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I INTRODUCTION

Much attention has been drawn recently to the component tolerance assign-
ment and the design centering problem [1] - [4]. An approach whereby the
nominal point as well as the tolerances are simultaneously optimized to
meet minimum cost requirement in the fabrication of the design has been pro-
posed [1], [2], [4]. On the other hand, component tuning, a very important
related subject, is usually dealt with separately on a case-by-case study,
or as an alignment procedure after the product is built [5].

A theory of optimal worst-case design embodying all the centering,
tolerancing and tuning problems in a unified formulation at the design stage
is presented here. Our approach incorporates the nominal circuit parameter
values, the corresponding tolerances and tuning variables simultaneously
into an optimization procedure designed to obtain the best values for all of
them in an effort to reduce cost, or make an otherwise impractically toler-
anced design more attractive. Intuitively, our aim is to produce the best
nominal point to permit the largest tolerances and the smallest tuning
ranges'(preferably zero) such that we can guarantee in advance that, in the
worst case, the design will meet all the constraints and specifications.

Although our work seems to have more general implications we envisage

that circuit design will be the most common application.

IT THE GENERAL FORMULATION

A design consists of design data of the nominal point QO 2 [¢? ¢g “oe

0T A T . A
¢k] , the tolerances g = [el €, vus sk] and the tuning vector t = [tl t,..

2

..tk]T, where k is the number, for example, of network parameters. Note



that not all the components of go, e and t need to be variables. Let
Y]

I E {1,2,...,k} be the index set for these parameters. The problem is for-

¢
mulated as the nonlinear programming problem:
minimize C(%, £s E)
subject to
% € RC @)
where
o
= + 2
£=8" +BL+ o @)

and constraints on Qo, £ L >0, for all T Ru and some p € Rp, where
= N

f'e -1 ™ t T

n>
ne

L. J

Ru and Rp are sets of real number multipliers that will determine the out-
come and the amount of tuning required to bring the point into Rc' Ru and
Rp are determined from realistic situations of the tolerance spread and

tuning range. For example,

R = {Hl‘l Sy o< o-as, ag <y

u 50 3 ; S 1, i e1I,} (3)

¢

where 0 < a, < 1, i€ I¢. The most commonly used continuous range is ob-

tained by setting a; to zero. A commercial stock will probably have the

better toleranced components taken out, thus 0 < a,

<1, Ifa, =1, R is
i- i

H
identical to the set of vertices of the tolerance region. Some of the common

examples for Rp will be



<1,iel} 4

R = {ﬁ“l < p, s

p 1
or, in the case of one-way tuning or irreversible trimming,Rp = {R|O ML 1,
ie I¢}, or Rp = {pi-l < e < 0, i ¢ I¢}. Unless otherwise indicated, we
~n - N

will consider -1 < My S 1, -1« p; < 1, ie1,.

The Tuning Region

The constraint region R_ is given by R é {QIE(Q) > 0} and the toler-
c c 4 Y

. A o o . . . .
ance region RE = {Ql% -E <9 <9+ %}. Thus, a tuning region is given by

A

ne>

R = (glg” + B - £ <o <+ B+ g (5)

It is required that
RGN R_# P, (6)
where § is the empty set. See Fig. 1 for an illustration of these concepts.

Tunable Constraint Region

Rc is defined by a set of specifications and constraints. For tunable

constraint regions the problem is subject to

g € R.(Y) )
where y represents other independent variables, and
L= B TP (8)
v
Fig. 2 depicts three different regions of Rc' Overlapping is, of course,

allowable.



III REDUCED PROBLEM 1

Assumptions and Definitions

Consider the separation of the components into effectively tuned and

effectively toleranced parameters. Let

A .. .
Ie = {1]ei > ti’ i evI¢} (9)
1 & {i|]t, > e., i e I} (10)
t i~ fi? )
A
[ - :
e! € ti , 1€ Ie (11)
and
e el ier (12)
i i i? t*

It is obvious that It and Ie are disjoint and It UJ Ie =1 Now, we may

¢0
consider the problem subject to

Q € Rc
where '
€. . for i e I
o i"i €
¢i = ¢i + ] 1] . (13)
ti pi for i e It

1
for all -1 Sl S 1, i e IE and for some -1 LTI 1, i el

Theorem 1

A feasible solution to the reduced problem 1 is a feasible solution to
the original problem.
Proof

Given Qo, £, t we will show that

(1) e. u, + ti P. = E. . R iel



1]
under the restrictions on Mis Ps and CPp

(1) Since p; can be freely chosen from -1

1A

< = -
pi < 1, we can let pi 0!

giving

€. H..

.= T,
(61 l)ul 11

1
(2) For any -1 < Py S 1 and all -1 < My S 1, we can choose

L}
(t.-e.)p.-€.u.
1< o, = i 1771 id < 1.
t.
i

Thus, any point with components represented by (13) of the reduced problem can
be represented by (2) of the original problem.
Theorem 2

A feasible solution to the original problem implies a feasible solution
to the reduced problem if RC is one-dimensionally convex.

Proof

(1) We note for i ¢ Ie that
0 o o o o
¢i-ei+tipi(-1)f¢i-ei+tif¢i+(ei—ti)uif¢i+ei—tif¢i+si+tipi(1)
where pi(—l) corresponds to My = -1 and pi(l) corresponds to ui =1,

If R is one-dimensionally convex [1]

(o)

4+ oo

* o
¢i - et ti pi(-l) s ¢i +oes ti pi(l) € RC (14)
implies that
o . ]
¢i + (ei - ti)ui e R

; |



(2)

where we consider changes in the ith component only and impose the re-
quired restrictions on s and CPE
On the other hand, for i ¢ It’ given feasible pi(—l) and pi(l) such that

o] o] . . !

.-e.+t.p. (-1)<¢.+e.+t.p. . hat
¢1 el+t1p1( 1)_4)1 e; t1p1(1) there exists a feasible CH such tha
o

o] ! o] .
¢i -Eyt ti pi(-l) < ¢i + (ti - ei) CP ¢i *eg ot ti pi(l)' This

is true for ti =€ and can be seen for ti > ey by rewriting this in-

equality as

"Ei + ti pi(-l) 1 Ei + ti pi(]')
<p. <
t. - €. - 1 - t. - €.
1 1 1 1

Hence, if Rc is one-dimensionally convex, assumption (14) implies that

0 : !
o3 * (45 - €) oy | R

Thus, a feasible solution to the original problem can be transformed to

a feasible solution of the reduced problem.

A Geometric Interpretation

Let
R £ { ]¢o - s' < ¢, < ¢° + e' iell} (15)
et - RIS 0y S0y ey, e
and
R, &g [6° - t < 6. < ¢0 + t., iel} (16)
te - RI®; Tty S0 S0+, £
Consider the following regions
Retp ) {%plgp =Re g e Red s a7

ne>

Rcte Rc rw Rte



and

A -
Rctep - {Qplﬁp =R g e Rcte} (18)
where
- -
Py
P
A 2
R - e
- pk -
and
0 for iel

t

P; T .
1 for i e I€

The constraints of the problem are now interpreted by the requirement
that

Rstp < Rctep * (19

Fig. 3 depicts the definition of the different regions. Any point whose
components are given by (13) is in the intersection of R€t and Rte’ may be
tuned into RctE by changing the value of p;, ie It if the projection of
RCt€ onto the subspace spanned by the components subject to tolerances in-
cludes the projection of that point.

The reduced problem may be stated as: solve a pure tolerance problem

(i.e., no tuning) in the subspace spanned by the toleranced variables with

R as the tolerance region and RC

as the constraint region.
etp

tep

Special Cases

(1) IE = f, the pure tuning problem.

In this case, Ret is the entire space and P is a zero matrix. The



problem has a solution if

R, #P. (20)

cte
(2 It = f, the pure tolerance problem.

In this case, R__ is the entire space and P is a unit matrix. This

te

problem has been treated previously. It is required that

Ret - Rc' (21)

Fig. 4 illustrates a case where R An outcome at Qo can-

etp gi Rctep’
not be tuned to Rc within the effective tuning range. However, there exists
a solution to the original formulation by tuning both components. Rc is not

one-dimensionally convex in this case.

Extension for Tunable Constraint Region

Three types of components can be identified when the constraint region is
considered to be tunable. They are:
(a) Toleranced components
(b) Components tuned by the manufacturer
(¢) Components tunable by the customer
In this case,

Q € Rc(*)

where '
€. u. for i el
i7i €

_ 0 L .
¢i = ¢i + ti s for i ¢ Itm (22)
] 1

ti pi(%) for i € Itc
where Itm identifies components (b) and Itc identifies components (c).

Setting the value ¥ to a particular value will control the setting of

1
the value of L ice Itc such that ¢ will be in that particular constraint



10

region Rc(w).

IV REDUCED PROBLEM 2
We consider -1 <w<l replaced by Wy o€ {-1,1}, i ¢ Ie'
Theorem 3 A feasible solution to reduced problem 2 implies a feasible solu-

tion to reduced problem 1 if Rc is one-dimensionally convex.

tep
This is a pure tolerance problem in the subspace. The proof follows [1].

Implementation for Frequency Domain Problem

Let Q; be a vertex of Retp' The constraints can be expressed explicitly
as
T o] ''r
= + - . p.)e.) > 23
g(8) = glo, LG+t 01)R) > Q (23)
iel
t
where £ is the ith unit vector. The slack variables pﬁ are also to be
constrained by -1 < p§ < 1. Strategies to eliminate inactive vertices [4]
will not be discussed here, but must be considered in any practical implement-
ation in order to make the problem tractable.
The optimization parameters X may now be identified as a n-dimensional
vector consisting of the variable nominal values, tolerances, tuning variables

and all the appropriate slack variables p. A total of m constraint functions
v

may be formed. in general,

s}
1)

kg + k_ + kt(l + nv) (24)

and
n

E]
]

w
2 n,(i) | + 2k + .., (25)
i=1
where ko, kE and kt are the numbers of nominal parameter values, toleranced

and tuned parameters, respectively; n, < 2Ke is the number of distinct vertices

chosen; n, is the number



of frequency points considered; nv(i) is the number of vertices chosen at
the ith frequency point and Zktnv is the number of slack variable bounds.
Any conventional nonlinear programming algorithm may be used to minimize

C(x) subject to g.(x) > 0, i = 1,2,,..,m,
X i&) 2

V EXAMPLE
Consider the constraints
-¢2 + 16¢, > 0 27)
2 1 -

Tolerance Example

AR | 1
Minimize — + =
1 %2
subject to
g, =€, >0, g =¢ >0g=¢o>0g=¢o>0
1 1 -5, 2 -7 53 1 -7 %4 2 -
8o (1) = (65 *+ eyuy(i)) - (9] + €u (1)) - 2> 0 ,i = 1,2,... (28)
. (o] iy 2 o] . .
8(1) = -(¢, + e uy(3))7+16(6; + €4y ()) > 0 , i =1,2,... (29)
where -1 < ul(i) <1and -1 < uz(i) < 1.
Necessary conditions for optimality require that
r 1 B ~ r - . -
- = {-ul -u, (1) [ 16y, (1)
€
1
: (i) o
- = i . .
€2 = u2 + 2 us(i) u2 + z u6(i) '21—12(1) (¢2 + €2u2(1)) (30)
? i 1 16
0 ug -1
0 E 1 L -2(65 + e, (1)

11



ulgl = .. = u4g4 = us(i) gs(i) = u6(i) g6(1) = 0,i=1,2,.., (31)

u1’ L] U.4, us(i)s u6(i) 2 0, i= 1,2,... (32)

0 o
Assume that €15 Eps ¢1 and ¢2 are not zero, therefore, set Ups,sUg and Uy
to zero. Minimize gs(i) of (28) and g6(i) of (29) w.r.t. R(i)‘ This leads,
respectively, to
0 0
(¢2 = E2) - (¢1 + el) -2 z 0
using p(i) = [1 -l]T and

o] 2
-(¢2 + 82)

0
+ 16(¢1 - el) >0
using H(i) = [-1 l]T. The optimality conditions (30) - (32) are correspond-

ingly reduced y ielding the solution

= 0.5, ¢, = 0.5, ¢‘1’ = 3,5, ¢; = 7.5,

€1 2

which have been verified by numerical optimization.

Tuning Example

Suppose ¢1 has a 10% tuning range and ¢2 is toleranced. Consider the

problem of minimizing

subject to

12
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|

1
S — t1
gg = 1 -—=20 (33)
¢
1
(1) = (83 + equy()) - (09 + typ (1)) - 22 0,4 =1,2 (34)
&6 - 2 2"2 1 1°1 - pEa e
i ° 4 oelu (i))? © 4 tip (i i = 1,2 35
g, (1) = - (43 + €1y (1)) + 16047 + 1o (1)) > 0,4 = 1,2,... (35)
1]
gg(i) =1 -p,(3) >0, i=12,... (36)
1
gg(i) =1 +p,(1) >0, i=1,2,... (37)
. ' ' 1
The variables are ts €y ¢‘1), 4’; and pl(i), and -1 Su,(i) <1
Optimality requires in this case :
5 e - 1 - S _ : -
[0 u - ;o -py (1) 1?p1(1)
1 1 ] a0 . .
- —12 u2 0 ].12(1) 2(¢2+€2u2(1))u2(1)
e 2|
2 '
= + u + z . + 2 u (1)
0 ug |5 S i@ | o i’ 16
¢02 o ! .
0 u4 1 1 '2(¢2+€2u2(1))
0 . '
2 Y R "% 16t,8;
L o~ . g L - L -~ b
m o -0
0 0
+lug@ f o] +Ju) |0 (38)
i i
0 0
__%1.. L'\eJIJ
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181 = ¢+ T UgBg = u6(i) g6(i) = ...=u9(i) gg(i) =0,i =1,2,... (39)

UpseenslUgs u6(i),...,u9(i) >0, 1=1,2,... (40)

where &5 is the ith unit vector. Minimize gé(i) of (34) and g7(i) of (35)

w.r.t. uz(i). We use uz(i)'= -1 in (34) and uz(i) = 1 in (35) for this pur-
| ]

pose. The corresponding pl(i) = -1 and pl(i) = 1, respectively, are obtain-

1

1
ed by maximizing g6(i) and g7(i) w.r.t. pl(i). This yields the solution t, =

0.5432, e, = 1.444, ¢§ = 5.4321, ¢° = 8.3333.

2 2

VI CONCLUSIONS

A theory of optimal worst case design embodying centering, tolerancing
and tuning has been presented. The concept of a tunable constraint region
that allows variable specifications as set by the customer has also been
incorporated. This may find application, for example, in tunable filters.
Components can be separated into effectively tuned and effectively toleranced
parameters to simplify the solution, but possibly at the expense of optim-
ality. The purely toleranced and purely tuned problems become special cases.
Further simplification has been discussed in the light of one-dimensional

convexity.

It may be added that as far as the authors are aware, this seems to be
the most general formulation to date dealing with the centering, toleran-
cing and tuning problems at the design stage. Tuning uncertainties can also
be taken care of in the formulation by associating tolerances with the tun-

able elements.
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By its very nature the problem is a large one, even for designs with
a relatively small number of parameters. Practical implementation will
depend heavily on one's ability to select a sufficiently small number of
relevant vertices or critical points and constraints likely to be active,

as well as meaningful variables.
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Fig. 2 An example of three different settings of the tunable
constraint regions.



ctep Ret

1Y,

/I,

///@

N

A

YL,

|

Fig. 3 A geometric interpretation of the reduced problem 1.
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