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NECESSARY CONDITIONS FOR MINIMAX OPTIMALITY
JOHN W. BANDLER
Abstract This letter shows that the necessary conditions for an optimum in
nonlinear minimax approximation problems do not require a qualification

analogous to the Kuhn-Tucker constraint qualification.

Conditions for optimality in the Chebyshev or minimax sense are of
considerable interest in circuit and system analysis and design. Furthermore,
it is well known that nonlinear minimax approximation problems can be re-
formulated and solved by nonlinear programming [1]. Assuming differentiability
of the functions concerned, that a point QO is a local optimum, and that the
Kuhn-Tucker constraint qualification holds at QO, the Kuhn-Tucker conditions
can be shown to hold [2]. The reason for requiring the constraint qualification
is the uncertainty in the validity of the Kuhn-Tucker conditions at local
optima -of certain problems. This letter shows that such an uncertainty does
not arise in normal minimax approximation problems.

First, a statement of Farkas' Lemma [2] is required. Let Ro*Rys e+ sPys

be an arbitrary set of vectors. There exist Bi > 0 such that
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Consider the problem
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is the local optimum under consideration, and which is assumed to exist.

Paraphrasing Farkas' Lemma, there exist u > 0 such that
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Equation (1) involves the necessary conditions, (2) can be written as A¢k+1 > 0,

if and only if

where

and (3) as —szi(QO)AQ + A¢k+1 >0, 1ice€ IO. By assumption, QO is a local

optimum and the fi are differentiable. Hence, it is impossible to find A¢ such
T 0 . 0 . .

that Y fi(g )AQ < 0 for all i € I". In this case A¢k+1 must be nonnegative.

(This can also be seen by examining the statement of the problem). Thus (1)

holds for u, > 0, i e IO without apparent additional qualification,
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