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I  INTRODUCTION

This paper presents the results of a numerical investigation of simultaneous
optimal design centering, tolerancing and tuning of circuits. The optimal worst-
case tolerance problem has received much attention in the literature[1-4] and
benefits in terms of increased tolerances by permitting the nominal point to move
have been established [ 2,4]. This work brings in the tuning of one or more
circuit components basically in order to further increase tolerances on all the
components.

Theoretical background to our work has already been presented [s]. This
paper, therefore, briefly reviews the essential ideas in the general worst-case
optimal tolerance-tuning problem before turning to practical implementation. We
have to minimize an objective function representing the cost of the circuit.
There are, in general, an infinite number of variables and an infinite number of
constraints even for a small circuit. To make the problem tractable we need a
sufficient but reasonable number of variables and constraints to be identified.
The approach of selecting these is not yet automated, due to its complexity, and
(except in very small problems) usually requires a few preliminary runs to de-
termine relevant parameters and active constraints.

Two circuits, a simple LC lowpass filter and a realistic highpass filter,
are studied under a variety of different problem situations to illustrate both the
benefits to be derived from our approach and the difficulties encountered in its

implementation.

IT GENERAL CONSIDERATIONS
The problem we are considering may, in general, be stated as [5]

minimize C(Qo, £, t)
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k is the number of designable parameters, Qo is the nominal point, £ is the

tolerance vector and t the tuning vector. It is required, furthermore, that
g q

Q € Rc (2)

where Rc is the constraint region given by
A
R, = {glg(g) > 9} (3)
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for all specified values of My and some allowable values of Py- In this

work we consider

Ui: pi € [“13 1]’ i=1,2,...,k (5)

Intuitively, we require that for each outcome {QO, £5 g} of a design

{Qo, £ £} there must be a p such that g € Rc’ where
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We let the tolerance region Re be given by [5]
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and the tuning region Rt(&) be given by
A o] o .
Rt(E) = {QI¢i+siui-tif¢if¢i+eiui+ti, i=1,2,...,k1} .(8)

Other essential concepts for this work are
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called the effective tolerance and effective tuning, respectively, and

P, 0 for iel
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In using effective tuning or tolerancing we may replace (4) by

€. U., €. >0 for icel
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Instead of considering g(9) > 0 as in (3) we might then take constraints of the
UV

form

gRe + 1 (o5 + t; p;)gi) >0 (14)
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where gi is the ith unit vector, and $ describes an outcome or an effective
outcome, whichever is appropriate. This leads to a special case for which

results have been obtained.

IIT IMPLEMENTATION

The constraints associated with response specifications are of the form

g=wlS-F)>0 (15)
with appropriate subscripts, where F is the circuit response function of $ and
¥, which is an independent parameter denoting frequency or any number to
identify a particular function., S is a specification and w a weighting factor.
Both are functions of y. In our present work

+1 if Si is an upper specification

w. = (16)
-1 if Si is a lower specification .

Data for a specific problem is contained in a vector g, which has the form

> G =g, (17)

s N € X

- -

where i is an integer indexing a distinct outcome to be considered in the
subspace spanned by the effectively toleranced components.

If vertices of the tolerance region are considered, then we employ the

numbering scheme [2,4]
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or, more formally, the rth vertex corresponds to
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We assume, unless otherwise specified, that vertices provide active
constraints., The validity or otherwise of this has been discussed elsewhere
[51.

The number of variables is designated n and the number of constraints

IV LOWPASS FILTER
The 3-element LC lowpass filter (Fig. 1) to be discussed has already been
considered in the context of optimal centering and tolerancing [2,4]. Table I
specifies the passband and stopband requirements. The sample points used in the

optimization procedure are w.= 0.45, w, = 0.5, w, = 0.55 and wy = 1.0 rad/s for

1 2 3

the passband and w. = 2.5 rad/s in the stopband.

5
The optimization program used is based on recent work in least pth approxi-
mation and nonlinear programming by Charalambous [6] and incorporates the quasi-

Newton method of unconstrained optimization developed by Fletcher [7] and Gill

and Murray [8].



Example 1: No Tuning_ﬁ& = Q)

For each frequency point 2k = 8 vertices for the tolerance region Re given

by (7) can be obtained. The active vertices correspond to Ré at w = w

HS at w = w4; and Rl at w = Wes where
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The results for this problem are shown in Table II for the cost function
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Example 2: Effective Tuning for One Component

(a) Ll tuned, C and L2 toleranced ,

We consider an objective functian based on the relative tolerances of

C and L2 in the form

% X3
C(XZ’XS’XS’X6) == + = (22)
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the last three transformations chosen to avoid changes of sign. The functions

81> 85 ++.5 B are chosen as in (19) except that from (11), (14) and (20)
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where
0
R= | 1
1
and where
1 _ _ 3 _ x
Py = X7» Pp = Xg» P1 = %o
Additional constraints are given by
g . = 1+x_ .
5+2i-1 6+1 i=1,2,3

8c,0i = 1 X641

2
g5 = tr —x4/x1.

The last constraint g1, is designed to limit the tuning range to tr. Table
III shows results for three values of tr. The same results are obtained replacing
2 . .
the term X +X Xo by x1(1+trxi), i= 7,8,9, allowing g1 to be removed, and re-
ducing the number of variables by one, since g1, is active.
(b) C tuned, L1 and L2 toleranced.

We consider an objective function based on the relative tolerances of

L. and L2 in the form

' X X3
C(xl,xs,x4,x6) == + - (23)
X X
4 6
where X1s Xy Xg and X, are as before but where,
€ = = +2
1
t.=t, = x2
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with tl = 0. In this case

= . Xz -
X1 7%
1 _ 2 _ 6 o."1 _ 8 o 11
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1 4
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L3 6 _
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R=| o
1
and where
1 2
Py = Xgs Py = Xg.
Additional constraints are given by
g . ,o= Iax
5+2i-1 6+1 i=1,2
854+2i © l'x6+i

=t - xz/x
810 7 Yy T *5/%y -

Table IV shows results for three values of tr' The same results are obtained
. 2 . . .

replacing the term X +Xc Xy by x2(1+trxi), i= 7,8, removing g0 and reducing

the number of variables by one. We note that larger tolerances are obtained

than before for corresponding tuning ranges.



Example 3: Tolerancing and Tuning for One Component

We consider C to be both toleranced and tuned and minimize

1 %
C(xl,xz,...,x6) = ;7-+ ;7 +
4 5
where X1s X5, and X, are as before but where
g, = = x2
L1 1 4
€ = x2
C 5
€, = = x2
L2 3 6
and t1 = tz = 0, Here,
..x + xz -
1 4
1 2 _ 6 1
2 Xy - Xg M e XX = )RR,
X, + x2
| 73 6
— 2 -
X+ X,
2 2 8 2
2 Xg * Xg +t XXg = R(EI¥EP0%
X, + x2
.3 6 .
- 2 -
X; - X,
3 2 o1 3
2 Xy " Xg 5% | = R0IHE,PH8)
X, - x2
3 6 A
with
t, =tC°

oo

11

(24)
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and
1 2 3

Pp = X7s Py = Xg» Py = Xy
Constraints g¢ to g, are as in Example 2(a).
The results are shown in Table V where we note that for 5% and 10% tuning
we have an effective tolerance problem, whereas for 20% tuning we have an
effective tuning problem. Rerunning the same problem with t.= 0.05 and X, = 1,

Xg = -1, Xg = 1, which imply effective tolerances the same solution as for

the 5% tuning range is obtained.

Example 4:Optimal Tuning

In this example we include the tuning range in the objective function.

(a) Tolerancing and tuning for one component.

We take a similar formulation to Example 3 except that
x X, Xg x%

1
C(xl,xz,...,x7) ==yttt > ¥ c;— (25)
x4 XS x6 2

where ¢ is a weighting factor and the term t X, is replaced by xg, X, by X1

. L . 2 . .
i=7,8,9, This implies that t2 = X, The constraints remain the same except

for 8¢ to g1 with X updated by X1

Table VI shows results for different values of c. Note that a threshold
value of ¢ seems to occur somewhere between 10 and 20. Below that threshold, the
solution in terms of an effective tuning and tolerance problem is unaffected.
Note also the transition for ¢ = 50 from effective tuning to effective

tolerancing. When c is very large we obtain the tolerance solution of Example 1.



(b) Tolerancing and tuning for 3 components.

The objective function considered is of the form

o] 3 ¢2 ti
CY o) = 1 | — *+e= | - (26)
j=p U1 2

.We consider one additional distinct vertex such that Ql, Qz, and Qs are as in
(20), and %4 = %(Hs) in order to bound the solution during optimization.
We omit details of the constraints, and summarize the final results in
Table VII for different c. The results are the same as in Table VI, but
the computational effort has substantially increased. This formulation,
however, has verified that ¢2 should be effectively tuned for c less than
50, and the other parameters effectively toleranced. The values of el,

QZ, RS and R4 confirm these observations.

V HIGHPASS FILTER
This problem was suggested by Pinel and Roberts [9,10]. The circuit
diagram is shown in Fig. 2 and the basic specifications for the design are
listed in Table VIII. The insertion loss relative to the loss at 990 Hz is

to be constrained as indicated with resistances R5 and R7 related to Lg

and Lg with constant Q. The terminations are fixed, the designable parameters
being Cl’ C2, C3, C4, LS’ C6 and L7.
The objective function throughout was taken as
7 .0
b5
I = (27)

e

i=1

13
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The optimization package used here is DISOPT [11], which has been pre-
viously employed in worst-case tolerance problems [4]. The same quasi-Newton
unconstrained minimization procedure as for the work described in the pre-
vious section is incorporated into DISOPT. In most cases the extrapolation
feature [12] was chosen to accelerate convergence to the constrained optimi-
mum.

Verification of the designs to be described was carried out using
all 27 vertices plus the nominal point at 170, 360, 440, 630-680 and 680-
1800 Hz. 42 logarithmically spaced points were taken for the latter interval,
and 8 for the former interval.

Problem 1: No Tuning (E = Q)

Table IX summarizes the particular frequencies, specifications and the
particular vertex number (r of (18b)) employed to obtain the final tolerances
listed in Table X. The total number of variables and constraints are in-
dicated in Table IX. Table X also lists the shifts in nominal parameter

values with respect to those of an uncentered design [9,10].
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Problem 2: 3% Tuning for L.

Results corresponding to the 6nes for Problem 1 are tabulated in
Tables IX and X. Note that all the tolerances have increased over the re-
sults of Problem 1. Fig. 3 shows the nominal response as well as the worst
upper and lower outcomes based on all 27 vertices.

A more detailed verification of the results was made. 60 logarithmically
spaced points were taken from the critical region 630-680 Hz as well as 40 from
600-630 Hz ,All the vertices were checked plus the nominal point, followed by 4000

Monte Carlo simulations uniformly distributed in the effective tolerance region. No
violations were detected, and the upper and lower limits of response given
by the vertices bounded the results from the Monte Carlo analysis except
at 638.2 Hz, where the lowest relative loss obtained from the vertices was
-0.0243 dB, whereas the Monte Carlo analysis yielded -0.0246 dB.
As a further check on the optimality of these results, L5 was allowed
to be both toleranced and tuned as distinct from being effectively toleranced
from the point of view of optimization. The same vertices, an additional 25 p
variables and 50 additional constraints on the p variables were used without
any significant improvement in the results. The values of the p variables

confirmed the assumption that L_ should be effectively toleranced for 3%

5

tuning.

Problem 3: 3% Tuning for L_ and L7
As indicated by Table X a further improvement in all tolerances has been
obtained.

Problem 4: 3% Tunigg for L

7
The results for this problem are, as shown by Table X, slightly worse

than those for Problem 2. A slight violation of the specification at 658 Hz

was detected. We conclude that if only one inductor is to be tuned, L

5
should be chosen.
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V1 CONCLUSIONS

As expected, the inclusion of tunable elements can increase the tolerances
on the components. The results of the problems we have studied seem to just-
ify the reduction of the general tolerance-tuning problem into one containing
Veffectively toleranced and effectively tuned components, where appropriate.
If the separation of the components is not decided in advance, the general
problem as in Example 4(b) with the cost function reflecting both tolerances
and tuning ranges is appropriate, since an optimization program requires an
explicit number of variables and constraints in advance.

A cost function tending to maximize tolerances and minimizing tuning has
been implemented successfully in this context. Zero tuning ranges were in-
dicated when the cost became too high. For the highpass filter the 3% tuning
range on the inductors was considered free, thus tuning did not enter into
the objective function. A reduced problem involving effective tolerances

was found adequate.
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TABLE VII

OPTIMAL TUNING (EXAMPLE 4 (b))

Parameters c =10 c = 20 c =50
(o] (o]

Ly = L 1.8440 1.9221 2.0492

c° 1.1730 1.0486 0.9069

100 el/Li = 100 es/L% 31.62 % 23.84 % 16.15 %
100 ez/c° 31.62 % 22.36 % 14,14 %

100 tl/Li = 100 ts/Lg 2.54 % 0.00 % 0.00 %
100 t,/C° 54.31 % 35.89 % 14.14 %

pi -1.0000 -0.7165 0.9743

pé 0.1645 0.2466 1.0000
p; -1.0000 -0,9992 -0.9846
pf -1.0000 -1.0000 -0.8813
p; -1.0000 -1.0000 -1.0000
pg ~1.0000 ~1.0000 -0.9876
pi 1.0000 0.9887 0.9933
pg 1.0000 1.0000 1.0000
p; 1.0000 0.9989 0.9029

pi 1. 0000 0.8433 -0,6051
pg -0,1645 -0,1468 0.6434

p; 1.0000 0.8944 0.6441

1o .o . . ,

100 €,/L19 = 100 e,/L3 29.08 % 23.84 % 14,14 %
r. 0 P o 0

100 t,/C 22.69 % 13.53 % 0.00 %




TABLE VIII

SPECIFICATIONS FOR THE HIGHPASS FILTER

Frequency Range Basic Sample Points Relative Weight
(Hz) (Hz) Insertion Loss w
(dB)
170 170 45, -1
360 360 49, ' -1
440 440 42, -1
630 - 680 630 4, +1
680
710
680 - 1800 725 1.75 +1
740
630
650
680
630 - 1800 860 -0.05 -1
910
930
1050

Reference Frequency: 990 Hz

0
27r990L5 27 990L7

(0]

o
RS’ R7 related to L5 R R

5 7

and L throughQ = = = 1456




DATA FOR CONSTRAINTS

TABLE IX

Frequency

Vertex Number

(Hz) (gB) ! Problem 1 Problem 2 Problem 3 Problem 4
' No Tuning L5 Tuned L5 and L7 Tuned L7 Tuned
170 45 -1 8 8 8 8
360 49 -1 48 48 48 48
440 42 -1 128 128. 128 128
630 4 +1 1 1 1 1
630 -0.05 -1 60,100,104, 58,60,100, 60,108,120 60,87,95
108,120,126 104,108,120 100,104,108,
126 120,126
637 -0.05 -1 - - - 87
640 -0.05 -1 - 58 108 52,58,60
643 -0.05 -1 - - - 85,93,117
650 -0.05 -1 nominal,l2, nominal,12, nominal,12,34, nominal,12,
50,58,102 34,42,50,58 42,44,58,106, 36,42,50,58,
102,106,126 126 85,93,94,
102,106,126
658 -0.05 -1 - - 42 58,69,85
665 -0.05 -1 - - 34,42 34,58
670 -0.05 -1 - - - 2
680 1.75 +1 123 123 123 123
680 -0.05 -1 2,6 2,6 2,6 2,6
710 1.75 +1 43,83 43,83 43,83,123 43,83
725 1.75 +1 43,83 43,83 43,83 43,83
730 1.75 +1 - - 43,83 43
740 1.75 +1 43,83 43,83 43,83 43,83
860 -0.05 -1 118,126 118,126 118,126 118,126
910 -0.05 -1 118,126 118,126 118,126 118,126
930 -0.05 -1 118,126 118,126 118,126 118,126



1040 -0,05 -1 - - - 3
1050 -0.05 -1 3 3 3 3
Number of Besponse 31 37 37 55
Constraints
Total Num?er of 45 51 51 69
Constraints m
Number of Variables n 14 14 14 14




TABLE X

RESULTS FOR HIGHPASS FILTER

Patrameters Problem 1 Problem 2 Problem 3 Problem 4
No Tuning L5 Tuned L5 and L7 Tuned L7 Tuned
tolerance (%) 5.71 6.77 7.90 6.63
nom. shift (%) +18.1 +17.8 +18.3 +17.6
tolerance (%) 4,33 4,97 5.32 4,77
nom. shift (%) +16.2 +15.2 +14.4 +15.3
tolerance (%) 4.72 5.81 7.23 5.83
nom. shift (%) +16.6 +18.0 +18.8 +17.8
tolerance (%) 4.54 5.03 5.15 4,78
nom, shift(%) -3.8 -2.2 -1,2 -3.1
tolerance (%) 3.29 3.95 4.44 3.82
nom. shift (%) -3.0 -3.0 -4.3 -4.1
tolerance (%) 6.32 7.05 7.27 6.66
nom. shift (%) -7.3 -5.1 -3.6 -6.0
tolerance (%) 3.64 4.34 5.04 4,32
nom. shift(%) -6.4 -7.9 -7.9 -6.3
*
Cost 157 135 121 138

*Violation of specifications. Relative Loss = -0.052 dB at 658 Hz
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Fig. 1 The LC lowpass filter
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Fig. 2 The highpass filter
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Fig. 3a Passband details of the optimized
highpass filter (Problem 2)
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Fig. 3b Stopband details of the optimized
highpass filter (Problem 2)









