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SCOPE AND CONTENTS

This thesis presentsla unified treatment of circuit and system
design methods embodying centering, tolerancing and tuning. The
approach incorporates the nominal parameter values, the corresponding
tolerances and tuning variables simultaneously into an
optimization procedure designed to obtain the best values for all of
them in an effort to reduce cost, or make an otherwise impractically
toleranced design more attractive. Intuitively, the aim is to
produce the best nominal point to permit the largest tolerances and
" the smallest tuning ranges (preferably zero) such that one can
guarantee, in advance, that in the worst case, the design will meet
all the constraints and specifications.

Réduced problems are formulated for digital computer
implementation, Interpretations afe given. Implications of
biquadratic functions in the circuit tolerance problems are
investigated. Practical impleméhtation in circuit design problems
in the frequency domain is treated. The thesis also includes

illustrative examples and two realistic problems.
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CHAPTER 1

INTRODUCTION

With readily available and ever increasing computing power at
hand, computer-aided designers are now venturing to deal with more
realistic problems. Useful and important material in computer-aided
circuit design may be found, for example, in the collection of reprints
in COMPUTER-AIDED CIRCUIT DESIGN, edited by Director (1973), in
COMPUTER-AIDED FILTER DESIGN, edited by Szentirmai (1973), in MODERN
FILTER THEORY AND DESIGN, edited by Temes and Mitra (1973), in the 1971
Special Issue on Computer-Aided Circuit Design of the IEEE
TRANSACTIONS ON CIRCUIT THEORY and also in the 1974 Special Issue on
Computer-Oriented Microwave Practices of the IEEE TRANSACTIONS ON
MICROWAVE THEORY AND TECHNIQUES.

The tolerance probLem, which is also known as the design
centering and tolerance assignment problem, has attracted deep
interest among designers. Besides books by Géher (1971) and Calahan
(1972) which deal briefly with this subject, some relevant papers
are also contained in Szentirmai's selection. A short list of recent
publications in this area is included in the Additional Bibliography
to give an indication of current efforts.

The two objectives in the tolerance problem are:

(1) Some strict tolerance limits may be met by placing the

nominal values of a design at a suitable 'center'l(called

1



desdgn centering) and distributing the corresponding
tolerances (called tolferance assignment).
(2) A more economical design may be obtained by minimizing

a function which describes the cost-tolerance relationship.

Four recent, relevant approaches have been proposed in the

area of circuit design.

(1) One approach is based on the concept of Kange—change
sens{tivity as described by Butler (197la, 1971b) to center
a design. It involves performance contours and deals with
pairwise parameter interaction to specify tolerances. The
centering and tolerancing are separate procedures. See Butler
(1971) and also Karafin (1971).

(2) A second approach is based on the concept of
Ataiiéticaﬂ moments which are parameters describing a
distribution of wvalues. It finds the maximum possible
moments of each component value distribution given the
constraints on the second moment of the circuit or system
response. See, for example, Seth and Roe (1971) and Seth
(1972).

(3) Another approach is based on a sensitivity model.
Multivariate Taylor series appro%imations of the circuit
responses evaluated at the nominal point are used in the

formulation of constraints for a nonlinear program. It is,



essentially, an extension to the §{nst-onden sensi{tivity

method. Computation may be saved by evaluating some well-
chosen first- or second-order derivatives. See Pinel and
Roberts (1972). By introducing extra variables which represent
changes in nominal values, Pinel (1973) reported that the
approach can also deal with centering and tolerancing
simultaneously with some success.

(4) The last approach is based on containing the foferance
negion (a set of all possible outcomes of a design) in a
constraint negion (a set of points in the parameter space
with performance specifications and design constraints
satisfied). To save some computational effort, a well-chosen
set of points from the tolerance region should be used. An
appropriate cost function and a set of transformed constraints
are employed in the optimization. See Bandler (1972, 1974)
and Bandler and Liu (1973, 1974a). Both centering and
tolerancing are treated simultaneously for the benefits of
increased tolerances by permitting the nominal point to move.
No approximation is used by this approach. The idea of a
floating and expanding polytope may give some intuitive

insight into the method.

Except for the second approach, all the other three are
deterministic in nature. These are commonly known as worsft-case

design methods.



In the worst-case approach, the aim is to meet the
performance specifications in all possible cases, even in the "worst"
cases. Thus, it is also sometimes called the 100% yield design. For
the small-change éensitiVity model, the worst case always occurs at a
vertex of the tolerance region indicated by signs opposite to those of
the corresponding partial derivatives. This is also true if the
response of the circuit or system varies monotonically with respect
to the variations in the component values taken one at a time. For
large-change varigtions, however, this is not always true.
Assumptions to predict the worst points have to be made and,
éubseéuently, these assumptions have to be tested.

Another important practical consideration in design is the
tuning problem. A design often requires tuning or alignment as a
post-manufacturing process (Pinel 1971).

The work described in this thesis provides a theory of
optimal worsit-case design embodying all the centering, tolerancing
and tuning problems in a unified manner at the design stage. The
approach incorporates the nominal design parameter values, the
corresponding tolerances and tuning variables simultaneously into
an optimization procedure so as to obtain the best values for all of
them in an effort to reduce cost, or make an otherwise
~impractically toleranced design more attractive. Intuitively, the
aim is to produce the best nominal point to permit the largest
tolerances and the smallest tuning ranges (preferably zero) such that

we can guarantee, in advance and in the worst case, the design



satisfies all the constraints and meets all the performance
specifications. See Bandler and Liu (1974c, 1974d), Bandler, Liu
and Chen (1974a, 1974b, 1975), Bandler, Liu and Tromp (1975a, 1975b).

The formulation is general such that the worst-case purely
toleranced pfoblem and the purely tuned problem fall out as special
cases. Any of the nominal values, tolerances or tuning (relative or
absolute) can be fixed or varied. Solutions can be continuous or
discrete. Variable specifications such as tuned circuits can be
extended without any additional theoretical difficulty.

The general formulation is presented in Chapter 2. Reduced
problems to simplify computation are also treated and conditions of
validity are stated in appropriate theorems. A geometric
interpretation using concepts of projection and slack variables is
discussed. Simple examples are studied to illustrate the effects of
tuning and the interdependency of tolerancing, tuning and centering.

Chapter 3 deals with constraints arising from certain circuit
applications. Implications of biquadratic functions in the circuit
tolerance problem are studied deriving some necessary conditions to
have the worst case occurring at the boundary of an interval. A
one-dimensional case is studied. See Bandler and Liu (1974v, 1975).

Chapter 4 suggests practical implementation which may lead to
the development of user-oriented design optimization packages. Part 1
discusses topics such as vertex selection schemes, desdgn symmetry and
its implications, performance specifications and parameter constraints.

Implementation of the tolerance problem is demonstrated. Part 2 deals



with tuning problems. Cases with separated as well as mixed
tolerancing and tuning components are treated. Part 3 presents the
results for two feal problems reported by industry (Karafin 1971,
Pinel and Roberts 1972, Pinel 1974, and Roberts 1974).

Circuit examples throughout the thesis are confined to lumped
or distributed, linear, time-invariant networks in the frequency
domain. The optimization in the minimax sense of the 2-section 10:1
quarter-wave transmission-line transformer has been previously
studied by Matthaei, Young and Jones (1964), Bandler and Macdonald
(1969), Bandler and Charalambous (1972a), and Bandler, Srinivasan and
Charalambous (1972). The study of the 5-section transmission-line
filter has been reporfed by Brancher, Maffioli and Premoli (1970),
Bandler and Charalambous (1972a), and Bandler, Srinivasan and
Charalambous (1972). The adjoint network approach for evaluating the
gradients of the response function with respect to network parameters
was used (Director and Rohrer 1969, Bandler and Seviora 1970).

For the sake of conciseness and continuity, related material
is presented in the Appendices including mathematical concepts,
nonlinear (continuous and discrete) programming, a basic theorem
concerning convexity and a proposal for a user-oriented tolerance
optimization package.

The major contributions claimed for this thesis are:

(1) A unified approach to the theory of optimal worst-case

design embodying centering, tolerancing and tuning.



(2) The statement and formulation of reduced problems
adaptable to computer implementation.

(3) A geometric interpretation of tuning and tolerancing.
(4) Necessary conditions for a biquadratic function of a
single variable to be pseudoconcave or pseudoconvex, and some
implications of these conditions in the circuit tolerance
problem.

(5) Special algorithms to exploit symmetry and monotonicity

of the response functions.



CHAPTER 2

OPTIMAL WORST-CASE DESIGN
2.1 Introduction

Component tolerance assignment is now considered to be an
integral part of the design process. The optimal worst-case
tolerance problem with variable nominal point has benefitted in
terms of increased tolerances (Bandler and Liu 1974a). Tuning, on
the other hand, does not seem to have been given its proper place
in the design process. This work, therefore, brings in tuning of
one or more components basically to further increase tolerances to
reduce cost or to make unrealistically toleranced solutions more
attractive. In this chapter, the mathematical formulation of an
approach which embodies centering, tolerancing and tuning in a
unified manner is presented (Bandler and Liu 1974c, 1974d).
Simplified problems and appropriate geometric interpretations are
discussed. The worst-case purely toleranced problem and purely
tuned problem fall out as special cases, as is to be expected.
Numerical examples involving some simple functions illustrate the

concepts.

2.2 Fundamental Concepts and Definitions

A desdign consists of design data of the nominal point ¢O, the

tolerance vector e and the Zuning vector t, where
8



- 0" - S
21 €1 t1
0
2 ) £y
¢0 A | R € A and t A | . (2.1)
0
L ¢y L g - Lty

k is the number, for example, of network parameters which may be

indexed by
1, 811, 2, ..., k). (2.2)

We will assume that (1) the parameters can be varied continuously,
and (2) the parameters can be chosen independently. Extra conditions
such as discretization and imposed parameter bounds may be treated as
constraints. See Bandler, Liu and Chen (1974a, 1974b, 1975). Some of
the parameters can be set to zero or held constant.

An outcome {¢0,e,u} of a desdign {¢0,s,t} implies a point in the

parameter space given by

0
$ = ¢ + Eu, (2.3)
where
€1
€
2
E L , (2.4)
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and usRu. Ru is a set of multipliers determined from realistic

situations of the tolerance spread. For example,

< < .
y a; Sy S 1, 1€I¢}, (2.5)

i!

where
0<La, <1, (2.6)

The most commonly used continuous range is obtained by setting ay to
zero. A commercial stock will probably have the better toleranced
components taken out, thus 0 < a; < 1. Unless otherwise stated, the

case

A -1 < < .
R 2 {E‘l 1Sw 21, 1eI¢} (2.7)
is considered (Bandler and Liu 1974a).
The tolerance region R€5 as described by Butler (1971) and
Bandler (1972, 1974), is a set of points defined by (2.3) for all
-1 < <
EeRu' In the case of -1 < By 2 1, ieI¢,

0 .
R_4 {?l¢i = ¢;teguy, -1 S S, 1€I¢}, (2.8)

which is a convex negular polytope of k dimensions with sides of

length 2¢,, ieI,, and centered at ¢0. The extreme points of R are
i z £

¢



~obtained by setting uy = *l. Thus, the set of ventices may be defined

as
A - 40 . .
Rv s {?|¢i = ¢i + E4Hyo uie{—l,l}, 1eI¢}. (2.9)

The number of points in Rv is 2k. Let each of these points be indexed

by ¢l, ier, where

. (2.10)

Thus, RV = {¢l, ¢2, cees §

~

The funing region Rt(u) is defined as the set of points (see

Bandler and Liu 1974c, 1974d)

o =06 + Eu + Tp, (2.11)

~

for all peRp, where

t

(2.12)

3
ne>

Some of the common examples of Rp are

11
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R A {p] -1% py S 1, fel }, (2.13)

p ¢

or in the case of one-way funing or Lureversible thimming,

=
(]

{8|0 < oy i1, ieI¢}, (2.14)

or

=
]

{p| - 1% py 20, ieI¢}- (2.15)
Unless otherwise indicated, the case given by (2.13) is considered.

The constraint region R, is defined as (Butler 1971, Bandler

1972, 1974),

A

R, & {?lgi(?) 20, iel }, ‘ (2.16)
where

I, & {1, 2, ..., m_} (2.17)

is the index set for the performance specifications and parameter

constraints. Rc is assumed to be not empty. Other conditions and

assumptions will be imposed on Rc as the theory is developed further.
The definitions are illustrated in Fig. 2.1 by a two-dimensional

example.



tolerance
region R,

|
l |
| \
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!
| | .

— —— — —

13

Fig. 2.1

An illustration of regions Re’ Rt and Rc'



A tunable cqnbtnaint rnegion is denoted by RC(T), where Y
represents other independent variables. Figure 2.2 depicts three
different regions of an example of RC(T). Overlapping of these
regions is allowable. The value of { may be continuous or discrete.
Rc(?) = Rc in the ordinary sense if ? is a constant.

2.3 The Original Problem PO

The problem may be stated as follows: obtain a set of optimal
design values {¢O,e,t} such that any outcome {¢0,e,u}, ueRu, may be
tuned into Rc for some peRp.

It is formulated as the nonlinear programming problem:

P, : minimize C (¢o,e,t),

subject to ¢ € R,

where

¢ = ¢0+Eu+Tp (2.18)
and constraints ¢0, e, t 2 0, for all ueRu and some peRp. C is an
appropriate function chosen to represent a reasonable approximation to
known component cost data.

Stated in an abstract sense, the worst-case s0lution of the

problem must satisfy

14



— — i om—— G Smec

tuning region

Fig. 2.2 An example of three different settings of

the tunable constraint regions.
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RA)NR_#9, (2.19)
for all ueRu, where ¢ denotes a null set.

2.4 The Reduced Problem P1

The original problem PO of the preceding section can be
reduced by separating the components into effectively tuned and

efgectively toleranced parameters. Let

I_ 4 {ile; > tss ieI¢}, (2.20)

I, 4 {1|ti 2 e ieI¢}, (2.21)

e; be, - tjpiel, (2.22)
and

ti =ty -e; iel. (2.23)

It is obvious that It and I_ are disjoint and .U I€ = I¢.

Now, consider the problem

P, : minimize C (¢0,e,t),

subject to ¢ € 'Rc’



17

where

elu for ieI
o, =0y 44 T1 ; (2.24)
t;pi for 1ie It’

for all -1 £ Ny <1, ieIe, and for some -1 < pi <1, ieIt.

2.4.1 Theorem 2.1

A feasible solution to the reduced problem P, is a feasible

solution to the original problem PO'

Proof Given ¢0, €, t we will show that

1) +t = e'ui ,1eI, (2.25)

EiHg T NP1 T & €

(2) eiui + tipy = tipi , 1¢ It’ (2.26)

under the restrictions on Mys Py and pi.

(1) Since py can be freely chosen from -1 < Py <1, we can
let pi = “Hy giving
]

(ei - ti)ui = €il-li. (2'27)

(2) For any -1 < pi £1 and all -1 £ y < 1, we can choose
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(t.=e,)p) - €.y,
1 < ot i"d i i
1= oy ti <1, t # 0. (2.28)

Thus, any point with components represented by (2.24) of the
reduced problem can be represented by (2.18) of the original
problem. See Bandler and Liu (1974d).

Intuitively, this theorem states the fact that a feasible
solution to a restrictive problem is also a feasible solution to an
appropriate less restrictive problem. The variable transformation
equations (2.22) and (2.23) may be considered as extraneous

constraints to be satisfied.

2.4.2 Concept of One-Dimensional Convexity

The concept of one-dimensional convexity is important in this

study. A region R is said to be convex if

- +*) e R (2.29)

for all 0 £ X £ 1. See Mangasarian (1969). We define a region R to be

one-dimensionally convex (see Bandler 1972) if, for all jeI¢,



¢a, ¢b(j) A ¢a + ae1 € R, (2.30)

where o is a constant and ej is the jth unit vector, implies that

b(3) _ o3 ¢ R, (2.31)

~

-©-
|

RS

for all 0 £ A £ 1. See Fig. 2.3 for some illustratioms. R, is both
convex and one~dimensionally convex whereas R2 is one-dimensionally
convex only, R3 is neither. Since convexity implies one-dimensional

convexity, the latter is less restrictive.

2.4.3 Theorem 2.2

A feasible solution to the original problem PO implies a
feasible solution to the reduced problem Pl if RC is one-dimensionally

convex.
Proof Consider the following.

(1) We note, for isIe, that

0

0

I
©-
[ ]
I
™
+
ot
IA

0
. 2 ¢i + ey + tipi(l) (2.32)

iA
-©-
o
+
(4]
i
(a)
A

where pi(—l) corresponds to My = -1 and pi(l) corresponds to

19
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Fig. 2.3

-9,

Illustrations of convex, one-dimensionally convex

and nonconvex regions.
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Hy = 1. 1If Rc is one-dimensionally convex, the following

assumption
O 4+ t.o.(-1) O e + ., M) R
oy — &g T Egpy (0 ; 0; T eyt Ty0yg e R,
: 1 (2.33)
implies that
o0+ (e, - tuw, | eRr (2.34)
i i %4 c’ '

where we consider changes in the ith component only and impose

the required restrictions on My and Py

(2) On the other hand, for ieIt, given feasible pi(~l) and

pi(l) such that

0 < .0
¢i -y + tipi(-l) < ¢i + € + tipi(l)’ (2.35)

there exists a feasible pi such that

60

0 0
- < T < .
€. + t,p.(-1) = <1>i + (t, - e,)p: S o, + e, + t.p. (1)

(2.36)

21
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This is true for ti =gy and can be seen for ti > €y by

rewriting this inequality as

- - 1
€ + tipi( 1) €y + tipi(‘)

<
t, - g, 1 t, - g,
i i i i

(2.37)

I
©
A

Hence, if RC is one-dimensionally convex, the assumption

implies that

: 1
¢g+ (ti - ei)p{ | e R_.

Thus, a feasible solution to the original problem can be

transformed to a feasible solution of the reduced problem P See

1°
Bandler and Liu (1974c, 19744d).

2.5 A Geometric Interpretation

Let us define a projection matrix P as a diagonal matrix such

that

>

. ) (2.39)

trg
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where

P; T . . (2.40)

In general, a projection operator p is defined as a linear operator
such that p2 = p. P obviously obeys such a property. See Finkbeiner
(1960), Yale(1968) and Lancaster (1969), for some properties of a projection

operator.

be noted that the projections of two points ¢a, )

~ ~ ~

jeIt, and some constant a, coincide. The projection concept and the

introduction of slack variables provide a key to understanding the

tuning conéept.

Let

1A

A 0 o 0 ' .
R, & {f|¢i e S0y So; +eg, iell, (2.41)

and

1A

A 0 — gt < ,0 1 p
R, £ {9|¢i t] S oy S0  + ey, del ], (2.42)

denote the regions defined by the effectively toleranced and

effectively tuned parameters., Then consider the following regions

Retp “ {? l?p =P ?ERet}’ (2.43)
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cte c te? (2.44)

and

A {?p]?p = Pp , ¢eR__ }. (2.45)

R
ctep -1 2 I cte

Figure 2.4 illustrates the definition of the regions. Any point
whose components are given by (2.24) lies in the intersection of Ret
and Rts' Suppose the projection of Rcte onto the subspace spanned by
the effectively toleranced parameters includes the projection of that
point. Then it may be tuned into Rcte by adjusting the value of pi,
ieIt.

The reduced problem Pl may be stated as: solve a pure
tolerance problem (i.e., no tuning) in the subspace spanned by the
toleranced variables with R as the tolerance region and R as

etp ctep
the constraint region.

In other words, the regions defined by a feasible solution must

satisfy the condition that

c 2.46
Retp = Rctep' ( )

. An outcome

Figure 2.5 illustrates a case where Rstpg: Rctsp

at ¢0 cannot be tuned to Rc within the effective tuning range.
However, there exists a solution to the original formulation by

tuning both components. Rc is not one-dimensionally convex in this

case.
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2.5.1 Special Cases

Case 1:

Case 2:

We will consider two special cases.

I = P, the pure tuning problem,
In this case, REt is the entire space and P is a zero matrix.

Retp is a single point at the origin. The problem has a

solution if

4 0. (2.47)

cte

I = @, the pure tolLerance problem.

In this case, Rt€ is the entire space and P is a unit matrix.

R =R _and R = R = R . The problem has a solution
etp et ctep cte c
if
(ot . 2.
et S R (2.48)

From a tolerance-tuning point of view, the first case is a

trivial case theoretically. Except when there is only one single

point Rc’ the pure tuning problem is equivalent to an optimization

of the nominal parameter values. On the other hand, the pure

tolerance problem is very important from a practical point of view.



2.6 Extension of P1 for Tunable Constraint Region

Three types of components can be identified when the constraint
region is considered to be tunable. They are:

(a) Toleranced components,

(b) Components tuned by the manufacturer, and

(c)b Components tunable by the customer.

In this case,

¢ e R
where
1 .
Ei“i for ice I€
_ .0 o .
0y = 05 + 1 tip] for diel, (2.49)
[ .
\ tipi(?) for ice Itc

where Itm identifies components (b) and ItC identifies components (c).
Setting the y to a particular value will control the setting
of pi, ie Itc’ such that ¢ will be in that particular constraint

region Rc(w).

2.7 The Reduced Problem Pz

It is impossible to test all the points in Re to be in RCt .

tp €p

In order to make the problem tractable a number of simplifying

assumptions could be made to obtain an acceptable solution to the

28



29

problem with reasonable computational effort.
To this end we replace the continuous range -1 = My <1bya
discrete set uie{—l,l}, ieIE.

Now, consider the problem

P, : minimize C (¢0,s,t),

subject to ¢ € RC,

where

1] .
CHz i I
0 elul for € e

¢i = ¢i + (2.50)
tipi for 1elI

for all uie{—l,l}, ieIe, and some -1 < pi <1, iel .
Let us define the set of projected vertices (or the vertices of

the projected region) by
R_ A {o l?p = P$, ¢ e R ], (2.51)

vp

The condition may be now stated as

Rvp = Rcte:p '



2.7.1 Theorem 2.3

A feasible solution to 4educed problem P, implies a

2
feasible solution to reduced problem Pl if Rctep is one-dimensionally
convex.

This is a pure tolerance problem in the subspace spanned by
the effectively toleranced parameters. For a proof in the tolerance

parameter space, see Appendix B which describes the proof by Bandler

(1972, 1974).

2.8 The Objective Function

Several objective functions (or cost functions) have been
proposed by Bandler (1972, 1974), Pinel and Roberts (1972) and Bandler
and Liu (1973, 1974a). 1In practice, a suitable modelling problem would
have to be solved to determine the cost-tolerance relationship. Here,
it is assumed that the tolerances and tuning ranges (either absolute
or relative) are the main variables and that the total cost of the
design is the sum of the cost of the individual components.

The objective function should have the following properties,
0
C(p sest) + ¢ as £ >
c(4he,t)
? 1€5C) > e for any ey > 0,
(2.52)

6% e,t) » C%e) as £ 0

0
C(? sEst) > @ for any t; > =,



Suitable objective functions will be, for example, of the form
k
+ ) cly., (2.53)

where X, and Y denote the tolerances and tuning ranges, respectively.

In the case of relative tolerances or relative tuning ranges

x, = —% x 100, (2.54)
21
ty

y, =5 % 100 (2.55)
%

We may set the appropriate ci to zero if tuning is considered either
free, or fixed or is not required. c, may be set to zero if the
corresponding tolerance is fixed.

2.9 A Tolerance Example

Consider the constraints

99— ¢; - 220, (2.56)
2
- ¢, + 169, > O. (2.57)

A convex region Rc is defined by these constraints.

We will take Ru as an infinite set of discrete points



u(d), 1 =1, 2, ..., where -1 < ul(i) £1and -1 = M, (1) S 1. Thus a

relevant problem may be formulated as follows. Minimize

c =L 41 (2.58)
)

with respect to €15 €55 ¢$ and ¢g, and subject to

0 0
g, = € z2 0, g, = ¢, z 0, 85 = ¢l >0, g, = ¢2 > 0,
(2.59)
gc (1) = (9 + e 1, (1) - (00 + eu (1)) - 220, i=1, 2
5 2 272 1 171 - > Teoete
(2.60)
0 Y 0 . S .
g6(i) = - (¢2 + azuz(l)) + 16(¢1 + elul(l)) 20,1i=1, 2,
(2.61)
where =1 £ ul(i) S1and -1 £ uz(i) < 1.
The Kuhn-Tucker (1951) necessary conditions for a
constrained minimum require that (see also Bandler 1973)
i 1] [ ] B ] B .
- ——2- ul "111(1) 16]-11(1)
€
1
-1 u W, (1) 21, (1) (6 +e ) (1))
€2 2 2 2 2 7272
2 . .
= + Z Us(l) + Z u6(1)
i i
0 ug -1 16
0 u 1 —2(¢0+e (1))
i ] | Y4 i i i 27 €2M2

(2.62)
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434 = Us(l)gs(l) = u6(1)86(1) =0,
i=1,2, ... (2.63)

Ups ey Uy us(i), ug(i) > 0, i =1, 2, ... (2.64)

where u denotes a multiplier. To solve the above equations, assume
that €15 €9 ¢$ and ¢g are not zero, therefore, set Uy, Uy, Ug and u,
to zero. Minimize gs(i) of (2.60) and g6(i) of (2.61) with respect

to u(i). This leads, respectively, to

(¢g - €y) - (¢2 +eq) -2 Z0 (2.65)
using u(i) = [1 -l]T and
- @)+ et 41600 - e) 2 0, (2.66)

using u(i) = [-1 1]T. The optimality conditions (2.62) - (2.64) are

correspondingly reduced yielding the solution

0 0
e, = 0.5, e, = 0.5, ¢, = 4.5, 9, = 7.5.

2.10 A Tuning Example

Consider the problem of minimizing

C = — (2.67)
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0 0
with respegt to ti, P ¢1, ¢2 and pl(i), and subject to

0 0

‘g1=ti20$$ g2=€22013 g3=¢120” g4=¢220’ (2-68)
tl
i

gs = 0.1 ._-—O ->- O, (2.69)
2

g (1) = (¢O+e u (i))—(¢0+t' "(1))-2 20, i =1, 2 (2.70

6 277272 1751P1 =0,1=1, 2, . .70)

87(1) = ~(o+e,u, (1) 2416 (02+E101 (1) 2 0, 1 = 1, 2, ... (2.71)

v

0, i

i
et
-
Do
M

gg(1) =1 -p;(1) (2.72)

Iv
o
A
e
]
ot
[\]
-

gg(i) =1+ pi(i) (2.73)

and -1 = uz(i) 1.

Here, € is considered fixed at 0.5 and there is a maximum effective

tuning range of 10%. Hence, the first component does not contribute to the

cost. The effective tuning range ti = tl - 0.5 is used as a variable.

The optimality conditions require that

F 0] e [-Lc oty
0 ul ¢0 Dl(l)
1
1
€
2 1]
ty
0 = u, + ug 57 + Z u6(1) -1
¢1 1
0 U, 0 1
L 9_ _9 - L E).J ..—t]'_?l -




My (1)

160 (1) i 0 ]
=2 (8 ke php (1)), (1) 0
+ ] u (1) 16 + ] ug (1) 0
i 2 (o0 . 1
L 16t e, . - ey
r 0 7
| 0
+ Lugd) |0 |, (2.74)
i
0
€y

U8 = ees = uggg = ug(i)gg(d) = ... = ug(i)gg(d) = 0,
i=1,2, ... (2.75)

Ups vees Ugy u (1), wen, ug(d) 20, 4 =1, 2, ... (2.76)

Minimize g6(i) of (2.70) and g7(i) of (2.71) with respect to

We use uz(i) = -1 in (2.70) and uz(i) =1 in (2.71) for this

35

purpose. The corresponding pi(i) = -1 and pi(i) = 1, respectively, are

obtained by maximizing g6(i) and g7(i) with respect to pi(i). This

yields the solution

the tolerance on the components.

t! = 0.5432, g =

1 8.3333.

€, = L.444, ¢$ = 5.4321, ¢

As expected, the inclusion of tunable elements can increase

The tolerance of the second parameter
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increases from €y = 0.5 to €y = 1.444 when the first component is
allowed to have a maximum effective tuning range of 10%. This means
that an actual absolute tuning of 1.0432 and a tolerance of 0.5 are

designed for ¢1. The result can only be accomplished by allowing the

nominal point to move. For example, the first component moved from

3.5 to 5.4321, a shift of 55%.

2.11 Summary

In this chapter, the problem of design centering, tolerancing
and tuning has been presented in a unified manner. Definitions of
constraint, tolerance and tuning regions are given. The concept of a
tunable constraint region that allows variable specifications as set
by the customer has also been treated. Reduced problems and conditions
of validity are stated and proved in appropriate theorems. A geometric
interpretation is discussed. Two simple examples have been studied to

give some insight.



CHAPTER 3

SOME IMPLICATIONS OF BIQUADRATIC FUNCTIONS
3.1 Introduction

It has been stated in Chapter 2 that the constraint region RC
may be defined by a set of constraint functions. ~However, Chapter 2
is primarily concerned with the region itself rather than the
functions. Conditions for the worst cases to occur at the vertices
of the tolerance region will be studied in this chapter. 1In
practice, two kinds of constraint functions may be identified. The
first kind which determines the feasibility of a design is denoted as
%f(?)' The second kind which determines the acceplability of a design
is denoted as %a(?)' %f(?) is usually derived from physical
considerations such as nonnegativity of parameter values, component
bounds or any other physical restrictions in manufacturing. %a(?)’
on the other hand, is derived from performance specifications. We
shall be concerned mainly with the latter kind of constraint
functions. In particular, this chapter is motivated by those
electrical circuit responses which can be expressed as biquadratic
functions of the parameter of interest. A one-dimensional case is
presented. See Fidler and Nightingale (1972) for some biquadratic
relationships; Parker, Peskin and Chirlian (1965) and Géher (1971) for

some circuit properties; Mangasarian (1969) and Zangwill (1969) for a
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discussion of functions more general than concave and convex
functions. See also Bandler and Liu (1974b, 1975).
We elaborate in this chapter on an underlying assumption made

in a theorem proposed by Bandler (1972, 1974). See Appendix B.

3.2 The Biquadratic Functions

3.2.1 General Properties

Consider the biquadratic function

N(¢) _ c¢2 + 2d¢ + e

F(¢) = = (3.1)
MO 42 4 235 + b
The first derivative of F(¢) is

M2 (¢)

It may be noted that the numerator of (3.2) is a quadratic function of
¢ which implies that the derivative has at most two changes of sign
for finite values of ¢. Furthermore, the function value approaches
the value of ¢ as ¢ » + o,

Take any two points ¢r and ¢S and let A¢ = ¢S - ¢r. F(¢S)
may be expressed in terms of ¢r, A¢ and the coefficients of N(¢) and

M(¢) as follows:

s r r 2
F(45) = N(¢s) - N(¢r) + 2A¢(ci +d) + cA¢2 ] (3.3)
M(¢7)  M(¢7) + 28¢(¢7+a) + Ad
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The farge change sensitivity

s r
AF é F(¢ ) - F(¢ ) (3.4)
A ¢s _ ¢’r

may be related to the first differential sensitivity F'(¢r). We have

r r r T 2 r r
F(6%) - F(o) = 20¢{(co +dIM(¢ )-(¢ +a)N(¢ ) }-A¢"{N(¢ )=cM(¢ )}

M6 IM(6%)
r r
= A¢F'(¢r) M(¢s) - A¢2 (F(d) )s— C) ,
M(4°) M(6°)
therefore,
M(6%) -ﬁ}j— = F'(TIMGT) - A (F(T) - o). (3.5)

Given a fixed value ¢r, we can find uniquely one other point ¢S such
that F(¢S) = F(¢r), except when the function F(¢r) = c, F'(¢r) =0,

or M(¢r) = 0. The point ¢s is given, using (3.5) with AF = 0, by

. o r
¢8 = ¢r + ELSi;lgﬁi_l R (3.6)
F(¢") - ¢
For the case F'(¢r) = 0, the point ¢r is either at the maximum or at
the minimum of the function. There is only one finite point ¢c such

that F(¢c) = ¢. The other points with the same value can only be at

infinity. See, for example, Fig. 3.1.
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Fig. 3.1 A general biquadratic function.
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3.2.2 Assumptions

In the following discussion, we shall assume that M(¢) does
not change sign on [¢r,¢s]. We shall also exclude points where

M(¢) = O since the derivative of F(¢) is not defined at such points.

3.3 Some Lemmas and Theorems

3.3.1 Lemma 3.1

F(¢r + A(¢s - ¢r)) > min[F(¢r), F(¢S)] for all A satisfying

0 < A < 1 provided that

AF | dF
oAb gy

>0, | (3.7)

where %% is given in (3.4), $ is ¢r or ¢s whichever corresponds to

the lower function value.

Figure 3.2 illustrates this lemma.

Proof The case F(¢s) > F(¢r) will be considered first. From

(3.5), we have

r
M) HOZE@D) - pr (MG - M EGT - o), (3.8)

where

o =" + 2% - 0", 0<ac<1. (3.9)
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Fig. 3.2 - 1Illustration of pseudoconcavity on an interval.
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If condition (3.7) is satisfied, F‘(¢r) = %E > 0, then
 lg=g"
L [ 6TMGT) - AR - )] > 0 (3.10)
M(s®%)

implies, since M(¢) must not change sign, that

1 . o Ty _ Ty _
O} [F' (67 )M($") - MO (F(¢7) - ¢)] > O. (3.11)
Therefore,
F(¢) - F($°) > O. (3.12)

Similarly, for the case when F(¢r) > F(¢S), it is required from

(3.7) that F'(¢s) = 4 g € 0. The equations corresponding to

0 Tom=s
(3.5) and (3.8) are, respectively,

8 T
r) F (¢ )A— F(o) _ F'(¢S)M(¢S) + A¢(F(¢S) -c) (3.13)

M(¢ ?

and
F(°) = F(8) _ wryiSyprrsS _ sy _
Me) FEAST « FITMGY) + A-NMEGD) - o). (3.14)
AF
Since ZE < 0,
L [ (%M(e%) + 26 (F(4%) - )] < 0 (3.15)

M(s")
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implies, since M(¢) must not change sign, that
1 - s _ Sy _
egy LF (4M() + (1-Ma¢(F (") - )] < o, (3.16)
and hence that
F(¢) - F(4°) > 0. (3.17)

Inequalities (3.12) and (3.17) are true for all 0 < A < 1, hence the

lemma is proved.

Corollary: F(cbr + A(¢S - ¢r)) < max[F(¢r), F(¢s)], where 0 < X < 1

provided that

AF dF
-A-g 35- . > 0, (3'18)

where $ is ¢r or ¢s whichever corresponds to the higher function
value.

The corollary may be proved by defining a new function
G(¢) = - F(¢) and applying Lemma 3.1. See Fig. 3.3 for an
illustration. Figure 3.4 shows an example where both the lemma and

its corollary apply.

3.3.2 Lemma 3.2

The function F(¢) is pseudoconcave (see Appendix A) on the
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Fig. 3.3 i
] Illustration of pseudoconvexity on an interval



Fig. 3.4
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Illustration of monotonicity on an interval.
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interval [¢r,¢s] except where M(¢) = 0O if the conditions of Lemma 3.1

are satisfied.

Proof Consider the case F(¢S) > F(¢r). The other case follows a
similar argument. Let us assume that the function has more than one
turning point in the interval. By the nature of the biquadratic
function, there are at most two turning points., " If we assume that
there are two turning points on [¢r,¢S], there exist two points

o T B T

¢ =¢ + ald and ¢ = ¢ + BAp, where O < a < B < 1 such that the

following inequalities hold:

F(6%) > F(65) (3.19)
and

F' ) > 0. (3.20)

As a direct consequence of Lemma 3.1 and inequality (3.20), the

following inequalities can be made to hold:

F(6%) > F(6®) (3.21)
and

FoP) > Fob). (3.22)

Rewriting the function values in terms of F'(¢B), F(¢B) and M(¢B) as

in (3.5), we obtain

47
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—— [F' 6P M0®) + (8- 6P - )] < o, (3.23)
M%)
—— [F 0P me® + pae ) - 01 > o, (3.24)
M)
and
18) [F' 6™ m0®) - @-8)aF® - 1> 0. (3.25)
M4

Multiply (3.23) by M(s™), (3.24) by M(s") and (3.25) by M(s°).
Subtracting appropriately, we have
8 >0 for M >0
a6 - o) { (3.26)
<0 for M < 0,
and
’ 8 >0 for M>0
- W-a)mFGH) - o { (3.27)
<0 for M<O. ‘

The last two pairs of inequalities are inconsistent, therefore, the
assumption that there are two turning points on the interval is false.
F(¢), ¢e[¢r,¢s], is unimodal with a positive derivative at ¢r.

Given any two points ¢a and ¢b, such that F(¢b) > F(¢a), we
will consider the following:

D) F'(¢a) > 0, then ¢b > ¢a because F is an increasing

function between ¢r and ¢a.

(2) F'(¢a) < 0, then ¢b < ¢a because F is a decreasing

function between ¢a and ¢S.

. b a, ., 10,8y, b  a

Therefore, in both cases F(¢ ) > F(¢°) implies F'(¢%) (¢ - ) >0,

which proves the lemma.
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Corollary: The function F(¢) is pseudoconvex (see Appendix A) on the
interval [¢r,¢s] except where M(¢) = 0 if the conditions of the

corollary to Lemma 3.1 are satisfied.

3.3.3 Theorem 3.1

minimum r s
The maximum of F(¢), ¢e[¢ ,4°], lies on the boundary of the

interval if one of the following conditions is satisfied.

F'(¢7) > 0, F'(4°) >0 and F($") < F(s5) (3.29)
or
F'(¢") < 0, F'(6°) <0 and F($") > F(6°). (3.30)

See, for example, Figs. 3.2 - 3.4.

Proof We will prove the case for the minimum of F(¢) to be on
the boundary of an interval for the conditions of (3.28a), (3.29) and

(3.30).

(1) Take ¢ = ¢r, then F(¢S) > F(¢r) and %§-> 0. Using

Lemma 3.1, F(¢* + A(6°=67)) > min[F(sT), F(4%)],
0 <A <1, will hold if F'(¢%) > 0. This is satisfied in

(3.28a) and (3.29).

(2) Take $ = ¢s, then F(¢r) > F(¢S) and %§-< 0. Using

Lemma 3.1 again, the requirement that F'(¢S) <0
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will be met in (3.28a) and (3.30).
r S AF

(3) Suppose F(¢ ) = F(¢~) and hence Z$'= 0. We can find one

point ¢a such that F(¢a) > F(¢r) = F(¢s). Two subintervals

are thus obtained, each of which may be considered under

cases (1) and (2) above.

It should be noted that, from Lemma 3.2, (3.28a), (3.29) and
(3.30) imply pseudoconcavity. From its corollary, (3.28b), (3.29)

and (3.30) imply pseudoconvexity.

3.3.4 'Theorem 3.2

An acceptable interval denoted by I as

A - > : - >
I 2 {¢|sui F (¢) 20, el , Fj(¢) Sp5 2 0, jeI,},  (3.31)
where Sui’ ieIu, and Sli’ isIl, are the upper and lower
specifications, respectively, and where Iu and Iz are disjoint
index sets, is convex if the condition (3.28a), (3.29) or (3.30) is
satisfied by Fi(¢), for all ieIZ, and condition (3.28b), (3.29) or

(3.30) is satisfied by Fi(¢), for all ieIu.

Proof Consider the case isI2 and let

I, & {¢|Fi(¢) -8, 20} i¢ I, (3.32)
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Take two different points ¢r, ¢S el If the condition (3.28a),

i
(3.29) or (3.30) is‘satisfied, then from Theorem 3.1

P 6N = F (" A (6%=¢7)) > minlF, (4T, F, (6D)], (3.33)
0<Ax<1,
thus
F, (6™ - s, > min[F, (4°) - S,., F,(6°) - S,.] (3.34)
i i i 21 T4 2i-> °
0<A<1,
Since
5, ¢ e 1,
A
F (6% -5, > 0. (3.35)
Therefore,
ot = T + A(o°4T) I. (3.36)

Hence Ii’ ieIz, is a convex interval by definition of a convex set.

Similarly, for the case ieIu, if the condition (3.28b), (3.29) or (3.30)

is satisfied, using Theorem 3.1, we may prove that Ii’ isIu, is convex.
The intersection of convex sets is convex, and since by

definition
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I = 1 (3.37)

I_ is convex.
a

If any F(¢) has both upper and lower specifications, the
required conditions for a convex acceptable interval are restricted

to (3.29) and (3.30).

3.4 The Network Tolerance Problem

We consider a bilinear networnk function of the form
(A + ¢B)/(C + ¢D) where A, B, C, and D are, in general, complex and
frequency dependent. For a discussion on bilinear network
functions, see Parker, Peskin and Chirlian (1965) and Géher (1971).

Thus, we assume a function of the form

2
- | At ¢B - N(¢)
Flo) = lm i Ok 3.38)

In this case N, M 2 0. The coefficients of (3.1) are related to the

-bilinear function as follows:

a=CrDr+CiDi . 12
9 9
n|? p|?
2 AB 4+ A.B
c = lElE . d = _Z_E__E_i_i , (3.39)
D] ID|
2
e = Alz s



where the subscripts i and r denote the imaginary and real parts of

the complex number.

3.4,1 Filter Example

We have studied the behaviour of |p|2, the modulus squared of
the reflection coefficient p, for the LC lowpass filter (Fig. 3.5) with

respect to the variations of L, C, and C3, respectively. Figure 3.6

2

shows some of the curves for different values of frequency. The
three vertical lines on each drawing represent the nominal values and
the extreme values of +257 relative tolerance. The nominal values for

L, C, and C, are 2, .125 and 1, respectively. C1 = C, for reasons of

2 3 3
symmetry.
The curves for L and C2 have two turning points each. For

vexample, at w = 1, (w denotes frequency in rad/sec.)

2
- + .
Ip(L)IZ - 81L2 1441 64 . (3.40)

82L" - 160L + 128

The turning points are at L = .889 and L = 8.0 corresponding to the
minimum of Ip]2 = 0 and the maximum of ]plz = 1, respectively.
Setting Ipl2 = %%-= c, we can solve for one unique point L = 4.44 at
which the curve is divided into two parts: ]p!z 2 .988 for

L 2 4.44 and ]p]z < .988 for L £ 4.44, The maximum and minimum
function values occur separately in the two parts. The derivatives

at the boundary of the tolerance region are both positive,

indicating that the curve is monotonic in the region (both
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Fig. 3.5

 An LC elliptié l;prass filter example.



pseudoconvex and pseudoconcave).

For parameter 02 at w =1

, 4Ch+ac, +1
Ip(C2)| = 5 . (3.41)

8C2 + 2

The maximum and minimum occur at values of .5 and -.5. At C2 = 0,
the curve is again divided into two parts for lp]2 2 .5 and |p|2 .5
for positive or negative C2 values, respectively.

The curves for C3 have only one turning point. The biquadratic

function is of the form

+ 2aC3 + e

+ 2aC3 + b

C
. (3.42)

lo(c)|? =
3 C

W N N

The minimum occurs at C3 = -a., The curves are pseudoconvex on (-w,x)
for frequencies in both the passband (0 £ w £ 1) and stopband (w 2 2).
For the worst case at stopband frequencies to occur at the boundary
of an interval, it is required that the curves corresponding to these
frequencies also be pseudoconcave on the interval, i.e., the curves
should be monotonic on the interval.

A situation which violates the conditions may be found, for
example, by studying the w = 2.0 curve of Fig. 3.6(a) for L between

0 and 1.
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3.5 Conclusions

Conditions for the worst case to occur at the boundary of an
interval have been presented. The conditions may be used at least to
partially justify the usual assumption that the worst case occurs at
a vertex of the tolerance region. The present chapter deals with a
one-dimensional case. Bandler (1972, 1974) has already related a
one-dimensionalvconvexity assumption.for the acceptable interval to
that of the k-dimensional case. Thus, Theorem 3.1 involves necessary

conditions for the vertices of a k-dimensional region.



CHAPTER 4

IMPLEMENTATION IN NETWORK DESIGN
4.1 Introduction

In this chapter, it is shown how to implement the ideas of
Chapters 2 and 3 on a digital computer. Objective functions,
performance specifications and parameter constraints are handled in
a manner such that any of the nominal values, tolerances or tuning
parameters can be fixed or varied. Time-saving techniques for
choosing constraints (vertices selection) are discussed in detail.
Schemes based on the assumptions of generalized convexity and
monotonicity properties of the constraint functions are proposed.

The schemes also check the conditions listed in Chapter 3 and perform a
worst—case analysis. The schemes suggest the development of‘a general
user-oriented computer program package called TOLOPT (TOLerance
OPTimization) described in Appendix ﬁ. See also Bandler, Liu and

Chen (1974b, 1975).

This chapter contains a brief discussion of network symmetry
and how it may be implemented to further reduce the number of
constraints.

The optimal worst-case tolerance problem which is very
important in its own right is treated in Part 1. Part 2 brings in the

tuning of one or more circuit components basically in order to further
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increase tolerances on all the components. The implementation of
tolerance-tuning problems is similar to the implementation of the
tolerance problem. See Bandler, Liu and Tromp (1975a, 1975b).

The nonlinear programming problem takes the general form:

minimize f(x)

subject to gi(x) 20, i=1,2, ..., m.

f is the chosen objective function. The vector X represents a set of
design variables which include the nominal values, the relative and/or
absolute tolerances or tuning variables of the network components and
all the slack variables associated with each distinct outcome., The
constraint functions gl(f)’ gz(f), ooy gm(f)’ comprise the selected
response specifications, component bounds, slack variable bounds and
any other constraints, The constraints are numbered from 1 to m for
simplicity.

Unless otherwise indicated, the examples in this chapter are
solved by the following methods. The nonlinear programming problem
is transformed into an unconstrained minimax problem by the
Bandler-Charalambous technique (1972a, 1974). The solution of the
resulting minimax problem is found by least pth approximation
algorithms also proposed by Bandler and Charalambous (1972b, 1972c).
Fletcher's minimization methods (1970, 1972) are used to minimize
the transformed unconstrained function. The solution of discrete

problems in this thesis are obtained by the branch and bound
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approach (Dakin 1966, Garfinkel and Nemhauser 1972). These
methods are featured in a user-oriented computer program called
DISOPT (see Bandler and Chen 1974, Chen 1974) which is described
in Appendix C so as not to interrupt the flow of the chapter.

Part 3 deals with two realistic circuit design problems.
The bandpass filter was studied by Butler (1971), Karafin (1971) and
Pinel and Roberts (1972). Substantial improvement is obtained by
our method. The highpass filter was suggested by Pinel (1974) and
Roberts (1974). They did not exploit the advantages of tuning. We

have, however, explored the effects of tuning in this example.



PART 1

TOLERANCE OPTIMIZATION

4.2 Numbering Scheme for Vertices

The set of vertices of a tolerance region RV is given by (2.9).

We will label each vertex by an integer from the index set Iv such

that
ra O T
¢ = ¢ +Eu (4.1)
where u§ € {-1, 1} and satisfies the relation
‘ r
k ., + 1 .
re1e ] (123 (4.2)
j=1
Thus,
(-1 ] (41 ] [ -1 ] 41 ]
-1 -1 +1 | #
1 2 3 2
po A , w & , w & e YN I
| -1 ] | -1 ] L -1 | |+l
(4.3)

The set of vertices may now be identified as

R ={¢,q~>,...,¢ }. (4.4)
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This notation will be used throughout this chapter unless otherwise

indicated.

4.3 One-Dimensional Quasiconcave Functions

A function g(¢) is said to be quasiconcave in a region if, for

all ¢a, ¢b in the region,
g(o? + 2°-4™)) 2 min[g(4®), 2(4™], 4.5)

for all 0 £ A £ 1. See Mangasarian (1969) and Appendix A for some
other definitions and some properties of the function. An

immediate consequence of (4.5) is that the region defined as

{¢Ig(¢) Z 0} is convex. It can be proved that the intersection of
convex regions is also convex. Now, the convexity condition implies
the one-dimensional convexity condition necessary for Theorem 2.2

and Theorem 2.3. We have given the term one-dimensional quasiconcave

gunction to a function which satisfies (4.5) when ¢b is given by
o0 = o2 3) 8 42 aes, (4.6)

for some constant a. The region defined by such functions is called a
one-dimensional convex hegion. Pseudoconcavity implies quasiconcavity.
The conditions for concavity and monotonicity with respect to each
variable discussed in Chapter 3 certainly apply to the case of

one-dimensional quasiconcave functions.
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4.4 Conditions for Monotonicity

Given a differentiable one-~dimensional quasiconcave function
g(¢) (here we consider one variable denoted by ¢ for convenience),
the function is monofondic with respect to ¢ on an interval [¢a,¢b] if
Sgn(g'(¢a)) = sgn(g‘(¢b)), where g' is the first derivative of g with
respect to ¢, and sgn(-) denotes the sign of the function.

Furthermore, the minimum of g(¢) is at
b .
o =5 [6% + 4" - sn(a' 6*) (6°-6D]. @
This may be proved as follows.

Consider the case sgn(g'(¢a)) = sgn(g'(¢b)) > 0. Suppose

g(¢) is not monotonic. Then there exist two points

oty 6% e 2, o™, 4.8)
where
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