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Non-linear programming using least pth optimization with
extrapolationt

J. W. BANDLER} and W. Y. CHU$

We present a general approach for solving minimax and non-linear programming
problems through a sequence of least pth approximations with extrapolation. Several
numerical examples illustrate the effectiveness of the present approach. A comparison
with the well-known SUMT method of Fiacco and McCormick is made under the same
conditions and employing Fletcher’s quasi-Newton programme.

1. Introduction

It is well known that least pth approximation with a very large value of p can,
in principle, be used to achieve a near minimax solution (Bandler 1969, Bandler
and Charalambous 1972, 1973). For numerical efficiency, the process may be
accomplished by using a sequence of least pth approximations with increasing
values of p. By this approach, a sequence of least pth minima will be obtained.
Under appropriate assumptions we may expect the sequence of least pth minima
to form a unique trajectory of local minima converging to the minimax optimumn,
and the extrapolation technique used by Fiacco and McCormick (1968) and
Lootsma (1968)-may be applied to accelerate convergence. Several numerical
examples are used to illustrate the effectiveness of the extrapolation technique
applied to least pth approximations. Theoretical validation of the new approach
is also given.

Using the Bandler—Charalambous (1974) minimax formulation we can readily
transform a non-linear programming problem into a minimax problem to be
solved by the present approach.

2. Basic formulae
A brief review of the formulae used in solving the test examples will be
presented.

2.1. Generalized least pth objective
The generalized least pth objective function (Bandler and Charalambous
1972) to be minimized with respect to ¢ is

. a\ /e
o] 1@ 3 Grg)) e
0 for M($)=0

whero e;(¢) is a set of m + 1 real error functions, ¢ Alp1 by ... 1T
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q apsgn M(p),1<p<© (2)
M) érr}a;xei(cb) (3)
and v

Ip{1,2,...,m+1} iHM(P)<0
K={ (4)

J afile(d)>0,iel} i M(p)>0

The gradient vector of the objective function is given by

_ e(d) \\ et ei()\
VU(cb,p)-—( ieEK (M(¢)> ) g{ (W) veld) for M()#0  (5)

From (1) and (5) we note that if the e(d) are continuous with continuous first
partial derivatives, then, under the stated conditions, the objective function is
continuous everywhere with continuous first partial derivatives (except possibly
when M(¢) = 0 and two or more maxima are equal).

2.2. Minimazx approach to non-linear programming
The non-linear programming problem of minimizing f(d) subject to

9($)=0,i=1,2,...,m (6)

can be transformed into the following unconstrained objective (Bandler and
Charalambous 1974) :

Vig, @)= max [f().f(P) —agi(p)] (7)
where « is positive, satisfying
1

i3

<1 (8)

o
where the s are the Kuhn-Tucker multipliers at the optimum. The mini-
mization of V(¢,«) with respect to ¢ is a minimax problem and may be solved,
for example, by minimizing the generalized least pth objective with

e(P) éf(¢)—agi(¢),i=l,2, <M (9)
eni1(P) 2f(P) (10)

using a very large value of p or a sequence of p values with extrapolation. We
note that a feasible starting point is not required.

2.3. Extrapolation polynomials (Fiacco and M cCormick 1968)

Suppose the generalized least pth objective function U(¢g, p) is uniquely
minimized for 1<p;<... <pp<© at $(1/py), ..., &(1/py). Let p' 2l/p. A
polynomial in p’ that yields ¢ (p,), ..., $ (p,’) is given by '

k=1

$(p)= > aj(Px')j,'i=],--~,k (11)

j=0
where the a; are n-component vectors. The determinant of the matrix of
coeflicients is the Vandermonde determinant and is non-zero if p;’ #p;’ for ¢ # 7
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E-1
Then Y a;p’) is an
. Jj=0
approximation of ¢(p’) on [0,p,'], and $(0)=¢ (the minimax solution) is
approximated by a,.

Now, the exact Taylor serics expansion of ¢(p;’) in p;" about ¢(0) is

in which case we have a unique solution for the a;.

f D]¢ ) +€,1=1,...,k (12)
where
’ d n=T
Do) o B ] 13)

and € is an error term. It can be shown that the difference between a, and
$(0) is of the order of (p,")*. Thus, as p," >0, a,—>¢(0). In addition, the
estimates using k& minima are better than those using k—1 minima. With
Pia’ =pi'/c (¢ > 1), the particular structure of these equations renders the use of
an extrapolation procedure according to the Richardson—Romberg principle
(Joyee 1971) to estimate a

If i, i=1,...,k j=1,...,i—1 signifies the jth-order cstimatc of ¢(0)
after / minima have been obtained, with p,” being the initial value of p’, then we

have
) Py .
o‘=¢(c,-—‘_1), i1,k
and (14)
iz i 4i—d; it =2,k
i d—1  ° j=1,..,i-1

The ‘ best * estimate of ¢(0), namely a,, is given by

$(0) =, =23, (15)

The extrapolation formula (14) can also be used to estimate the next minimum
of the objective function (g, p). i.c. the (k-+ )th minimum.  Setting 1=k + 1
in (14) and solving forg; #!!, we have

(= DF M+, "

¢l

;= (16)

Noting that a,=¢;_,*=d¢,_,*'* from (15) and using the values previously
obtained from (14), we can evaluate (16) for j=k—1, k—2,...,1.- The last
computation will give the required estimate ¢ *+1. This estimate can be used
as the starting-point for the (£ + 1)th minimization of U(¢,p). As more minima
are achieved, the estimate eventually improves. This accelerates the entire
process by substantially reducing the effort required to minimize the successive
U functions.
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3. Theoretical justification
We require an isolated trajectory of least pth minima which is a continuously
differentiable function in p’ for 1>p’ >0 and therefore can be expanded as a
Taylor series about p’=0. To justify this we assume
(A1) The error functions e¢;(¢) for : €l are convex and have continuous (k+ 1)th
order, k> 1, partial derivatives with respect to .
(A 2) The Hessian matrix of the objective function U is non-singular in the

region {$|M(p)/ M () > 0} for every 1>p’ > 0.

(A 3) Assumptions (developed later) to ensure differentiability of the trajectory
at p= co.
At the minimizing point¢(p’) we have

Ve~ (3 (LYY 5 (DY g0
woro=( 3 (aen)) 3 (ern) e .

Since by assumption the Hessian matrix of U is non-singular, the implicit
function theorem assures us that ¢(p’) is a continuously differentiable vector
function of p’ for 1 >p’ >0. In other words, we have an isolated trajectory of
unconstrained local minima of U.

It is possible to be explicit about the derivatives of ¢(p’) with respect to p’
for 1 >p">0. [For convenience, let

()ip' éez(cb(,’p/)) (18)
M, AM(D(p')) (19)

Since (17) is an identity in 1/¢ (or rather p’), we can differentiate with respect to
p’, obtaining

( > <"ur>">‘f’”'f > <“z‘~'>”"‘v<v ' Deb(p)
_in” i €, )"t
fel M » 1 el Mp’ ’ v
()'i/r’ 1-2 VCZ//’ N ’
_ it (Ve )1
+ l)<M > <M,,, (Ve;,, )" Dd(p")
0., \1—1 .,
—(sgn M ,)q? <—:-}’i> 1n< ;}" )Vrzi,,}z() (20)
M, M,
Now
v(Vu ’ T 5 [ G\ Hat { Cip q«IVV ™
( ’(4’(]) )vp)) - ';_,,‘ ;411;' %{ M:,: ( ’i/l')

()'ip' -2 V(J'ip' m
— s Ve, )1
+ ”(m,,) (ﬂ//,,« (Ve, )"t (21)

Equation (20) ean henee be written as

V(VI((p"). p)"D(p') — (sen M“,)(,z< 3 <;I_,)

€N
R Cip ! Cin’
U 'l . fi’_ V T 22
X i}[\y {(11/1”/) n (Mp'> ﬁp} 0 ( )
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where D (p’) was defined in (13). Hence,

-t e, \ @\ 1/a-1
Do) = sen ) { VU | o 3 (52))

€K /7%

ot Cip’ ]
X 1&21( {(Mp ) In (m)Veip, f (23)

If we differentiate (22) with respect to p’, we shall find that the existence of the
same inverse is required for D2¢(p’) to exist as required for D(p’). In addition,
D?*$(p’) requires the existence of the third partial derivatives of e(¢) with
respect to ¢. By continuing in this manner it should be possible to obtain
explicitly all derivatives D¥¢(p’) in terms of the derivatives Dig(p’), j=1, ...,
k—1, and partial derivatives of the functions e(}), i=1,...,m + 1, of degree up
tok+1.

In order that the minimizing trajectory ¢(p’) be expanded in a Taylor series
about p’ =0, we have to show that limiting derivatives exist at p'=0. For
very large values of p, we can approximate the matrix as

V(VU($( ;) )T~ ( S (eiﬂ’)q>llq“] > {( c,-,,»)’l z(va>(v(1 )'l‘}
Prp=a ieK Mp' €K M,,' Mp' v

=pH (24)

b
where

H, asgn M, )M, s,(p') 2{""(7’ Veil,(Vei,,)T} (25)

, e \7\ M .
s 3 (22)) .

S <ﬁﬂ_’>q
ieK Mp'

Hp is an » x n matrix and for any non-zero n-component vector x :

and

XTI x=(sgn Mp)M . s5,(p") {,u,( 2) x"Ve, (Ve )"x (28)

el (tp 5
Of interest is the positiveness of the terms x™Ve; .(Ve;, )" in the summation.
It follows that a necessary condition for xTH_ x to be positive is that for the

»
gradient vectors Ve, ., ¢ ;€K at least n of them are linearly independent, where

K afile((0) = M((0))} (29)
This ensures that the vector x cannot be orthogonal to the » gradient vectors
Ve, simultaneously, and at least one of the terms x"Ve; .(Ve,,.)Tx will be posi-

tive. If the associated multipliers ,;(p’), ieK, are positive, it is then sufficient
for xTH ,x to be positive and H,, be positive definite and hence invertible.
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The function has a minimum f((i)): 1/0 at =[4/3 79 /97", The Bandlor-
Charalambous technique was used to transform the constrained problem into an
unconstrained minimax problem. A sequence of least pth approximations
together with extrapolation was used to obtain the optimal solution. The
same problem was also solved by least pth approximation with a value of p of 108.
The SUMT method of Fiacco and McCormick (1968) was also used to solve the
problem by defining

Ui r)=fd)=r 3 o) (36)

and minimizing U w.r.t. ¢ for a strictly decreasing sequence of r values together
with extrapolation, also using the Fletcher programme under the same con-
ditions. Table I gives a comparison between the three approaches.

Least pth approach Fiacco-McCormick method
p o+ 16, 64, 256 r=-10"22 <1073,
a1 p =10° 4x10-4,8x10-%,1:6 <1073
Parameters Order of extrapolation a 1 Order of extrapolation
=3 : =3
by 1-3333333 1-3333338 1-3333333
by 0-7777778 0-7777775 0-7777778
s 0-4444444 0-4444437 0-4444445
fld) 0-1111111 0-1111114 0-1111111
g1(Pp) 1-3333333 1-3333338 1-3333333
gs(P) 07777778 0-7777775 07777778
g4(P) 0-4444444 0-4444437 0-4444445
g4(P) 507 x 107° 1-39 x 10~ 7-82x10-1
function
cvaluations 34 78 40

Table 1. Results for the Beale problem for starting-point ¢° =[1 2 1]T.

4.3. Rosen -Suzuki problem (Kowalik and Osborne 1968)
Minimize
J(d)=d 2+ ¢y2+ 205+ ¢42 — By — Dy — 21y + 74

subject to
P pt— B P — bt byt By +820
— 22y — s — 2h  + i+ + 1020

247t gyt = 2y byt dut 530

~

The function has a minimum f(d)= —44 at cB: [012 —1]". The Bandler-
Charalambous technique was used to transform the non-linear programming
problem into an unconstrained minimax problem. The minimax problem was
then solved using a sequence of least pth approximations together with extra-
polation and least pth approximation with a value of p of 105 The problem
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was also solved using the Fiacco-McCormick method with extrapolation with
the same objective function of (36). Table 2 compares the performance of the
three approaches.

4.4. Comments

In the three examples considered, the performance of the extrapolation
procedure in yielding the solution of the minimax or non-linear programming
problem is satisfactory. The order of estimates has been limited to three,
though higher orders are possible. Computer storage requirements and accuracy
considerations such as round-off error (which may become critical for higher-
order estimates) prompted our choice. Numerical experience indicates that the
factor ¢ by which p; is increased is not crucial to convergence. In general, the
faster the rate of increase, the fewer are the number of minima required to obtain
significant estimates of the solution values. Kach minimum requires more
computation to be reached than an increase at a slower rate. More minima are
required to compute significant estimates in the latter case. A practical range
for ¢ is 2 to 10.

Least pth approach Fiacco-McCormick method
p =4, 12, 36, 108, 324, 972
a=10 p=10°% r=1,10-1, 10-2, 10-3, 104
Parameters  Order of extrapolation a=10 Order of extrapolation
=3 =3
b1 —0-0000002 —0-0000021 —0-0000000
b 1-0000005 0-9999976 1-0000000
¢ 1-9999999 1-9999908 2-0000000
b —1-0000002 —0-9999883 —1-0000000
f(P) —44-000000 —43-999804 —44-000000
g.(P) —2-80x 107 8:56 < 10-° —9-35x10-10
7a(P) 1-00 100 1-00
g3(P) 7-57x<10 8 551 x 108 —7-61x10-11
Function
evaluations 72 107 125

Table 2. Results for the Rosen-Suzuki problem for starting-point ¢* [0 0 0 O]T.

S. Conclusions

Theoretical considerations and computational implications of applying an
extrapolation technique in solving minimax and non-linear programming
problems using a sequence of least pth approximations have been presented.
Numerical results indicate that this approach is very promising. We note also
that the least pth approach does not require a feasible starting-point, and that
the efficiency depends mainly on the method used to determine the least pth
minima.
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