.0000
f = 2.2500
No feasible nf = 80
. Discrete solution
solution
xl = (0.0000
X, = (0.6000
f = 1.4400
nf = 81
8 x1 = 0.0000
xz > 1 | x2 = 1.0000
= 4,0000
nf = 93

No feasible

. Discrete solution
solution

Figure 8. Tree for Example 1: q = 0.5. The Fletcher-Powell

method was used (EPS1 = 10’6).

s

Optim

um .

/ /
integer solution

0 1

. Contour plot for Example 2.

o]
v

Starting point < = [i], a_ = 10,
~ o

Xy = 0.7200
X, = 0.2400
f = 0.8640

61

x1 = (0.0000
x2 = 1.0000
f = 6.0002
nf = 43

Integer solution

= 2.0000

X, = - 0.0009
£f = 4,0000
nf = 25

No feasible

i imum int lution
solution Optimum integer soluti

Figure 10. Tree for Example 2: q‘= 1. The Fletcher-Powell

method was used (EPS = 10-4).

30,

L LLSLL L LL LSS

o

QOLL OIS

How o un
C DM

0N own N~ o

© OO~
TR
2O AW

Continuous
solu%ion

r -

integer
. solution

_ Optimum

Figure 11, Contour plot for Example 3.

Starting point x° = [O], o =1,
ny 0

X, = 3.0000
x2 = 0.5000
f 0.0000

12

x; = 5.0000
X, = 1.0001
f = 14.2103
nf = 159

Integer solution

3.0000

= 1.9993

0.0000 X, = 0.0000
= 0.7037 £f = 2.9531
nf = 69 nf = 141
Optimum integer solution Integer solution

Figure 12 Tree for Example 3: q = 1, The Fletcher method was

used (EPS1 = 1074y,

0.1
Starting point x° = 0.1 » 0= 1,
a 0 (o]

x, = 1.3333
X, = 0.7778
X5 = 0.4444

= 0.111
nf = 41

Optimum continuous solution

x1 = (0.5000
xz = 0.5000
Xg = 1.0000
f = 1.5000
"nf = 66

Search discontinued

2.0000 X; = 1.5000

= 0.0000 X, = 1.0000

0.0000 Xg = 0.0000

= 1,0000 f = 0.5000
nf = 47 nf = 87

Optimum integer

solution

1 0000 x, = 2.0000
10001 x, = 1.0000
5 = 0.0000 :3 i 2'2222
£ = 1.0000 -
£ = 93 nf = 106

Optimum integer

Optimum integer

. solution
solution

Figure 13. Tree for Example 4: q = 1. The Fletcher method was
used (EPSl=10—4). The maximum tolerable error in integer values

is 0.001.

. . _ 10.5 o _ |1 _
Starting point s = [0'5], x = [1}, a, = 10.

e, = 0.4609
e2 = 0,4532
xg = 0.9609
xg = 0.9532
nf = 87
f = 4.3761
e, = 0.5102 Optimum continuous solution
e, = 0.3992 e, = 0.4106
x{ = 1.0110 e = 0.5000
o b
X9 = 0.8992 Xp = 0.9106
f = 4.4650 xg = 1.0010
nf = 191 f = 4.4354
nf = 152
e, = 0.4999 e, = 0.6024
e, = 0.4000 e, = 0.2712
x? = 1.0073 x? = 1.1024
e 9\
x) = 0.9001 Search dis X5 = 0.7746 >\ No
£ = 4.5002 continued £ =5.3479 \e;30.5 | feasibic
nf = 152 nf = 182 / iation
Discrete solution el = 0.4000
e, = 0.5098
xg = 0.9001 f = 4.4615
o nf = 139
x5 = 1.0100
e, = 0.4000
e, = 0.5000 - 0. 1294
xg = 0.9001 = 0.6553
xg = 1.0116 = 0.6574
f = 4,5001 .
nf = 91 = 1,1834
L i = 9.2560
Optimum discrete solution nf = 210

Search discontinued

Figure 14. Tree for Example 5: q = 0.1. The Fletcher method was
4

nead (EDCT - 1n '3

0.5

Figure 15.

O e

\\{i\% /
~ .,
3 %

!
L.
"

/

~ o
~ ¢
3 &
N A o
~ | ,
3 e -
- 2 P
~ | A
g \L»- e > R/
J
\/‘
~ o _O -
~ Xg3X
Z R R ©
3 £ c &
NG SN NGNOGN TQ\\—\”\K
i
o - > x
0.5 2 1

Feasible and acceptable design regions,

Rc and Rt’ for Example 5.

34

/ / /A ,14'41,/);41

B
J

v

vf

AN

e

~ 0\

P

e S I DI
R) /,/ g v g i),‘ ;
.X\ 8y i Ve

Figure 16. New scheme for discrete optimization.

U,
(4]

36.

APPENDIX

Control Cards

Use the following set of control cards.
JOBCARD
"ATTACH, TAPE, DISOPT, IDs*%*#%%%&% MR=1#.
FIN, R=3, PL=30000B, ROUND = + - * /,
LOAD (TAPE)
LGO. |
END OF RECORD.

PROGRAM TST (INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT)

Main Program

Dimension the following arrays:
X(N), G(N), PE(N), XSTRT(N), DUML(N), DUM2(N), EPS(N), H(J),
IX(N), DIF(N), XB(N), PHI(NCONSP)

WHERE N = the number of independent variables

J = NN + 7)/2
NCONSP = the total number of constraints anticipated

Supply the follwing COMMON statements:

COMMON /DDD/ NCONS
COMMON /KKK/ K

Supply the values of the following parameters:

¥ Appropriate identification parameter ID should be inserted
in *********.

N = the number ofriﬁdeﬁgndeﬁt variabies o
K = the number of discrete variables

NCONS

the number of original constraints

QSTEP = the quantization step

Call subroutine DISOPT and QUTPUT as follows:

CALL DISOPT(N, XSTRT, F, G, QSTEP, U, X, PHI, IX, DIF,
XB, PE, DUMl, DUM2, EPS, H)

CALL OUTPUT (U, X, PHI, N)

Add STOP and END cards.

Subroutines ORGNLP and FUNCT

SUBROUTINE ORGNLP(X, PHI, IAA, IBB, U)
DIMENSION X(1), PHI(1), IAA(NCONSP), IBB(NCONSP)

U= f(xl, X o xn) is the actual objective function

2’

PHI(1) gl(xl, Xos vens X)

PHI (2)

gz(xla xz; ooy xn)

PHI (NCONS) o xn) are the original

= &ycons X1 %22
inequality constraints

CALL ADDPC(X, PHI, IAA, IBB)

RETURN

END

Remark An equality constraint, h(xl, Xps ooy xn) = 0
has to be treated as two inequality constraints,

h(xl, Xos eees xn) > 0 and h(xl, X X

25 ees n) < 0.

SUBROUTINE FUNCT (N, X, F, G)
DIMENSION X(1), G(1), IAA(NCONSP), IBB(NCONSP), GU(N),
PHI (NCONSP), GPHI (N,NCONSP)

COMMON /DDD/ NCONS

~ COMMON /HHH/ NOD, KK

P = the power to be used in the least pth approximation

COMMON /RRR/ NORG

(.3%

CALL ORGNLP (X, PHI, IAA, IBB, U)

il

GU(1) = partial derivative'of Fw.r.t. x

1

GU(N}-

partial derivative of F w.r.t. x

GPHI(1, 1) = partial derivative of PHI(1l) w.r.t. X

GPHI(N, NCONS) = partial derivative of PHI(NCONS) w.r.t. X

" IF (KK .EQ. 0) GO TO 1

CALL GRADPC (N, GPHI, IAA, IBB)

(set equal to 1.E5 if no information is available)
CALL MINMAX (U, GU, PHI, GPHI, N, NCONS, F, G, P, EPSPHI)
RETURN

END

InEut Data

Parameters to be supplied as data are defined below.

METHOD

39.

= 1, Fletcher method will be used
= 2, Fletcher-Powell method will be used
MAX Maximum number of permissible iterations
IPRINT = 1, intermediate output is printed out
for every iteration
= 0, otherwise
IDATA - = 1, input data is printed out
= 0, otherwise
MAXNOD Maximum number of permissible nodes
ICON A = 1, first discrete variable is
considered first
= 0, last discrete variable is
considered first
EST Minimum estimated value of the objective
function |
EPS1 Small test quantity used by the Fletcher-

EPS(I), I=1, N
XSTRT(I), I=1, N

AO

Powell method

Test quantities used by the Fletcher method
Starting values for the variables.

Initial value of the parameter alpha used

in the formulation of the unconstrained

objectiﬁe funcgién. It should be set equal
to 1 if no information is available.

XMAL Maximum permissible value of parameter alpha;
no feasible solution assumed'if alpha exceeds

this value

ZERQO The margin by which constraints may be
violated
ERR Maximum tolerable error in discrete values

The Data Deck

Card No. Format Parameters
1 615 'METHOD, MAX IPRINT, IDATA,
MAXNOD, ICON
2 4E16.8 EST, EPS1, AO, XMAL
As many as _ 5E16.8 (EPS(I), I=1, N)
required
As many as 5E16.8 (XSTRT(1), I=1, N)
required
Last 2E16.8 ZERO, ERR
Note

The program is currently limited to 100 constraints.

| ————— ——

