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CHAPTER 1

INTRODUCTION

?qa§olv;<aﬂ optimization problem as efficiently as possible
has always been a major goal in developing optimization techniques. In
problems where the final solution vector is obtained as the final entry
of a converging sequence of solution vectors, for example, solving non-
linear programming problems with sequential unconstrained minimization
techniqueé [1], solving minimax problems with least pth approximation,
the process may be slow. It is often desirable to have acceleration
techniques to speed up convergence.

. Iﬁ?sblviug nonlinear programming problems using sequential
unconstrained minimization techniques, Fiacco and McCormick [11-[2],
and Lootsma [3] have employed an extrapolation technique on the se-
quence of unconstrained minima to accelerate convergence to the optimal
solution. In this thesis, theoretical validation and computational
merits of applying the .same extrapolation technique in solving minimax
and related problems using a sequence of least pthapproximations are
examined. An outcome is the development of an efficient, user-oriented
computer program;calied FLNLP2, written in stamdard FORTRAN IV, which
solves constrained or unconstrained general optimization problems. The
Bandler-Charalambous minimax formulation [4], generalized least pth
objective [5], the 1972 version of Fletcher's method [6] and the ex-

trapolation technique are the main features of the program.



A review of the theoretical background and computational impli-
catibns.of the extrapolation techmique used by Fiacco and McCormick is
given in Chapters2. ,:

It is well known that least pth approximation with a very large
value of p can, in principle, be used to achieve a near minimax solu-
tion [7]-([9]. For numerical efficiency, the process may be accomp-
lished by using a sequence of least pthapproximations with increasing
values of p. In Chapter 3, several examples are used to investigate
the effectiveness of the extrapolation technique in yielding accurate
estimates of the minimax solution when applied to a sequence of least
gth minima. Where appropriate, the present new approach is compared
with other existing techniques for solving minimax problems. Numerical
results indicate that the new approach is competitive and a theoretical
analysis of the trajectory of least pth minima confirms the validity
of the extrapolation procedure.

Problems for future investigation and applicability of the ex-
trapolation technique to other minimax algorithms are discussed in
Chapter 4. A complete FORTRAN listing of FLNLP2 together with the
documentation for the user is given in Appendix A.

Most of the numerical results were obtained from the CDC 6400
computer, some from the PDP 11/45 computer. Parts of this work have

been published, and appear in references [10]-[11].



CHAPTER 2

NONLINEAR PROGRAMMING AND EXTRAPOLATION

2.1 Introduction

| In solving nonlinear programming problems, transformation
techniques are usually employed to transform the constrained optimi-
zation problem into one or more unconstrained optimization problems.
One of the well-established approaches is the sequential unconstrained
minimization technique due to Fiacco and McCormick [1]. In using

the sequential unconstrained minimization technique, Fiacco and
McCormick [1j-[2] and Lootsma [3] have shown that, under certain assump-
tions, the problem variables, on the trajectory of minima of the se-
quence of unconstrained functions, can be developed as functions of

the parameter r. This provides a theoretical basis for an extrapola-
tion technique that significantly accelerates convergence to the opti-
mal solution. In this chapter, a review of the theoretical background
and computational implications of the extrapolation procedure will be

given.

2.2 Interior-point Unconstrained Minimization Techniques
The nonlinear programming problem is defined as
Minimize
£ 4 £(9)

subject to ; (2.1)



ﬂﬁtéﬁ f is the objective function, the vector 2 represents a set of n
variables

T
]

4
¢ —vEQI S % (2.2)

and gl(i), gzgﬁ), ens gm(Q) are the constraint functions. Both f
and the gi's are, in general, nonlinear differentiable functions of the
variables. The feasible region of the constrained problem is defined

as

R4 {glgs@ 20 , i=12,....m. (2.3)
The interior of the feasible region is the set
Rg & {plg;® >0 , i=1,2,...,m} (2.4)
L
Problem (2.1) can be reformulated as follows. Minimize

: m
U(g,T) = £(9) + T .21 G; (g;(4)) (2.5)
i=

where r is a positive controlling parameter and Gi(t) is defined con-
tinuously on the interval t > 0 such that Gi(t) +wast>0. With
this formulation, a barrier is created at the boundary of the feasible
region R. and the minimal solution, i , is approached from the interior
of Rc (i.e.,Rz # @) by modifying the barrier using the controlling
parameter. For any r > 0, a point g(r) minimizing (2.5) over Rz
exists. Any convergent sequence {g(ri)}, where {ri} is a monotonic
decreasing null sequence as i + «, converges to a solution of (2.1).
The method is called an interior-point method or barrier function
method.

There are three interior-point methods that have attracted con-

siderable theoretical and computational attention. Firstly, there is



the logarithmic programming method with
G;(g;(9)) = -1n(g; (). (2.6)

It was originally proposed by Frisch [12], and further developed by
Lootsma [3] , [t3]. Secondly, we find the interior-point method

using an inverse barrier function, i.e.,
_ -1
65(g;(9)) = (85 (9N (2.7)
It was first suggested by Carroll [14], ,and further developed by
Fiacco and McCormick [1]. Lastly, there is the interior-point method
with
-2

as described by Kowalik [15], and Fletcher and McCann [16].

2.3 Analysis of Isolafed Trajectory
We shall impose the following conditions on problem (2.1):
(C1) The functions £, ~8y» -++» ~g, aTe convex and twice-
differentiable.
(€2) The constraint set Rc is compact and its interioi RZ is non-
empty.
(G3) The Hessian matrix of the unconstrained objective function U
defined by (2.5) is nonsingular for any 2 € RZ and for every
r > 0.
We may note that U is convex on RZ by virtue of condition
(C1). Clearly, condition (€3) implies the strict convexity of U on
o

Rc' Hence, for every positive r, a unique point %(r) € Rz exists

minimizing U over RZ. Let Zf and Zgi denote the gradients of f and



g;» i=1, ..., m, respectively, where

T
RERE d
z - [a¢1 a¢2 e o o a¢n} . (2.9)

Observing that the gradient of U vanishes at ¢(r), we find that, for
. n

a logarithmic barrier function (2.6), ¢(r) solves the system of equa-
n

tions
m Vg, (9)

Zf(z) -7 —-g—i—i’zj— = 2. (2.10)

i=1
Since by assumption the Hessian matrix of U is nonsingular, the impli-
cit function theorem [17] assures us that ¢(r) is a continuously dif-
ferentiable vector function of r for r > 6? In other words, there
exists an isolated trajectory of local unconstrained minima of U in
Rz. It can be shown that this trajectory has an order of differentia-
bility with respect to the parameter r one less than that of the
original problem functions and that it is analytic when the functions
are analytic (see Fiacco and McCormick [1]).

The main question is, however, the convergence of %(r) to a
minimal solution i of problem (2.1) as r + 0. Therefore, (2.10)
has to be modified in such a way that conclusions on the behaviour of

¢(r) can also be drawn in the limiting case where r + 0. Let us con-
N

sider the system

m
VE®) - ) u;Vei(9) =90,
=1 (2.11)

uigi(g) -r=0,1i=1,...,m,

For any positive r, a solution of (2.11) is given by (ﬁ(r), g(r),r)

where u represents an m-dimensional vector with components
")



- r 2 -
ui(r) -W, 1 -‘1,...,m. (2.12)

Under the conditions (€1) and (C2) E is a minimal solution of
L

v

(2.1) if an only if there exist non-negative multipliers ﬁl,...,um

such that the equations

m
VE@) - ) u¥g;(¢) =0,
i=1 (2.13)

uigi(z) =0,i=1,...,m,
are satisfied for $ = é and g = E. These are the Kuhn-Tucker rela-
tions. Téking E to denote the m-dimensional vector with components
u

1,...,6 » one can readily verify that (%,E,O) solves (2.11). Let

m
J denote the Jacobian matrix of (2.13), evaluated at (i,é). If J
is nomsingular, then there exists a neighbourhood of (i,é), where
Qi,é) is the unique solution of (2.13). A set of sufficient condi-

v
tions for J to be nonsingular are:

(€4) The gradients Zgi(i) ;ﬁié$;idre=linéarly independent ; ‘where
B 2 {i|g, (§) = o}. (2.14)
: n
(C5) The multipliers&ﬁif&fié%g@ﬁrcrpo;i:&téwr.

@6) The matrix H(i,é) is posttive definite, where

T
iy 1(fc&)) . (2.15)

. A T m

H = V(Vf - u,v(Vg.

H(pR) = TCED” - 1 7T
The behaviour of the vector functions (Q(r), 2(r)) in the neighbour-
hood of r = 0 may now be established in the following theorem (see

Fiacco and McCormick [1], and Lootsma [18]).



Theorem 1

If the functions f, SEREENS - have continuous (k+1)th order
(k > 1) partial derivatives with respect to %, then under conditions
(C1) to (C6), the functions (g(r), g(r)) are unique and have con-
tinuous kth order derivatives in a neighbourhood about r = 0.
A consequence of Theorem 1 is that both g(r) and 2(r) can be expanded
in a Taylor series about r = 0. This provides a basis for extrapo-
lation tewards (§,u).

N

Although the analysis so far is confined to interior-point
methods, it can readily be extended to exterior-point methods, or
mixed interior-point-exterior-point methods (see Fiacco and

McCormick [1]).

2.4 Acceleration of Convergence by Extrapolation
2.4.1 Extrapolation Polynomials [1]

Suppose. the unconstrained objective function U(¢,r) has been

¢
uniquely minimized for T > o1y > 0 at ¢(r1),...,¢(rk). A
N N
polynomial in r that yields ¢(r1),...,¢(rk) is given by a set of
N N

equations of the form
k

-1 .
o(r) = [ a;xr)? , is=lk (2.16)
n =0

J

where the aj are n-component vectors. The determinant of the matrix
"



- -
rl (Y ° - rk
R = | : (2.17)
;k—l k-1
"’Cl k ’_J

is the Vandermonde determinant and is nonzero if T, # rJ, i#3.
k-1
Thus, there exists a unique solution for the %j' Then 2 a (r)J
is an approximation of ¢(r) in the interval [0,r.], and ¢(O) i
: n

(the minimal solution) is approximated by a0

Now, 'the exac¢t Taylorsseries expansion of ¢(ri) in T, about

n
$(0) is
v k-1 . 032(0)
o(r) = § (x)? —7—* el L, i=1,...,k (2.18)
1 j=0 "
where T
A d¢, (1) d¢_(r)
Do(x) 2 | dr i , (2.19)
i ‘(ri) d ¢1(nli), d ¢n(nn1)
" = o T e X ,
v : dr dr (2.20)

0< nji < T, j=1,...,n.

Setting (2.16) and (2.18) equal, subtracting and combining yields

1 k-1
D7¢(0) D™ "¢ (0)
[e! ... R? = A-{:&b(O) —_— ., — } (2.21)
v Ty (k-1)!

where

A= [‘,?,o . :k_l]' (2.22)

Clearly, then, the difference between a, and ¢(0) is of the order of
n n

k

Ty Thus, as r

1 ” 0, a, ~* #(0). 1In addition, the estimates using
n _
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k minima are better than those using (k-1) minima. With Ti = ri/c,
¢ > 1, the particular structure of these equations renders the use
of an extrapolation procedure according to the Richardson-Romberg
principle [19] to estimate 2o

If %; ,i=1, ..., k, j =1, ..., i-1 , signifies the jth
order estimate of 2(0) after i minima have been obtained, with Ty

being the initial value of r, then we have

i 1 ’
.5?,0:.-?,:1-:]? s 1 = 1,...,k,
and L (2.23)
i1 i-l )
i T8t Pk
¢ = s
~J cJ-1 jo=1l,0..,i-1 ]

The "best" estimate of ¢(0), namely %0’ is given by
N

RPN
00 24y g =2 (2.24)

The extrapolation formula (2.23) can also be used to estimate
the next minimum of the objective function U($,r), i.e., the (k+1l)st
n
minimum. Setting i = k+1 in (2.23) and solving for ¢?+i, we have the
nj-

following recursive relation

j k+1 k
(cJ-l) .+ .
okrl o 2 izl (2.25)
r\,J'l cJ
. _ .k _ k+l .
Noting that a, = ¢ = from (2.24) and using the values pre-
0  ak-1  Ak-1

viously obtained from (2.23), we can evaluate (2.25) for j = k-1,

k-2,...,1. The last computation will give the required estimate ¢g+1,
n

This estimate can be used as the starting point for the (k+l)st mini-
mization of U(¢,r). As more minima are achieved, the estimate even-

~
tually improves. This accelerates the entire process by substantially
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reducing the effort required to minimize the successive U functions.

2.4.2 An Example [1]
To illustrateWthef7Extpapolation technique, the following
example is considered.
Minimize
subject to

¢, 21
25 5.2 24
The analytical selution is=

¢, =1 , ¢, = Y3 = 1.7320505.

The sequential unconstrained minimization technique was used to solve

the problem by defining
U(9,r) = £(9) - TIn(d;-1) + (7+95 - D/ (2.26)
N Y

and minimizing U with respect to 2 for a decreasing sequence of r
values. Extrapolation is used to accelerate convergence. Table 2.1
shows the results. The convergence of the estimates to the ghalyti-
cal solution can be seen by reading down the columns. The effective-
néss of the extrapolation technique can be seen by noting that the
third-order estimates using the last four minima agree with the
analytical solution to seven significant figures, whereas the
minimum for r = 3.960625X10-3 agrees to only three significant

figures.
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o Estimates
¢] ~1st 2nd 3rd

Estimates
¢; 1st 2nd 3rd

1.0

0.25

6.25%x10"2

1.5625x10"2

2’3.960625><10"3

~Analytical -
solution

1.5527821
1.1593476
1.0282028
1.0398244
0.9999833
0.9981020
1.0099208
0.9999529
0.9999509
0.9999802
1.0024774
0.9999963
0.9999992
1.0000000

1.0

1.3328309
1.6413384
1.7441742
1.7111098
1.7343670
1.7337131
1.7269401
1.7322168
1.7320735
1.7320475
1.7307811
1.7320614
1.7320511

1.7320507

ue

Y3 £ 1.7320505

Table 2.1 Use of extrapolation to accelerate convergence.



CHAPTER 3

EXTRAPOLATION IN LEAST pTH APPROXIMATION

3.1 Introduction

In least pth approximation, large values of p are usually re-
quiréd for the least pth optimal solution to be close to the optimal
minimax solution [7]-[9]. Depending on how close the starting point
is to the minimax optimum, the process may be unnecessarily time-
consuming. To start with a small value of p and then sequentially in-
crease it may somewhat alleviate this problem. By this approach, a
sequence of least pth minima will be obtained. Under appropriate
assumptions, we may expect the sequence of least pth minima to form a
unique trajectory of local minima converging to the minimax optimum,
and the extrapolation technique discussed in Chapter 2 can be applied
to accelerate convergence. In this chapter, several test problems are
used to investigate the applicability of the extrapolation technique
in solving minimax problems with a sequence of least pth approxi-
mations. Numerical results indicate that the technique is successful
and efficient. The credibility of the extrapolation technique is fur-

ther confirmed by theoretical considerations.

3.2 Basic Formulas

3.2.1 Generalized Least pth Objective

The generalized least pth objective function [5] to be mini-

mized with respect to ¢ is
"

13
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1
Mc¢){ ) {ei(g) q] T M) # 0
vy or
uGe.p) =4 v liek M) & (3.1)
0 for M($) = 0

where

ei(¢) is a set of m+l real error functions (linear or nonlinear)
N

g é[‘ﬁlcbz cen ¢n]T, a n-component parameter vector (3.2)
afpsgmue) , P>l (3.3)
M(6) & max e.(4) (3.4)
v je1 1™
(38 {ile,(¢) > 0 , ieI} if M($) > O
K = . Ia g’ (3.5)
14{1,2,...,m1} if M($) < 0

The gradient vector of ‘the objective function is given by

qy=-~1 q-1
. o e; (1" 14 e; ($)
XU(,%:P) = {2 [‘M‘C@"‘ iél( M-(—,@—— Zei(ﬂ\)‘) for M(’CPJ) # 0.
....(3.6)

From (3.1) and (3.6) we note that if ei(i) for iel are continuous

with continuous first partial derivatives, then under the stated

conditions, the objective function is continuous everywhere with

continuous first partial derivatives (except possibly when M(¢) = 0
"

and two or more maxima are equal).

3.2.2 Bandler-Charalambous Minimax Formulation [4]
The nonlinear programming problem deéfimedrby (2.1) is trans-

formed into the following unconstrained objective

V(¢,a) = max £(¢), £(¢) - ag.(d) (3.7)
3 o PN [ (3 %) g; (¢ ]
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where

a > 0.

Sufficiently large o must be chosen to satisfy the inequality

u. <1 (3.8)

1
o i

"ne~—s

i=1

where the ﬁi's are the Kuhn-Tucker multipliers at the optimum. The

minimization of V(¢,0) with respect to ¢ is a minimax problem and may
"\

n
be solved by minimizing the generalized least pth objective with

A .
e;(9) = £(9) - og;(9) , i=1,2,....m (3.9)

epe1(®) 2 £(9) (3.10)

using a very large value of p or a sequence of p values with extrapo-
lation or one of the several recent minimax algorithms proposed by

Charalambous and Bandler [20] and Charalambous [21]-[22].

3.3 Estimation of Minimax Optimum by Extrapolation

'Q”Tf”example, twd test functions and an LC lowpass
filter design problem were used to investigate the applicability and
performance of the extrapolation formula (2.23) in estimating the
minimax optimum from a sequence of least pth minima. Wherever pos-
sible, the present approach was cbmpared with other algorithms for
solving minimax problems. To facilitate the investigation, the
extrapolation formula (2.23) was coded into a FORTRAN subroutine and
was incorporated into two nonlinear programming packages FLNLP1 [23]
and FLOPT1 [24]. The updated version of FLNLP1, called FLNLP2, is

described in Appendix A. Formulas discussed in section 3.2 were used
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for thebobjective formulation. The latest version of Fletcher's
method [6] was used to perform the minimization. For all examples
except the LC lowpass filter problem, the minimization was terminated
when the change in the parameter values on an iteration was less than
10-8; 10"7 was used for the LC lowpass filter problem.

Example 1 : A minimax example [20]

Minimige . the maximum of the following three functions,

e (@) = ¢, + 9,

eg@=(z-%ﬁ+c2—%f

e5(9) = 2 exp(-¢) * ¢,)

The minimax solution occurs at the point ¢1 = ¢2 = 1 and the maximum
value is 2. The problem was formulated as a least pth approximation
problem. A sequence of p values, starting with p = 4 and increasing
by factors of 4 up to 1024, was used. The minimax solution is ob-
tained by extrapolation. The results are shown in Table 3.1. The
convergence of the estimates to the analyticad minimax solution can
be seen by reading down the columns. Table 3.la shows the improve-

ment the extrapolation procedure made over the basic approach in

yielding the minimax solution.
Example 2: Beale constrained function [25]
Minimize
£(0) = 9-86, -66.,-40+26, >+20,_2+¢,2+26.6,+26¢
" 1772 73 771 2 '3 172 °7173

subject to
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_ Estimates Estimates
Py ¢i 1st 2nd 3rd ¢y lst 2nd  3rd
4 1.0228068 0.9005678
16 1.0109514 0.9697441
1.0069996 0.9928028
64 1.0033465 0.9917309
1.0008115 0.9990598
1.0003990 0.9994769
256 1.0008851 0.9978751
1.0000646 0.9999232
1.0000148 0.9999808
1.0000087 0.9999888
1Q24 1.0002245 0.9994649
1.0000043 0.9999948
1.0000003 0.9999996
1.0000001 0.9999999
Analytical
solution 1. 1

Table 3.1 Results of Example 1 for starting point ¢0 = [2 2]T.
N
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p=4,16,64,256,1024

Parameters Order of extrapolation = 3 P = 105
¢y 1.0000001 1.0000023
¢2 0.9999999 0.9999945
max ei(¢) 2.0000000 2.0000064
"
Function 45 62
evaluations

Table 3.1a A comparison of two approaches

for solving Example 1.
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;20 ,1=1,23

3—¢1-¢2-2¢3 > 0.
The function has a minimum £(¢) = 1/9 at i = [4/3 7/9 4/9]T. The
Bandler-Charalambous techniqu: was used to transform the constrained
problem into an unconstrained minimax problem. A sequence of least
pth approximations together with extrapolation was used to obtain the
optimal solution. The same problem was also solved by least pth ap-
proximation with a value of p of 105 and by the Charalambous-Bandler
algorithm with a value of p of 10. Table 3.2 gives a comparison
between the three approaches. It can be seen that the extrapolation

procedure outperforms the other two approaches.

Example 3: Rosen-Suzuki function [25]
Minimize

202,02 2
£(§) = 6) %0, 420,740,750, -50,-2105+70,

subject to
2 2 2 2
"¢1 ‘¢2 ‘¢3 "¢4 '¢1+¢2'¢3+¢4+8 2 0
2 2 2 2
-9, °-20,-05"-20, 40, +¢,+10 > 0
2 .2, 2
-2¢1 -¢2 -¢3 -2¢1+¢2+¢4+5 > 0.
The function has a minimum f(&) = -44 at 6 = [012 -l]T. The
n, n

Bandler-Charalambous technique was used to transform the nonlinear
programming problem into an unconstrained minimax problem. The mini-
max problem was then solved using a sequence of least pth approxi-

mations together:with extrapolation; using least pth approximation



20

N
.HmH z 1] = oe jutod Surijaels xoj weiqoxd oyeag 8yl I0F sIINSaY °¢ 9IqEL

SUOT jenyeas
66 8L ve uoT3oUNg
. . : s
g-01xL08 g-0Tx65" T -01xL0°S meu
aa42a ) LEYYYIY 0 1242422k ﬁevmw
n,
LLLLLLL'O SLLLLLL'O 8LLLLLL"O ($)%3
n,
GEeESes 1 8csesese 1 geesese 1 ﬁeuﬁm
Ny
TITITIT O $ITTTIIT O TTTITITIT 0 3
2adaaa A LYYy 0 124242420 me
LLLLLLL®O SLLLLLL'O SLLLLLL"O %6
Seeeses 1 .8855¢€E° 1 ceeesss T o
M“
=0 =0 =0ﬁumaommhpmw Jo IopxQ
ot =d ot = d 1= sIojouweIed

952 4991 ¢ y=d




21

with a value of p of 105; using the Charalambous-Bandler algorithm
with a value of p of 10. In each case, the value of the parameter
o was 10. The original constrained problem was also solved using
the Fiacco-McCormick method with extrapolation. Table 3.3 compares
the performance of the four approaches. We may notice that the first
and the last approach (both using extrapolation) give very accurate
estimates of the optimal solution. However, some of the constraints
are slightly violated due to the extrapolation procedure. We note
that the least pth approach with extrapolation requires the minimum
number of function evaluations while the best solution is given by

the Fiacco-McCormick method with extrapolation.

Example 4: An LC lowpass filter design problem

Consider-the desigi-8f-an' LC lowpass filter as shown in Fig.
3.1; the specification requirements are that the insertion loss in
the passband (w = 0 to 1) is not to exceed 0.01 dB while the inser-
tion loss at w = 2.5 in the stopband is to be a maximum. Letting

I' denote the insertion loss, the design problem can be formulated as

Maximize
U= P(g.ws)
Subject to
r,w.) <0.,01,1i=1,...,m,
n O
where A A

ws As the ,ttopb%fwmy point, -~

Wy is a set of m sampling frequency points in the passband.
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The constrained problem was transformed into an unconstrained minimax
problem using the Bandler-Charalambous technique. A sequence of least
pth approximations together with extrapolation was used to obtain the
optimal solution. The original problem was also solved using the
Fiacco-McCormick method with éytrapolation. In each approach, 21 uni-
formly spaced sampling frequency points were used in the passband

(w = 0 to 1) and wy = 2.5. The numerical results from a nonfeasible
starting point, %0 = [0.71.41.51.51.51.4 O.7]T, are tabulated in
Table 3.4. Discrepancies between fhe numerical solutions and the ana-
lytical solution are due to the finite, uniformly spaced sampling points
used in the passband. Table 3.4a shows the deviation of the numerical
responses from the analytical response at some crucial frequency points.
We may notice that the least pth approach gives slightly better results.

Fig. 3.2 shows the responses of the filter before and after optimization.

3.4 Theoretical Verification

In the previous examples, application of the extrapolation
formula (2.23) is based on the assumption that the trajectory of least
pth minima is a continuously differentiable function in-%-for 1> %-2 0
and can be expanded as a Taylor series about-% = 0. It is the purpose

of this section to show that, under certain conditions, our assumption

is valid.

3.4.1 Assumptions
(A1) The error functions ei(¢) for iel are convex and have continuous
4V

(k+1) th order, k > 1, partial derivatives with respect to i.
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(A2) The Hessian matrix of the -objective function U is nonsingular for
any real-¢ :and for every 1 > -11; > 0.
N
(A3) Assumptiomsa(developed :later) to ensure differentiability of the

trajectory at p = ®.v-

3.4.2 Analysis of Trajectory of Least pth Minima
' Owing tol#Meddéfinitesiéss and convexity properties of the ojec-
tive function U, we can expect, at every value of p, an "isolated" or
locally unique unconstrained minimum. Noting that the gradient of
U vanishes at the minimizing point, %(—%—) , we have
1 -
ZU%('E)’p) =0 (3.11)
or o
1.,y gy = -1 1,,) q-1
e. (9(3)) q e. (9(2))
¥ —LA'-IP—- ¥ -—1-&12-- vei(¢(%)) = 0. (3.12)
ieK M%(F)) ieK M(r?,(i-)) v v

'

Since by assumption the Hessian matrix of U is nonsingular, the im-
plicit function theorem assures us that Mil)_) is a continuously

n
differentiable vector function of fl)- for 1 > -11;> 0. In other words,

we have an isolated trajectory of unconstrained local minima of U.

It is possible to be-explicit about the derivatives of ¢(%)
n

with respect to %—for 1> %> 0. For convenience, let us define
Al
- (3.13)
PPy
A 1
IEEHCIED (3.14)

A 1
= —) ) . .15
M, M(.q\)'( )) (3.15)
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Since (3.12) is an identity in %-(or rather p'), we can differentiate

with respect to p', obtaining

—-1
€. ¢/q) a | e. +]q-1 T .
{Z [;,—13—” {Z [—M-?-P-—] V(Te; ) DO (pY)

ieK | Tp! iek 'p'
. ei 1 q-z Vei 1 T
v @D e P Ty, DY)
P P
2 [Cip? q-1 €ipt
-(sgn Mp') q FTJ%— in T Zeip' = 8 . (3.16)
P P
Now
: T givﬁ e 14 énl e 1q-1 T
V1 V' 1 = i’ﬁ, ——-—-L —P-— .
e. ,]q-2 Vei . T
+ (D) [ | e 0 (3.17)
' 1 - N ip )
P ) P
Equation (3.16) can hence be written as
T U7 , 2 @.p1)4 é’l
TR En 0 RN - (sgn M) LEK [ef—MP' ”
) eiE' a-1 1 eiE' v 0 :
* n €. f T » 3.18
?SK Mpl MP' n 1P n ( )

where

T
¢,(p") do,(p") dé_(p')
1 2 L ] (3.19)

d
D " = .
i(P) [dp‘ 3 I
Under the stated assumptions, the matrix that multiplies D%(p')

in (3.18) has an inverse, so that
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1
i-1 e. v q - =1
D(p') = (sgn MP.A)‘{V(VU(MP'),P))T}' qz[z [Ml ]q
N v ieK {'p'
Z ei t q-1 ei v }
° ]_n Ve, P . (3.20)
i;SK Mp' Mp' n, 1P

Therefore, the derivatives of $(p‘) exist for 1 > %§> 0 (or 1 < p < «@).
If we differentiate (3.18) with respect to p', we shall find that
the existence of the same inverse is required for D2¢(p') to exist
as required for D¢(p'). Im additionm, DZ¢(p') requir:s the existence
of the third pargzal derivatives of ei(g; with respect to g. By con-
tinuing in this manner it should be possible to obtain explicitly all
derivatives Dkg(p') in terms of the derivatives Djz(p‘), j=1,...,k-1,
and partial derivatives of the functions ei(ﬁ), i=1,...,m+1l, of
degree up to k+l1.

In order thet themimimizing trajectory g(p') be expanded in a
Taylor series about p' = 0, we have to show that limiting derivatives
exist at p' = 0. Let us first investigate the existence of Dg(p')

as p' + 0 or p + . Recall that the Hessian matrix is defined by

(3.17); for very large values of p, we can approximate the matrix

1
|
e._,lalq e. ,lq-2{Ve.
a| 1 A [ﬁﬂiﬂ—](%i 2T
ieK{ p' ieK| { p' p' )V P

(3.21)

as

V(UG (p") ,p)) T
AR VERAS

"

H ,
P 5p
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where

H 4 MM DD D e )T 3.22
p ¥ (sgn P') p' Sq(P ) - -:;?——- meiP'(meip') , (3.22)
ip'

and

. |
e..1]4 -q_
s (p") & [.Z Ml ) ] , (3.23)

u (p') & — : (3.24)

ieK( p'

Hp is an nxn matrix and for any nonzero n-component vector X,
4"

T
X Hp g
' (e p T )
= (sgn Mp,)Mp, Sq(p ) iEK —;7_——'§ Xeip'(zeip') xr . (3.25)
ip!'

Of interest is the positiveness of the terms xTVe. , (Ve, ,)Tx in the
AN lpl T 1Pt A
sumnation. It follows that a necessary condition for ﬁTHpﬁ to be posi-
tive is that for the gradient vectors Veip,, iek, at least n of them
N

¥

are linearly independent, where

K& {ile,($(0)) = M(s(0)), ieI} . (3.26)
N n

This ensures that the vector x cannot be orthogonal to the n gradient
N

vectors Zeip, simultaneously, and at least one of the terms



xTVe
"

(Veip,)Tx will be positive. If the associated multipliers
N

noip'
ui(p'), ieﬁ, are positive, it is then sufficient for xTH X to be posi-

N N

tive and Hp be positive definite and hence invertible.

Do (p")
N

Therefore, (3.20) becomes

1
o -1 E eti q E—l 2 ip' a-1 1n _:I_IP_,_ 1 Ve, ,}
Pl (M) ) ae{ (" pt) v
[ a [ (e |
1 eip' _ifqu
= M M
=1} _1p1) 9 L3 5 In 2 -
P ieK_vMp' | ieK 2 €519 z _e-i.E_Q eipt
\ . — -
1 Tt
- - ‘ t e o) .(pY): Ve, }
Hp sqP") iEK{ul;{‘P‘)Elnul(p ¥ ®ipt W ip'

Imposing optimality conditions [26], we observe that

1i ' 1
im sq(p )

p'+0

»

0, ifK

lim u, (p') = v, f
B ;") i

v

0, iek ,

32

"

(3.27)

(3.28)

(3.29)
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Iov, =1, (3.30)
ieK
& .
lim .= 1, iek , (3.31)
p'+0 p'

and the gradient vectors Zei(g(O)), iek, are linearly dependent. Let
us define H_ = ;iﬁ»ﬂp . Then; a necessary condition for H_ to be po-
sitive definite is that the set K contains at least n+l equal maxima
and n of the associated gradient vectors Zei(i(O)) are linearly inde-
pendent. A sufficient condition is that the multipliers Vs iek, are
positive.

The limiting value of Di(p') at p' = 0 (or p = ») is therefore

given by

D¢ (0) lim. D¢ (p')
n 29

p'>0

n.

H_! i)é’k (v;1nw,) Ye, ($(0)) . (3.32)
The existence of the higher order derivatives of %(p') at p' = 0 may
be derived in a similar manner. |

To illustrate some of the ideas presented in this section, the
Euclidean norms of z(p') and Da(p') of Example 1 for a sequence of p
values, p = 2 to 214, were computed and tabulated in Table 3.5. Fig.
3.3 depicts the behaviour of IIQ(%} %"lz and ||Dt (%) ||, as a function of

%-. We see that ||£6%9]|2 converges asymptotically to the value of V2
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P e ll, s 11,
2 1.30676 0.32544
22 1.36278 0.33159
28 1.38818 0.38769
2" 1.40087 0.45442
25 1.40740 0.51015
26 1.41076 0.54797
27 1.41247 0.57044
28 1.41334 0.58276
2° 1.41378 0.58923
210 1.41399 0.59255
21! 1.41410 0.59423
212 1.41416 0.59507
213 1.41419 0.59550
2t 0.59571

1.41420

Table 3.5 Euclidean norms of ¢(19 and D¢(la.
n P n P
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(for the minimax minimum) and ||D$(%9||2 is well defined.

With the existence of Di$(p‘), i=1,...,k,at p' =0, the
results of section 2.4 can be applied directly if the parameter r is
repiaced by %u Estimates of the minimax optimum can be obtained by

using the extrapolation formula (2.23).

3.5 Discussion

In the four examples considered, the performance of the ex-
trapolation procedure in yielding the minimax solution is satisfactory.
The order of estimates has been limited to three, though higher orders
are possible. Computer storage requirements and accuracy considera-
tions such as round-off error (which becomes critical for higher-order
estimates) prompted our choice. Numerical experience indicates that
the factor ¢ by which P; is increased (or T, is reduced) is not crucial
to convergence. In general, the faster the rate of increase (or de-
crease), the fewer are the number of minima required to obtain signi-
ficant estimates of the solution values. Each minimum requires more
computation to be reached than an increase (or decrease) at a slower
rate. More minima are required to compute significant estimates in
the later case. A practical range for ¢ is 2 to 10. After all, the
intention of applying extrapolation techniques is to avoid the necessity
for calculating unconstrained minima for very large values of p (or
small values of r).

Charalambous has recently devised a scheme [21] to predict
the Kuhn-Tucker multipliers and the threshold value of the parameter

o required in the Bandler-Charalambous minimax formulation. The
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scheme significaﬁtly accelerates the convergence of the Charalambous-
Bandler minimax algorithms. In seeking a different approach to
predict the threshold value of o, we find that the extrapolation
formula (2.23) may be used to give us accurate estimates of the
Kuhn-Tucker multipliers and hence the threshold value of o (see
Appendix B).

As a matter of interest, Table 3.6 compares the results ob-
tained from using the present least pth approach with extrapolation
and those obtained by Charalambous [21]-[22] using acceleration
techniques in his minimax algorithms in solving the Rosen-Suzuki
problem. Though the three approaches are primarily least pth approxi-
mation methods, differences in objective formulations, approaches to
acceleration and convergence criteria make it difficult to conclude

which algorithm is the best.



Least pth Approach Charalambous Charalambous

Parameters with Extrapolation Algorithm [21] Algorithm [22]

¢, -0.0000002 0.000000 0.

¢2 1.0000005 1.000000 0.999999

¢3 1.9999999 2.000000 2.000001

¢4 -1.0000002 -1.000000 -1.000000

f(i) -44.00000012 -44.00000000 -44.000003
Function 72 99 163
evaluations

Table 3.6 Comparison of three least pth algorithms using acceleration

techniques in solving the Rosen-Suzuki problem. The

starting point is 20 = [000 O]T.



GHAPTER 4

CONCLUSIONS

Theoretical considerations and combutational merits of applying
an extrapolation technique in solving minimax problems and nonlinear
programming problems using a sequence of least pth approximations or
sequential unconstrained minimization techniques have been presented.
Numerical results indicate that the new least pth approach using ex-
trapolation is at least as efficient as or faster than most of the
existing minimax algorithms which do not employ such an acceleration
technique. A computer program package, called FLNLP2, incorporating
the extrapolation technique and other recent optimization techniques
is also developed. The program is capable of solving constrained or
unconstrained optimization problems in general.

In Chapter 3, a preliminary analysis of the trajectory of least
pth minima, which to the author's knowledge is a first attempt of its
kind, leads to the confirmation of the extrapolation technique. It
is felt that a rigorous analysis will reveal further useful informa-
tion. In optimization problems, it is not uncommon to have symmetry
or linear dependence in the problem variables. This may cause ill-
conditioning and unnecessary computational effort for solving the
problem. It is left for future investigation to apply a functional
analysis of the first and second derivatives of the trajectory of least

pth minima to determine and take into account the existence of symmetry

39
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or linear dependence in the early stages of the optimization process.
The problem may then be redefined to have a better-behaved objective
function and some computational effort may be saved. In reference
[10], by enforcing symmetry in the design variables of the 7-element
LC lowpass filter, a saving of about 40% in execution time is obtained.
The program FLNLP2 is written such that minimum effort is
required of the user. A user is responsible for
(1) supplying in a main program the values and/or proper dimensioning
of the parameters in the argument list and
(2) writing a service subroutine to define the objective function,
the constraints and their respective partial derivatives.
Intermediate output and the final solution will be printed by FLNLP2
according to the user's discretion. As many optimization problems can
be easily formulated as nonlinear programming problems, FLNLP2 should
find a wide range of applications. The relatively small size of the
program makes it ideal to be installed on a dedicated mini-computer
that has moderate central memory storage, e.g., a PDP 11/45. However,
the smaller word length of the mini-computer may require the extrapo-
lation procedure to be performed in double precision to ensure accurate
results. In solving the Rosen-Suzuki problem on the CDC 6400, there
is no significant difference in accuracy between solutions obtained
with single precision or double precision. Modifications to FLNLP2 can
easily be made owing to the straightforward organization of the program.
A logical modification will be an interactive version. This will offer

greater flexibility to the user.
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Throughout this thesis, extrapolation is used to accelerate
convergence in solving minimax and nonlinear programming problems.
Charalambous has recently presented new results in least pth optimi-
zation and nonlinear programming [21]-[22], using different approaches
to acceleration. The overall efficiency of the present least pth
approach with extrapolation may be enhanced by adopting some of the
acceleration techniques proposed by Charalambous, or vice versa. Other
acceleration techniques that appear to be worthwhile for consideration
are:

(a) Applying the extrapolation formula (2.23) on the sequence of mul-
tipliers My of (3.24) to determine which error functions are likely
to be inactive at the solution of the minimax or nonlinear program-
ming problem.

(b) Applying the extrapolation formula (2.23) and relation (3.21) to
give the initial estimate of the Hessian matrix for the next cycle
of optimization.

The present work has confirmed that extrapolation can be widely
applied to accelerate convergence. Being a general program, FLNLPZ may
not have solved the specific test examples in the most efficient possi-
ble way. However, other measures to improve efficiency have been sug-

gested in this thesis.+

TThe results improve over those presented previously [11] due to
more efficient use of Fletcher's quasi-Newton subroutine. The unit matrix
was used as the initial estimate of the Hessian matrix for each cycle of
optimization. In the present work, except for the first cycle, the ini-
tial estimate is the Hessian matrix computed at the previous minimum,
which is made possible by setting the parameter MODE to 3.



APPENDIX A

THE FLNLP2 PROGRAM*

A.1 Purpose
FLNLP2 is a package of subroutines for solving constrained

optimization problems. That is, it minimizes a function
£2 £
N

of n variables x subject to the constraints
N

ci(z) >0 ,1i-= 1,2,...,nc.
The technique proposed by Baridler and Charalambous [4] is used to
transform the constrained optimization problem into the minimization
of an unconstrained objective function. Practical least pth approxi-
mation is used to solve the resulting minimax problem. The user may
use a very large value of p or a sequence of p values with extrapola-
tion.

The package FLNLP2 is,ﬁ%;updated version of the package

FLNLP1 [23]. FLNLP2 differs from FLNLP1 by having the 1972 version
of Fletchéi's method and the option of an extrapolation technique.

The program is currently limited to 100 constraints. To increase this

limit, the COMMON statement WY3 has to be modified.

*
The notation used is designed to appear consistent with the
FORTRAN names suggested to the user.

42
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A.2 Argument List
SUBROUTINE FLNLP2 (N, NC, MM, IGK, X, G, H, W, EPS, XE, IH,
IK, XB, IFINIS)

The arguments are as follows

N An integer to be set to the number of variables (N > 2).
NC An integer to be set to the number of constraints,
MM An integer to be set to 1 if input data is to be read.

Otherwise, set to zero.

IGK An integer to be set to 1 if a gradient check by pertur-
bation is desired. Otherwise, set to any other value. Also,
gradient check is not performed when input data is not read.

X A real array of N elements in which the current estimate of
the solution is stored. An initial approximation must be
set in X on entry. When the extrapolation procedure is
used, an estimate of the next minimum in the sequence will
be stored on exit of each cycle of optimization.

G A real array of N elements in which the gradient vector
corresponding to X above will be returned. When the ex-
trapolation procedure is used, the optimal solution of each
cycle of optimization will be returned in G on exit.

H A real array of Nx(N+1)/2 elements in which an estimate
of the Hessian matrix is stored.

W A real array of 4*N elements used as working space.

EPS A real array of N elements to be set to the test quantities

used in Fletcher's program.



44

XE A real array of NxIK+(JORDER+1) elements in which different
orders of estimates of the minimax solution are stored
when extrapolation is used.

IH An integer to be set to 1 if a single value of p is used.
When a sequence of p values is used, IH should be set as
the index of a DO loop that calls SUBROUTINE FLNLP2
IK times.

IK An integer to be set to the maximum number of cycles of
optimization. It corresponds to the number of p values
when extrapolation is used.

XB A real array of N elements in which the best estimate
of the minimax solution currently available is stored.

IFINIS An integer whose value will be equal to N when the con-
vergence criterion for the estimates of the minimax

solution is met.

A.3 Input Data

Parameters to be supplied as input data are defined as follows.

MAX An integer to be set to the maximum number of iterations
allowed.
IPT An integer controlling pfinting of intermediate output.

Printing occurs every |IPT| iterations and also on exit
except when IPT is set to zero in which case intermediate
output is suppressed.

ID An integer to be set to 1 if input data is to be printed.

Otherwise, set to zero.



EST
EPSC

AO

PO

X(1)
I=1,N

EPS (I)
I=1,N

IEX
JORDER
JPRINT

FACTOR
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A real number to be set to the estimated minimum value of
the artificial unconstrained objective function.

A positive real number to be set to the error tolerance in
the constraints.

A positive real number to be set to the initial value of
the parameter o used in formulating the unconstrained
objective function .§

A real number to be set to the value of p used in the
least pth formulation or the initial value of p when a
sequence of p values is used.

Starting valugs for the variables XqpKy geeesXy defined

Sy

R ".";‘ L R Lo B
in A?E. :

As defined in A.2.

.

An integer to be set to 1 if the extrapolation procedure

is used; otherwise set to zero.

An integer to be set to the highest order of estimates used
in extrapolation (JORDER < IK-1); otherwise set to zero.
An integer to be set to 1 if the estimates of the minimax
solution are to be printed; otherwise set to zero.

A positive real number to be set to the multiplying fac-
tor for p when a sequence of p values is used together

with extrapolation; otherwise set to zero.

ld

§Wﬁen necessary, the parameter o will be increased by factors

of 10 (maximum 5 times). The program will then stop if no feasible
solution is found.
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The input data is to be read in the following format:

CARD NO. FORMAT PARAMETERS
1 5I5 MAX, IPT, ID
2 5E16.8 EST, EPSC, AO, PO
As many as . =
required S5E16.8 X(I), I =1, N
As many as =
required SE16.8 EPS(I), I =1, N
Next 515 IEX, JORDER, JPRINT
Last 5E16.8 FACTOR

A.4 User Subroutines

The user has to supply the main program and a subroutine
called FUNCT which defines the actual objective function, the con-
straint functions, and all first partial derivatives.

In the main program, the user has to supply the values and
proper dimensioning for the parameters in the argument list of sub-
routine FLNLP2. The subroutine FLNLP2 needs to be called once when a
single value of p is used. In using the extrapolation procedure, the
subroutine FLNLP2 has to be called a number of times. This may be
done, for example, by

MM =1

IGK = 1

DO 1 IH=1, IK

CALL FLNLP2 (N, NC, MM, IGK, X, G, H, W, EPS, XE, IH, IK,

1 XB, IFINIS)
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MM =0
1 CONTINUE
The subroutine FUNCT should be written as follows:
SUBROUTINE FUNCT (X, F, G, U)
DIMENSION X(N), G(N), C(NC), GF(N), GC(N,NC), A(NT), TT(NT),
1 TP(NT)
‘where

N = the number of independent variables (n)

NC = the number of inequality constraints (nc)

NT = NC+1

F = f(xl,xz,...,xn) is the actual objective function
c()) = cl(xl,xz,...,xn)

Cg2) = cz(xl,xz,...,xn)

C(NC) = <, (xl,xz,...,xn) are the inequality constraints
c

6F(1) = partial derivative of f w.r.t. X

GF(N) = partial derivative of f w.r.t. X

GC(1,1) = partial derivative of ¢ w.r.t. X,

Gé(N,NC) = partial derivative of N w.r.t. X,

CALL FMIMAX (N, NC, NT, F,'G, GF, c: GE, U, A, TT, TP)
RETURN

END

If any other statements are necessary to define the actual objective

function and the constraints, they may be added to this subroutine, e.g.,
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function F may be defined in another subprogram which may be called by
subroutine FUNCT.

A typical main program and subroutine FUNCT, the input deck,
a printout of the input data and some final results for solving the
Beale problem using a sequence of least pth approximations and extrapo-

lation are given in Figs. ‘A.1-A.3.

A.5 Other Subroutines

The following is a brief description of the subroutines called

by FLNLP2.

FMIMAX formulates the artificial unconstrained objective function
and the necessary gradients.

GRDCHK checks the gradient formulation by perturbatiomn.

QUASIN minimizes a function using the Fletcher unconstrained
minimization program by quasi-Newton methods.

FINAL outputs the optimal solution.

EXTRAP performs extrapolation.

The overall structure of the program is shown in Fig. A.4.

A.6 Comments

The package was written to be used on the CDC 6400 computer.
By itself, the package requires about 4,660 octal words of computer
memory. The total amount of memory storage required when using the
package to solve problems depends on the complexity of the subroutine
FUNCT, the main program and the operating system of the computer.
In solving the Beale problem, it took about 36,400 octal words of

memory storage. The FTN compiler was used. The execution time for
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PRUGRAM MATIN (INPUT,UUTPUT s TAPES=INFUT s TAPEE=LUTPUT)
MAIN PROGRAM

DIMENSION X(31»G(3)sHi6)oW(12)sEPS(3)sXE(39554)sXB(3)
N=3 :

NC=4

MM=1

IGK=1

IK=5

DO 1 IH=1s1IK .

CALL FLNLP2 (NsNCoMMsIGAsXoGoHoWsEPSsXEsIHs IKsXBo IFINIS!
pMM=0

IF (IFINIS oEWe N) CALL EXIT

CONT INUE

ST0P

£ND

GC(}. ‘33'3:(}:«1’

GCi{2931=0s

GCi3s3 1=l

GClilsal==1s

GCi2s4)==1e

GCi3e4)=~2s

CALL FMIMAX(334359F sGoaGFsCoGColioAsTTeTPI
RETURN '

END

INPUT DATA

1006 5 1
Sel 1«000000C0E-=086 1.0 Leol)
160 28 10
1.00000000F=08 1eNOOONOGO0E~D8 10000000NFE=08
1 3 1
40

Figure A.1 Main program and subroutine FUNCT for the Beale
problem, Input data is also shown.



INPUT DATA

N‘,HQEC OF INDEPENDENT VA?IA“.:.SO e 0060006000000 0000050 eaot!
MAX IMUM NUM3EF OF ALLOWASLE ITERATIONS: ceeoccssosesesssMAX
INTERMEDIATE PRINTOUT AT SVERY IPT ITERATINNSeoscosoolPT

STARTINC VALUE FOR VECTOQ X(I).l'.'.‘...'....;.....x( t,
X{ 2)
X( 3)

TEST QUANTITIES TO B.:. USQD...Q....CQOQOODOIOQQ.OOEPS( 1)
EPS( 2)
EPS( 3

‘ESTIHATt OF LOWER BOUND OF FUNCTION TO 2E MINIMIZEO..EST
THE MARGIN 3Y WHICH CONSTRAINTg MAY BE VIOLATZDeeees£9SC
INITIAL VALUE OF THE PARAMETFR ALPHAcccscoossesssnseasil
HIGHEST 2R0OIR OF ESTIWATES USSD IN EXTRAPOLATION..JORN=R

"ULTIDLYING FACTOD\ IN p VALlJ;.Q.II.....‘.IO.O‘....FACTO’:

Figure A.2 Input data for the Beale problem.
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109

5

.100000E+01
»200000c+01
«100000E+01

.100000E-07
«+100000E-07
«100000E-07

0.

«100700E-0°5

«100N00E+01

3

«L00N00E+OL



IEXIT = 1

CRITERION FNR OPTIMUM (CHAMGI IN VECTOXR X .LT. EPS) HAS

OPTIMAL SOLUTION FOUND BY FL.TCHIR METHOO

PO PP RD PO PP BN C TR CTTBDEDMHEDDBBD @ e RS

ARTIFICIAL UMCOMSTRAINED FUNCTION U

Xt 1)
¥¢( 2)
X( 3)

«13335149€401
<77765671E400
CLLGlU177ESDD

INSQUALITY CONSTRAINTS

ce 1)
c(e 2)
ct 3)
C( <)

NUMBER NF FUNCTION

«13335149E+01
s77765671E400
oLl O16177E+DD
e 5LLBL70AF=N3

ACTUAL 03JSCTIVE FUNCTION F

G( 1)
G( ?2)
G( 3)

ZVALUATIONS

FINAL VALUE OF THE PASAMITER ALPHA
VALUS NF THE PAFAMETER P

‘STI%AT £S

® X X
~ o~ e
D AN B
w o

1] 1] 1]

X
) -
N e
-
[}

«13333319€+01
«77777875E+10
o LLLLLHBTEXDD

«1333333LE+401
WTTTTTTTSE400
cLblLb4l3BEH00

« 133333332401
WTTT77778E400
CbULLLLLLLESQD

EXECUTION TIMI IN

o=

S o

CONDS

]

"

«11134106Z400
«11123221z+00

-e542759142-08
-+53990827:-08
-+107333662-07

4
«100000C0=+01
«25600000:+03

+039

Figure A.3 Results for the Beale problem.
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EXTRAP

FINAL

FLNLP2 |——— o GRDCHK
QUASIN
FMIMAX fe————  FUNCT

Figure A.4 Overall structure of FLNLP2.
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the problem was about 0.9 second (central processor time) including
printing of input and output.

The package is so organised that pertinent information of the
optimization process can be obtained from the argument list of fhe
subroutine FLNLP2. This allows the user to do some useful things in
the main program, especially when using extrapolation, for example,
(i) 1In using the extrapolation procedure, we usually do not know how
many cycles of optimization are required and the parameter IK may be
set too large. The value of the parameter IFINIS may be used as a
stopping criterion. When' the accuracy in each element of XB (esti-
mates of the minimax solution) is less than one hundred times of the
accuracy in each element of X,:the value of IFINIS becomes n. A

i

statement as

IF (IFINIS.EQ.N) CALL EXIT
putinSidethe DO loop will serve the purpose.
(ii) System failure or time-limit may sometimes occur before the exe-
cution of the program is complete. Most of the information will be
lost if it has not been saved. As a precaution, the user may at the
end of each optimization cycle save the value of the array XE and the
starting value of the next,qpaimization cycle (which is stored in the
array X) as punched output. Should restarting be necessary, the
user simply reads in the value of the array XE obtained before the
interruption, the starting value of i, some required input data and
set the value of IH to the appropriate cycle number. The process

will proceed as if nothing had happened.
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Suppose time-limit occurred during execution of the fourth
optimization cycle and we had saved relevant information of the pre-
vious three cycles. To restart the optimization process at the fourth

cycle, the main program may contain the following statements:

READ (5,2) (XE(1,1,1), I =1, N)
READ (5,2) (XE(1,2,1), I =1, N)
READ (5,2) (XE(1,2,2), I =1, N)
READ (5,2) (XE(1,3,1), I =1, N
READ (5,2) (XE(1,3,2), I = 1, N)
READ (5,2) (XE(1,3,3), I =1, N)
2 FORMAT (5E16.8)
MM = 1
IGK = 0

DO 1 IH =4, IK

CALL FLNLP2 (N, NC, MM, IGK, X, G, H, W, EPS, XE, IH, IK,
1 XB, IFINIS)

IF (IFINIS,.EQ, N) CALL EXIT

MM = 0

1 CONTINUE

The function of each statement is self-explanatory.
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FORTRAN Listing for FLNLP2 Program

SUBROUTINE FLNLP2 (NsNCsMMsTGKsXsGsHIWsEPSsXEsTHsIKsXBs IFINIS)

THIS SURROUTINF SOLVES CONSTRAINFD PRORLEMS USING LFAST PTH
APPROXIMATION AND EXTRAPOLATION

COMMON /WY1/ IFNsKO

COMMON /WY2/ ALFAsSIA9ICsIM

COMMQN /WY4/ PHEPSC

DIMFNSTION X(1)s G(1)s H(1)s W(1)s EPS(1)s XF(NsTIKs1)» XR(1])
IFINIS=0

IF (MMJEN.O) GO TO 2

1EX=0

DATA INPUT

READ (5s16) MAXsIPT,ID
READ (5+24) EST+EPSCs»AQsPO
READ (5324) (X(1)sl=1sN)
READ (5924) (EPS(I)sI=1sN)
RFAD (5416) IFX3sJORDER JPRINT
RFAD (5524) FACTOR

p=pPn

ALFA=AD

MODE=1

IF (I1D.EQ.0) GO TO 1

WRITE (6425)

WRITF (6+26) N

WRITF (6927) MAX

WRITF (6,28) 1IPT

WRITF (6929) XI(1)

WRITE (6930) (IsX{I)sI=2sN)
WRITE (6+31) EPS(1)

WRITE (6932) (19EPS(I)sI=2sN)
WRITE (6+33) EST

WRITE (6+38) EPSC

WRITE (6917) AO

IF (TEX«ENsO0) GO TO 1

WRITE (6s18) JORDER

WRITE (6519) FACTOR
CONTINUE

GRADIENT CHECK

IF (IGKeFQel) CALL GRDCHK (NsXsGrW)
CONTINUE

p=PN

IF (IPT.EQ.O0) GO TO 3
WRITE (6534)

WRITE (6+35)

WRITE (6536)

Im=0

17=0

CALL SECOND (T1)

1C=0

MINIMIZATION

CALL QUASIN (NsXsUsGosHIWIESTIEPSsMODEsMAX IPTHIEXIT)
1C=1

IM=1

MODF =3

CALL FUNCT (XsFysGrU)

IF (TAEQeOeDR.IEXIT.EN3) GO TO 6
IF (1T<ENe5) GO TO 5
ALFA=ALFA%10,0

1T=1T+1

GN TO 4

kn=0

PRINT 15

CALL SECOND (T2)

SOLUTION OUTPUT

CALL FINAL (NsXsFsGeNCoU)
PRIMT 20, P

>>>>>>>>>>>>>>>>>>P>>>>)>>>)>>>>>>>>>>>>>>>)>>>>>>)))>>>>>>>>>>>>>>>>)>P>>>
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NN

19

20
21

22
23
24
25
26
27

28
20

310
31

3?2
23

34
38
26

27
18

IF (IT.EQe5) CALL EXIT
IF (IEXeFR.0) GO TO 14
DO 7 I=1eN

G(I)=x(1)

CONTINUE

EXTRAPOLATION

CALL EXTRAP (NsXsXEsIHsIKsFACTOR s XBs JORDER)
J1=JORDER+1

THH=1H=-1

IF (JPRINT.FQe0.0R.IH.FQel) GO TO 10

1J=J1 '

IF (IHoLE-J1) IJ=IH

PRINT 21

DO 9 L=2s1J

L1l=L-1

PRINT 22, L1

NN & J=14N

PRINT 23y JsXF(JsIHsL)

CANTINUE

CANTINUE

IF (IHeLTe3) GO TO 14

IF (IHeGTeJ1) GO TO 12

DN 11 I=1sN

IF (ABSIXE(IsIHosTHI=XE(IsIHHsIHH) 1ol To100.#FPS(1)) IFINIS=IFINIS+1
CONTINUF

GO Tn 14 )

DO 13 I=1sN

IF (ABS(XE(IsIHsJI)=XE(IoIHH»J1))eLTe100#EPS(I)) TFINIS=IFINIS+]
CONTINUE

T=T2-T1

WRITE (6537) T

PA=P*FACTNR

RFTURN

FORMAT (#OTHE PARAMETER ALPHA HAS BEEN INCRFASED 5 TIMESs NO FEASI
1BLE SOLUTION HAS BEEN FOUND.#*)

FORMAT (515)

FORMAT (1HO/1H s*INITIAL VALUE OF THE PARAMFTER ALPHA%,18(%¢%)4%A0
1 =%5F14.6)

FORMAT (1HO/1H s*HIGHEST ORDER OF ESTIMATES USED IN EXTRAPOLATION#*
19%ee JORDER =%#5914)

FORMAT (1HO/1H +#MULTIPLYING FACTOR IN P VALUE#*,2]1(#.%),*FACTOR =%
15€E14.6)

FORMAT (1HOs15Xs#VALUE OF THF PARAMETER P =#5E16.8)

FORMAT (1HO/1HO +#FSTIMATES OF THE MINIMAX SOLUTION BY EXTRAPOLATIO
IN*#/1H 950 (%-%)/)

FORMAT (1HOs#ORDER#*113)

FORMAT (1HO %X (%s12s%) =#9E1648)

FORMAT (5F1648)

FORMAT (1H1+#INPUT DATA%/41H +10(%=%),//)

FORMAT (1HOs *NUMBER OF INDEPENDENT VARIABLES# 24 (#e%) o%N =%,514,/)
FORMAT (1HO, #MAXTMUM NUMBER OF ALLOWABLE ITFRATIONS*,15(%,.%),%*MAX
1=%,5145/)

FORMAT (1HO»#INTFRMEDIATE PRINTOUT AT FVFRY IPT ITFRATIONS¥sB(%.%)
1,#1PT =#,14,/)

FORMAT (1HOs#STARTING VALUE FOR VECTOR X{T)#921(%,%) %X ( 1) =%,F14
1¢6)

FORMAT (1HO s 51X s#X(#s129%) =#3E14.6)

FORMAT (1HGC/1H +#TEST QUANTITIES TO BE USED*g?B(*-*)c*EPS( 1) =#,E
114.6)

FORMAT (THO 240X #FPS(#,124%#) =#,F1466)

FORMAT (1HO/1H «#FSTIMATF OF LOWFR BOUND OF FUNCTION TO RE MINIMIZ
TED# 3D (#e#) s REST =#4F14466)

FORMAT (1H1)

FORMAT (1HCs*OPTIMIZATION BY FLETCHFR METHON®#/s1H +31(%*-%),/)
FORMAT (JHO s #ITFR# 9 PXs#FUNCT o #9gX s #ALPHA%* 9 aXs#OBJECTIVE* 96X s *#VARI
TABLFE* 9 7Xs #GRADIENT%#/1HO s 1 X s #NOo# 93X s #EVALU #9 19X s #*FUNCTION¥* 96X s ¥VE
P2CTOR X(I1)#s4Xeo%#VFCTOR GIT)%s/)

FORMAT (1HOs 14X+ #EXECUTION TIME IN SECONDS =#+F7.3)

FORMAT (1HO/1H +#THF MARGIN BY WHICH CONSTRAINTS MAY BRE VIOLATFD*.
15(#o%) s #FPSC =#9F1446)

END
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SURRNUTINFE FMIMAX (NsMCsNTsFsGaGFsCsGCoUsAsTT»TP)

THIS SUBROUTINE TRANSFORMS THE CONSTRAINED PROBLEM INTH AN
UNCONSTRAINED OBJECTIVE USING THF BANDLER-CHARALAMROUS TECHNIQUE

COMMON /WY2/ ALFASTASICHIM
COMMON /WYR/ PC(100)
COMMON /WY4/ PsFPSC
DIMFNSION GF(N)s CINC)s GC(NsNC)s GIN)s A(NT)» TT(NT)s TP(NT)
Q=P

AF=0,0

1A=0 .
IF (NCoEQeO«ORALFAENL0.,0) GO TO 12
FA=F/ALFA

DO 1 I=1,4NC

A(IV=FA=C(T])

CONTINUF

AM=A(1)

AINT)=FA

DO 2 1=24NT

AM=AMAX1 (AMsA(T))
CONTINUE

IF (AM LFe0e0) Q==N
SUM1=0e0

NO 6 T=1,NT

IF (AM) 8§,3,0

AF=1.F=10

6N TO 5

IF (A(1)eLFa0e0) GO TO 6
TT(I)=(A(I)=AF)/ (AM=AF)
TPUIY=TT(1)*%Q
SUM1=SUMI+TP(T)

CONTINUE
SUMT=ALFA#SUMI#%#(1,/Q)
U=z (AM=AE ) #SUMT

DO 11 I=1sN
XX=GF (1) /ALFA

SUM2=0.0

DO 10 J=1sNT

IF (AM) B848,7
lﬁ(MJhLROJ)GOTﬂ1ﬂ
YY=TP( ) /TT(J)

22=XX*YY

IF (JeFQeNT) GO TO 9
SUM2=SUM?+2Z=-YY#GC (19 J)
GO T0 10

SUMP=SUMR 422

CANTIMUFE
GUI)=(SUMT#SUM?) /SUM]
CONTIMUF

GO TO 14

U=F

PO 13 I=]19N

G(1I=GF (1)

CONTINUE
rF(!QFmOmQNCﬁﬂm)GﬁTﬁ’&
PO 158 T=1.NC

pC(MY=C(1)

CT=C(1)+FPSC

IF (CT4LT40s") IA=]
CONTTNUF

RFTURN

END
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SURROUTINF GRDCHK (NeXsGoW)
THIS SURROUTINF PFRFNRMS GRANDIFNT CHECY

NIMENSTON X(N)e A(NY)s WIN)
JJg=0

CALL FUNCT (XsFsGol)

WRITF (6+3)

WRITE (6+4)

DO 1 I=1sN

2=2X(1)

NX=1eF-tax(l)

IF (ARS(NX)elLTeleF=10) NDXx=1,F=10
X(1)=2+DX

CALL FUNCT (XsFsWsU2)
X(1)=7-Nx

CALL FUNCT (XsFaWsU1)
Y=0e5%(U2-U1)/DX

X(1)=2

IF (ARS(Y)elLTeleF=14) Y=1eE=14
1F (ARS(G(T1)) el TeleF=14) G(1)=1.F=14
YP=ARS((Y=A{T1))/YI#100,0

WRITE (6+5) G(I)sYseYP

IF (YPeGTo1060) UJdu=1
CONTINUF

IF (JJJeFNel) GN TH 2

WRTITF (6+6)

RETURN

WRITF (As7)

CALL FXIT

FORMAT (1P1s/1H o#GRADIENT CHECK AT STARTING POINT#/1H 932 (#=%))
EORMAT (/II‘IH0'5X|*ANALYTICAL GRANIFNTS#:5X s #NUMFRICAL GRANDIFNTS*
195X+ #PERCFNTAGF FRROR#)

FORMAT (1HO s RXsF14e6910XsF14e69RXsE140A)

FARMAT (1HO0s///1H s#*GRADIENTS ARF NeKe¥*)

FORMAT (1H0s//71H o#YOUR PROGRAM HAS BFEN TFRMINATFD RECAUSE GPADIT
1ENTS ARE IVC”QRFCT*/lHﬂo*PLEAQE CHECK IT AGAIN#*)

FaD
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SURROUTINE QUASIN (NsXosUsGoHsWsESTsEPSsMODE sMAX s IPTHTEXIT)

THIS SUBROUTINE IS THE FLETCHER (1972) METHOD OF MINIMIZATION

aNalial

10

DIMENSION X(1)s G(1)s H(1)s W(1)s EPS(1)
COMMON /WY1/ TFNs»KO
COMMON /WY2/ ALFASTAsICH»IM
K0O=0

IF (IMsFRe1) GO TO 1
ITN=0

TFN=1

COMTINUE

NP=N+1

N1=N-1

NN=N®*NP /2

1S=N

1U=N

IV=N+N

IB=1V+N

1EXIT=0

IF (MODE.EQe3) GO TO 7
IF (MODE.EQe2) GO TO 4
1J=NN+]

NN 3 I=1sN

DO 2 J=1»l

1J=1J-1

H(lJ)=°c

CONTINUE

H(TJ)=1.

CONTINUE

Go To 7

CONTINUE

1J=1 .

DN & I=24N

2=H(T1J)

IF (Z.LE.Os) RETURN
1J=1U+1

11=1J

NO 6 J=IsN

22=H(1))

H(TJ)=H(TIJ)/Z

JK=1J ,
IK=11 ’
DO 85 K=1sJ

JK=JK+NP=-K
HEJK)=H(JUK)=HITK)#2Z
1K=1K+1

CONTINUE

1J=1J+1

IF (H(1J)eLFeOs) RFTURN
CONTINUE

1J=NP

DMIN=H(1)

DO 8 1=2sN

IF (H{I1J).GF.DMIN) GO TO 8
DMIN=H(IJ)

1J=1J+NP-1

IF (DMINJLFeOe) RETURN
Z=EST

CALL FUNCT (XsFeGolU)
DF=U=-EST

iF (DF.LF'OOO‘ DF-loo
CONTINUE .

IF (IPT.FO.0) GO TO 10
1F (MOD(ITN»IPT)NF.0) GO TO 10
PRINT 455 lTNo]FNoALFA;Uv((X(])oG(l)’il']oN)
CONTINUF

ITN=TTN+1

Wi1)==-G(1)

no 12 1=2sN

1J=1

11=1~-1

2=-G(1)

DO 11 J=1s11
2=Z-H{1J)#W ()

[eXvBvivivivivivivivivivieu) [eXcivXvAeAvEvEvEvivE-EvEvEvN-ReRvivavivivlvivlvivielvRvivie) cXeX=Avi=XeXvEvEvRelvRvivivivaclvRvivielvlviviviviviviielv]
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1
12

11

14

18

16

17

1R

19

20

21

22

1J=1J+N~-J

CONT INUE

Wiry=2

CONTINUE
WIIS+N)=WIN)/HINN)
TJ=NN

DO 14 T=1,.N1

1J=10-1

2=0,

DO 13 J=1sI
2=Z+H(TJY#W( IS+NP=J)
1J=1U-1

CONTINUF
WTS+N=T)=W(N=T)/H(TJ)=-Z
CONT INUE

GS’O.

DO 15 T=1sN
GS=GS+W IS+ 1#G(1)
CONTINUE

[FXIT=?

IF (GSeGFe0e) GO TO 37
6S0=GS

ALPHA=-2,%DF /GS .
IF (ALPHASGTel4) ALPHA=1,
DF=U

TOT=0.

CONT INUE

[EXIT=3

IF (ITN.EQeMAX) GO TO 37
1CON=0

IEXIT=1

00 17 I=1oN
2=zALPHA®W(IS+])

IF (ARS(Z)1eGE.EPS(I)) ICON=1

X(1)=X(1)1+2

CONTINUE

CALL FUNCT (XsFsWsUY)
IFN=TFN+1

GYS=0.

DO 18 T=19N
GYS=GYS+W(I)#W(IS+1I)
CONTINUE

IF (UY.GF.U) GO TN 19

1F (ARS(GYS/GS0)eLFes9) GO THO 21

1F (GYS.GT.0s) GO TH 19
TOT=TOT+ALPHA
2=10, :

IF (GSeLTeGYS) 2Z=GYS/(GS-GYS)

1F (24GTe10s) Z=10,
ALPHAzALPHA#Z

U=UY

GS=GYS

GO TO 16

CONT INUF

Do 20 I=1eN
X{I)=X(1)=ALPHA®W(IS+I)
CONTINUE

IF (ICONFN.0) GO TOo 37
233.#({U-UY)/ALPHA+GYS+GS
22=SORT(Z#2-GS#GYS)
G2Z=GYS+ZZ
221e=(GZ2=-2V/(224GZ-GS)
ALPHA=ALPHA#Z

GO TO 16

CONT INUE
ALPHA=TOT+ALPHA

U=uy

IF (ICONoFGe0) GO TN 38
DF=DF U

0GS=GYS-GSO

LINK=1

IF (DGS+ALPHA#GS0.GT.0.) GO TO 23

DO 22 I=1sN
WOIU+ D) eW (1) =G( 1)
CONTINUE

[FE-X-XeX-X.R-R-XeRv - o NeAvRvRe e Ne v Xvlvlo RulvivivivlivivivivhoRejivavivie Rolie) e X-X=XeX-XeX-I-XK-X- XX E-XvXeIv Eeolv Rviwlviv e lviviviofviviviv s Reieiv)

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
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100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
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23

24

2%

26

27

’8

29
30

1

32

13

24
s

36
a7

Ll
20

40
41

SI1G=1e/ (ALPHA®DGS)
GO TO 30

CONTTNUFE

22=ALPHA/ (DGS~-ALPHA*#GSO)
2=DGS*22-1

DO 24 I=1sN
WITU+T)=Z#G( 1) +W(T)
CONT INUE
SI1G=1e/(ZZ#NGS#DGS)
GO Tn 30

CONTINUE

LINK=2

DO 26 I=1sN
WIU+T)=G(T])

CONT INUF

IF (DGS+ALPHA#GS0,GT«0,) GO TO 27
S1G=1e/GSO

GO Tn 30

CONTINUE

S1G=-22

GO To 30

CONTINUE

DO 29 I=1sN
G(I)=W(I)

CONTINUE

GO TO 9

CONTINUE
W(IV+1)=WTU+1)

DO 32 I=2sN

1J4=1

11=1-1

Z=W(IU+I)

00 31 J=1sI1
Z2Z-HI{TJ)#WLIV+D)
1UslJ+N=y

" CONTINUE

W(IV+I)=2

CONTINUE

1J=1

DO 33 TI=1,N

IVI=IV+1

I1BI=1B+1
Z=H(TJ)+SIGEW(IVI)I*W(IVI])
IF (Z.LEoOs) Z=DMIN

IF (Z.LT.DMIN) DMIN=Z
Hi{IJY=2
WIIBI)=W(IVI)#SIG/Z
SIG=SIG-W(IBI)*W(IRT)#Z
1J=1J+NP=1

CONTINUE

1J4=1 .

DO 34 1=1,N1

TJ=lJ+1

Ii=1+1

DO 34 J=11sN
WETU+J)=sWTU+ ) =HIT ) #W{TV+])
HIT) =H(TN)+W(IB+1 ) *W{TU+J)
1d=1J+1

GO TO (25928)9 LINK
CONTINUE

PO 36 I=1eN

Glll=W(I)

CONTINUE

CONTINUE

IF (1EXITeEQe1) KO=1

IF (IPTW.EN.O) Gn Tn 38

PRINT 465 ITNsIFNsALFAsUsl(X(T)sG(I))s[m1sN)

IF (IEXITLEN<0) GO TO 39
Gn T0 40

PRINT 46 TEXIT

GO TN 4a

GO TN (41942+43)e IFXIT
PRINT 47y IEXIT

GO TO 44

[vAvRvRvivielcN-IvivleNvivieeRvielvivielvvlvivivRvivivivivivivielviviviviv v RelvivivivivlvivleivivivivivivivivivlvivivivNeNvNvieNvivivielvivRvleio]
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161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
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204
205
206
207
208
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220
221
222
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4?2

43
44

45
46

47

40
49

aXaXal

POV

4

TN

PRINT 48, IEXIT
GO TN ué&

PRINT 49, IEXIT
COANT INUE

RETURN

FORMAT (1H oY305X9!306X9E10o3v1X9Elh.691X¢80(514-6'1X9EIkoé/AQX))
FORMAT (1H1s#IEXIT =#s12/1HOs*THE ESTIMATE OF THE HESSTAN MATRIX I

15 NOT POSITIVE DEFINITE®*)

FORMAT (1H1s#IEXIT =%y [2/1HO#*CRITERION FOR OPTIMUM (CHANGE IN VEC

1TOR X oLTe EPS) HAS BEEN SATISFIFD*)

FARMAT (1H1e#IEXIT =#+12/1HCs*EPS CHOSFN IS TOO SMALL*)

FORMAT (1H1s#IEXIT =#12/1H0s #MAXTMUM NUMBER OF ALLO

1NS HAS BEEN RFACHFD#)
END

SURRNOUTINF EXTRAP (NoX’XFvIH-IKvFACTORoXﬂoJORDFR)
THIS SURPAUTINE PFRFNRMS EXTRAPALATION

DIMENSION X(1)s XF(NsIKs1)s XB(1)
1=1IH

Ii=1+1

N 1 J=1eN
XF(JsTs11=X0)

CANT TMUF

IF (TelLTe?) G0 TO 11

TF (1GTeJNRNFR) GA TNA 2
1y=1

GN TO 3

1 J=JNRNFR+1

FSTIMATFS OF THF ULTIMATF SOLUTINN

DO S L=?2,1J

LL=L=-1

S=FACTAR*#LL

DA 4 J=1eN
XF(J!YvL)z(S*XF(Jv!'LLi—XE(J‘1-1‘LL))/(S-loO)
CANT[MUF

CONTINUE

NA & JrleN
XR(J)2XFlJsTel))
CANT INYF

IF (1.FN.IK) RETUPN

FSTIMATF OF THE NFXT STARTING POTINT

AA T J=TeMN

XE( e T1olJ)aXFlJeleoT))
CANT INUF

NH 9 ¥e2,1J

L=1J+1=K

SS=FACTOR##L

NA R J=14N

WABLE ITERATIO

mmmmm‘nﬂmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

[eReleEkeivXeXeRvRvRvielviviv ool

225
226
227
228
229
230
231
232
233
234
235
236
2137
2138
239
240
241~

VRNV EWN =~
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10 .

"

12

AEaRa

—

sNNN »

»n

XF(JoleL)=((SS—].0)*X¢(JOIT’L+1)#XE(JoT9L)\ISS
CANT I nIF
CANT T MyYF

DO 10 J=1sN
X(J)=XF(Jslls1)
CONTINUF

RFTURN

NA 12 J=1N
XR(J)=XE(JsTs1)
CONTINUF

OFTUIPN

FND

SURROUTINE FINAL (NsXeFsGeNCsU)

THIS SURROUTINF OUTPUTS THF OPTIMAL SOLUTION

NIMFNSTON X(N)s GIN)
COMMNAN /WY1/ TFNeKD
COMMON /WY2/ ALFASIALIC,IM
COMMON /WY3/ PCL100)

IF (¥DFNJ0) GO TO 1

WRITF (A+4)

GN TN 2

T WRTITFE (Rs8)

WRITE (6+6) U
WRITE (6+9) F
WRITE (697) (TaX(T)sTsGIT)oI=1eN)
IF (NC.FQeN) GO TH 2
4]
WRITE 18:19) (raecimrsratoned
WRITF (&sR) TFN
WRPITF (6s12) ALFA
RETURN

FORMAT (1HOs /1HO »#0PTIMAL SALUTIAN FOUND RY FLFTCHER MFTHOD#*/1H 24
1T (*=n))

FORMAT (1HO+/1HO+#RFSULTS FOUND RY FLETCHER METHOD AT LAST ITFRPATI
1OM%/1H 250 (#<n))

FORMAT (1H0o//hX-*APTIFICIAL UNCONSTRAINED FUNCTION U =#,F1648)
FARMAT (1HO o AXsuX (eI o) a#sF1AGRIRXy#O(HoTI9¥#) =#yF146R)

FARMAT (1HQs/1H »OXs#NUMRFR OF FUNCTION EVALUATIONS =#,15)

FARMAT (1HO+11Xs#ACTUAL OBJUECTIVF FUNCTION F =2#,F1648/)

FORMAT (1HOW/1H P3IXIRINEQUALITY CONSTRAINTS*)

EARMAT (1HO»AXs#C(#5124%) =#:E164R)

FORMAT (1HOs&X s #FINAL VALUE NF THF PARAMFTFR ALPHA s#5F16eR)

FND |

mmmmMmMmMmMmMmMMmMMmMmmm

MMM AMAMTAMNMITT AT AT M MMMMTTMNMMMANMTATMTM M

40
41
42
43
44
45

- 46

47
48
49
50
51-
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APPENDIX B

ESTIMATION OF KUHN-TUCKER MULTIPLIERS

The various quantities appearing in Table B.l for the Rosen-

Suzuki problem were generated by the following procedure:

Set the value of o to 1.

’f%inimize'fhe objective function (3.1) for the sequence of p

values of 4, 16, 64, 256, 1024.
At each least pth minimum, calculate the quantities My of (3.24).
With the five sets of ui's, use the extrapolation formula (2.23)
to estimate the vi's of (3.29) and calculate the Kuhn-Tucker
multipliers by using the relation ﬁi = av,, i =1,2,3.

Increase the value of o by one (until>a = 10); each time repeat
steps 2 to 4.

Optimality requires that:
.

% LI
— k'l ‘e
i=1 ¢

From the results shown in Table B.l, we see that the threshold value

of o for the Rosen-Suzuki problem is 3.
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