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Abstract We present two general approaches for obtaining minimax designs
through a sequence of least pth approximations yielding significant im-
provement in computational efficiency over previous least pth algorithms
as well as highly accurate solutions. One utilizes a method for esti-
mating a lower bound on the minimum (which has important design impli-
cations in itself) and the other extrapolation of least pth solutions to
p = . Documented computer programs are available for both methods. A
practical feature is the successive and automatic reduction in sample
points used in the optimization process allowing minimax solutions to be
reached with only moderately more effort than required by a single least
pth approximation. The application of these new techniques is illustratéd

by microewave transformer and filter examples.
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I. INTRODUCTION

This paper is directed towards improving the efficiency of computing
minimax optimum solutions to network design problems. Bandler and
Charalambous have shown [1] how near minimax solutions can be obtained
using least pth approximation with very large values of p. Here, we
consider accelerating convergence to minimax solutions by extrapolating
on a sequence of least pth solutions with geometrically increasing values of
p. Another approach uses work by Charalambous and Bandler [2-4], in
which a sequence of least pth solutions with finite, usually low, values
of p are obtained in an effort to reach a minimax solution. The new
feature here is based on recently derived results by Charalambous [5]
using duality theory for nonlinear programming. Both approaches lead to
efficient algorithms, as our results indicate.

Potentially inactive sample points are dropped from the optimi-
zation process as one proceeds with the computations. In particular, the
approach based on the work of Charalambous permits the estimation of a
true lower bound on the optimal minimax error function at any least
pth optimum. We feel that the result is a very powerful one and has
important design implications.

In this paper we compare the performance of the new methods with the
results of Charalambous and Bandler [2] on a three-section quarter wave
transformer. We also.investigate the design of a seven-section micro-

wave filter to illustrate the flexibility of the ideas presented.



II. THE ALGORITHMS

General Considerations

We briefly summarize the two approaches as follows. Basically, we

minimize w.r.t. ¢ for given & and p > 1 the function
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and where ¢ 4 [¢1 ¢y oo ¢k]T is the design parameter vector, and
fl(%), fz(%), cees fm(Q) are m linear or nonlinear functions directly

related to the response error functions such that if
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Lower Bound for Minimax Solution

0 the specifications are violated
0 the specifications are just met
0 the specifications are satisfied
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where ¢ is the minimax optimum which is being sought, u 4 [ul Uy .. um]T and
v & [a/a¢1 3/8¢2 v 3/8¢k]T. Furthermore, it is readily shown that the

conditions (6) are satisfied at each optimum point é(p,g) for a least

pth objective function, yielding

m
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where, assuming K contains all critical sample points,
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The first term of the inequality (8) is a lower bound on Mf(é).
Together with the result that any single least pth solution will indicate
whether the design specifications can ever be satisfied [2], this provides
at any least pth solution an optimistic indication of the ultimate mini-
max error to be expected for a particular design.

The £-Algorithm

An algorithm has been developed and extensively tested based on set-
ting the & for the next or (r+l1)th optimization equal to the lower bound

estimated using the solution to the rth optimization. p is kept constant.



Our algorithm begins at QO by setting gl to an initial guess or estimate
of a lower bound and go < gl to a margin such that we have tHe option
immediately to discard all functions fi for which fi(go) < go,
i=1,2,...,m, which are considered a priori unlikely to be active at &.
Subsequently, we obtain £r+1 for r = 1,2,... as indicated previously, and
gr is used as a level for discarding functions, so that Ir+1 =

{i|fi(&r) > Er}. Thus, we can afford to start approximation with a
large number of sampling points in order to reduce the possibility of
missing some crucial points. The functions specifically required for
the least pth objective and its gradients are successively reduced as
the optimum is approached enabling a saving of effort in gradient com-
putations. Features are built into our implementation to safeguard
against our assumptions not being satisfied. The program, called MINOPT
[6], is written in such a way that the optimization can be restarted

efficiently from any point instead of having to repeat the entire process.

Extrapolation of Least pth Solutions

Under certain assumptions [7] we may use the same least pth object-
ive, keep £ constant throughout and minimize with respect to ¢ for
geometrically increasing values of p. Suppose we have the (unique)
minima corresponding to ntuvalues of p. Then we can develop the para-

i
meter vector ¢ as a polynomial function of p 4 %~, namely,
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where the %j are k-component vectors. This yields an approximation of
| i h 1 1
$(p ) on [O,pl] and ¢(0) = ¢ is approximated by Ro With Prep = pr/c,

where ¢ > 1, we can obtain an extrapolation procedure of order n(fnt—l)
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based on the Richardson-Romberg principle [8] to estimate ¢. An algori-
thm which incorporates the extrapolation procedure and a scheme for
dropping inactive error functions is described below. Theoretical
justification of the extrapolation procedure has been developed [7].

The p-Algorithm

1. £ « constant, r <« 1, Il = {1,2,...,m}.

2. Minimize (1) w.r.t. ¢ for P=p..-
3. ng < min[r-1,n], where n is the highest order of extrapolation.
4. Compute estimates of the minimax solution using the following
extrapolation formula
2 < 4

and for r > 1,
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0 0

(Cj“l)Q§+1 * %?-1

T+l -
83-1 o
for j = Nos eees 1. The starting point for the next optimization is

T+l
2% -
O Pryp € Ppre.

Ifr=1, Pre1 © pr+1/c.



vy
H, € ———
1
yov.
ieK 1
[ £.(9) - € }qr+1
vl < M(Q’,E)‘)

0 for 1 ¢ K

where

for i € K

and K is chosen according to (4) with I set to i
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7. r<1r+ 1 and go to 2.

In Step 6 of the p-algorithm p is not increased when r = 1, i.e.,
after the first minimization, in determining the multipliers My No
extrapolation can be made at this stage so the starting point for the next
minimization is the solution to the first one. It was felt that these
multipliers should, more conservatively, be based on the first value of
p, in that case.

In the program, called FLOPT2[9], past solutions may be retained for

future runs permitting extrapolation to be implemented immediately.

IIT. EXAMPLES
The unconstrained minimization method throughout was a recent quasi-
Newton method [10], and the computer used was a CDC 6400.

Three-Section Transformer

The algorithms are first compared on a well-known test problem. We
consider two starting points for the optimization in the minimax sense
of a three-section 100 percent relative bandwidth 10:1 transmission-line
transformer [2] as shown in Table I. We use the same sample points as

Charalambous and Bandler [2] and compare the effort required to reach or



exceed a reflection coefficient of 0.19729 (optimal to 5 figures) letting
fi be the modulus of the reflection coefficient. All 6 parameters are
varied, lengths and characteristic impedances. The results, indicating
about 1/3 to 1/2 the response evaluations used by the Charalambous-
Bandler algorithms [2], are shown in Table II. Increasing p in the &-
algorithm gave poorer results. The extrapolation approach (p-algorithm)
appears relatively insensitive to the sequence of p used.

Table III shows details of the progress of the p-algorithm on

Problem 1 and Table IV the corresponding progress of the &-algorithm.

Seven-Section Filter

A seven-section resistively terminated bandpass filter consisting
of two unit elements and five stubs [11] as shown in Fig. 1 is considered
next. Specifications of 0.1 dB from 1.0875 to 3.2625 GHz (passband) and
50 dB at 0.6 and 3.75 GHz is desired. The initial normalized character-
istic impedances were taken as 0.63, 0.33, 1.27, 0.26, 1.27, 0.33, 0.63.
The lengths were fixed at optimal normalized values of 1. Consider the
difference in dB between the response and specifications. The functions
fi were set to + the difference, the positive sign corresponding to the
passband, the negative sign to the stopband. Twenty-one uniformly
spaced passband points were initially considered but, due to symmetry,
only the first 10 were actually used.

Table V shows the effort required by the 3rd order extrapolation
approach. The final extrapolated solution gives characteristic imped-
ances of 0.606458, 0.303062, 0.722085, 0.235612, 0.722085, 0.3030062,
0.606458. (Symmetry was not enforced here but was obtained, as expected.)
The 8 passband ripples as evaluated at the 21 points were all in the
range 0.06530 - 0.06531 dB and the stopband responses were 50.0347 dB.

CPU time on the CDC 6400 was 5 sec. About half this time would be



expected if characteristic impedance symmetry were exploited. The
response is plotted in Fig. 2. We note that, because of the uniformly
spaced sample points, the response is not exactly equal ripple but meets
the design specifications.

To illustrate the usefulness of the lower bound estimation, the
¢-algorithm was used to generate the results of Table VI employing
sample points corresponding to the ripple maxima for the above example
as shown in Table VII, for 4 sets of specifications. The ripple maxima
in the passband were found by quadratic approximations based on sets of
three adjacent sample points taken from 101 uniformly spaced candidates.

We note from Table VI that the process works whether the specifications
are violated or satisfied, the results yielding an immediate indication
of how good a design in the minimax sense one can expect from the re-
sults of only one least squares approximation. The weighting of the
differences between response and specifications are uniform throughout
this example. Different weights or values of p, however, cannot change
the nature of the result, but only the amounts by which specifications
are violated on the one hand or satisfied on the other.

Fig. 3 shows responses corresponding to the 4 sets of specifications
after only two optimizations with p = 2 of the g-algorithm. The maximum
errors are indicated in the 4th column of Table VI. The responses are
essentially equal ripple for engineering purposes. Table VII summarizes

the final solution for the 50 dB specification.

IV. CONCLUSIONS
Two new algorithms and related results for the least pth approach
to minimax design have been presented. Documented computer programs,

namely, MINOPT [6] and FLOPT2 [9] are available from the first author at



10.
nominal charge. The mathematical background has been ommitted, but is
also available [5], [7]. Although impedance symmetry in the seven-
section filter example and well-known corresponding assumptions for the
three-section transformer example could easily have been made to simplify
the computations (with appropriate reduction in running times) we felt
that a demonstration of the power of the algorithms in readily forcing

or maintaining these properties was worthwhile for testing purposes.
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TABLE I

THE STARTING AND SAMPLE POINTS IN THE OPTIMIZATION OF A THREE-SECTION

10:1 TRANSFORMER OVER 100-PERCENT RELATIVE BANDWIDTH

Parameters Problem 1 Problem 2
%5
zl/zq 1.0 0.8
Z1 1.0 1.5
zz/zq 1.0 1.2
Z2 3.16228 3.0
Zs/zq 1.0 0.8
Z3 10.0 6.0
Maximum
reflection 0.70930 0.38813
coefficient

Sample points (Normalized frequencies)

{0.5, 0.6, 0.7, 0.77, 0.9, 1.0, 1.1, 1.23, 1.3, 1.4, 1.5}




TABLE II

OPTIMIZATION OF A THREE-SECTION 10:1
TRANSFORMER OVER 100-PERCENT RELATIVE BANDWIDTH

Effort* required to reach or exceed a
reflection coefficient of 0.19729 (optimal to 5 figures)

Problem 1 Problem 2
Method
Parameter  Function Sample Response Function Sample  Response
& or p Evaluations Points Evaluations Evaluations Points Evaluations

g-algorithm 0.1 28 11 308 19 11 209
(lower bound) 0.18846 16 7 112 16 7 112
p=2 0.19730 45 4 180 53 4 212
go =0 0.19729 89 600 88 533
p-algorithm 8 39 11 429 29 11 319
3rd order 48 17 8 136 18 8 144
extrapolation 288 15 4 60 14 4 56
£E=0 1728 12 4 48 11 4 44
n = 0.001 83 673 72 563
Charalambous - Alg.l 165 11 1815 105 11 1155
Bandler [2] Alg.2 155 11 1705 95 11 1045

*Does not include response evaluations to determine sample
points to be used
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TABLE IV

PROGRESS OF THE €-ALGORITHM ON PROBLEM 1

Value

of &

rth optimum

Max. reflection coefficient

.18846

.19730

O\ b (R e bt

.97238
.59720
.98791
.16228
.97238
.26097

.99709
.63451
.00013
.16228
.99709
.11804

.00000
.63471
.00000
.16228
.00000
.11730

+25530

.19929

.19729




TABLE V

OPTIMIZATION OF THE SEVEN-SECTION FILTER BY THE p-ALGORITHM

Method Parameter Function Sample Response
P Evaluations Points Evaluations
3rd order 2 73 11 803
extrapolation 12 16 11 176
£ =20 72 14 7 98
n = 0.0001 432 12 6 72
115 1149




TABLE VI

LOWER BOUNDS FOR THE SEVEN-SECTION FILTER

Passband Specification 0.1 dB
Value of p 2

Value of EO 0

Stopband First Maximum Predicted Next Maximum
Specification Error Lower Bound Error
(dB) (dB) (dB) (dB)
50 -0.0256 -0.0283 -0.0282
55 0.1430 0.1154 0.1160
60 0.6211 0.4954 0.4986

65 1.5486 1.3148 1.3195




TABLE VII

FINAL SAMPLE POINTS AND SOLUTION FOR THE
SEVEN-SECTION FILTER

SolutionT: Z. =

1 Z7 = 0.606595
Z2 = Z6 = 0.303547
Z3 = Z5 = 0.722287
Z4 = 0.235183
Sample Points 4
Normalized ) Insertion Errors
(GHz) w.r.t.2.175 GHz | Loss (dB)
(dB)
0.6 - 50.028245 -0.028245
1.0875 0.5000
0.5395
0.6636
0.8741 0.071755 -0.028245
1.1259
1.3364
1.4605
3.2625 1.5000
3.75 - 50.028245 -0.028245

T Symmetrical to at least the accuracy of the CDC 6400.
T+ Equal to at least 5 figures.
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