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Abstract

A unified study of the class of adjoint network approaches to power
system sensitivity analysis which exploits the Jacobian matrix of the
load flow solution is presented. Generalized sensitivity expressions
which are easily derived, compactly described and effectively used for
calculating first-order changes and gradients of functions of interest
are obtained. These generalized sensitivity expressions are common to
all modes of formulating the power flow equations, e.g., polar and
cartesian. The approach exploits a special complex notation and complex
matrix manipulations to define the adjoint system and to derive the
sensitivity formulas. The approach is applicable to both real and

complex function sensitivities.
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I. INTRODUCTION

Two kinds of analysis can be distinguished in power system
operation and planning studies. In the first kind, which implies the
load flow solution [1,2] of the power network, the system states are
obtained with the control (independent) variables fixed at particular
values. The solution obtained describes the power system steady state
behaviour associated with these particular values of the control
variables. The second kind of analysis deals with variations in control
variables and the resulting effect on either system states or, in
general, on a particular function of interest [3-5]. This analysis is
usually referred to as sensitivity analysis. The importance of
sensitivity analysis has been recognized [6-7] in power system operation
and planning studies to supply first-order changes of functions of

interest and their gradients required for effective optimization

techniques.

The class of adjoint network approaches [6,8-10] incorporating the
method of Lagrange multipliers provides the advantage of using the
transpose of the Jacobian of the load flow problem as an adjoint matrix
of coefficients. When describing adjoint network approaches which
exploit the Jacobian of the load flow problem, the sensitivity
expressions for different elements are derived according to the mode of
formulation used, e.g., polar or cartesian. Different forms of
sensitivity expressions have been presented for different studies. A
unified sensitivity study for this class of adjoint network approaches
has not, however, been previously described.

The impact of the conjugate notation [10,11], which describes the

first-order changes of general complex functions in terms of formal
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derivatives w.r.t. complex system variables provides a useful tool for
describing a generalized adjoint network sensitivity approach, as
presented in this paper, where generalized sensitivity expressions are
easily derived, compactly described and effectively used subject to any
mode of formulation. The adjoint matrix of coefficients is always the
transpose of the Jacobian of the original load flow problem and,
regardless of the formulation, these generalized sensitivity expressions
can be used.

In the first few sections, we briefly describe the notation used
and illustrate the problem formulation. For the detailed analytical
aspects of the conjugate notation, the reader is referred to [10,11].
We then derive the complex transformation matrices relating different
modes of formulating the power flow equations to a standard complex
form. This standard complex form is employed in the subsequent sections
to define and analyze the adjoint system and to derive the generalized
sensitivity formulas. In order to illustrate the novel concepts, two
examples of the simplest 2-bus sample power system are employed
throughout the paper. Numerical results for a 6-bus sample power system
are also presented. The formulas derived, however, are general and can

be directly programmed for a general power system of practical size.

II. NOTATION
In the conjugate notation [10,11], a complex variable

81 % %44

*
and its complex conjugate ci replace, as independent quantities, the

+ P (1)

real and imaginary parts of the variable, Hence, we may express the

first-order change of a continuous function of a set of complex
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variables arranged in a column vector ¢,

S Iy (2)
*

and their complex conjugate ¢ 1in the form

9 9
z ~ 3z ~

where § denotes first-order change, T denotes transposition and af/ st
and 3f/3z*¥ are column vectors representing the formal [12] partial
derivatives of f w.r.t. z, and t¢¥, respectively.
It can be shown [10] that, for a real function f, we may write
of ¥
—5 = ( T ) . 4)

o z

ITI. BASIC FORMULATION

Load Flow Equations

The electric power network can be represented by a system of node

equations in the form

I = lv (5)
where
Ip =i v 35 6)

is the bus admittance matrix of the power network,

Yu = T I e

is a column vector of the bus voltages, and

Iv = Iy 3 Iy ' &)

is a vector of bus currents.

We write the bus loading equations in the matrix form

1 o-s 9)
Ey In = Sw
where EM is a diagonal matrix of components of VM in corresponding

order, i.e.,



v=V, (10)

where v is given by

>

. (11)

4

and S is a vector of the injected bus powers given by

~M
A .
Su = Byt 3y (12)
Substituting (5) into (9), we get
* v *
EM I YM = %M' (13)

The system of nonlinear equations (13) represents the typical load flow

problem, whose solution is required.

Complex Perturbed Form

The system (13) may be written in the perturbed form

K K> sV, = &S, - E. s¥, V (14)
f GYM + £ GYM = 6~M - “M 5~T n
V* S* d sY t first d h v V* S*
where GYM’ 8Vy» 85, and Y represent first-order changes of Y Ve Sy
and !T, respectively,
S A ¥
=E Y 1
§ Ey Lo (15)

=3 .
and K 1is a diagonal matrix of components of I, i.e.,

—S
= . 1
Khv=1y (16
We write (14) in the form
S =S * S
K™ sy + K0 ey = d, an

where we have defined

A * *
d =g, -E 68Y V (18)

M M .T M
S *

Note that for constant Y., d~ of (18) is simply 6§M and (17) rigorously

T

represents a set of linear equations to be solved in the well-known

Newton-Raphson iterative method.



Slack Bus
The equation of (17) corresponding to the slack bus of specified
voltage is replaced by

T —T % *
kn 5VM + kn SVM = GVn, (19)

where we have assigned the last bus, namely the nth bus, as a slack bus,

k =0 20)
~N ~
and
mo
_ 0
k = . . (21)
~n
| 1]

Observe that in the special application to the load flow solution, the

equation corresponding to the slack bus may be eliminated.

Generator Buses

Consider the equation of (17) corresponding to a voltage-controlled

or generator bus g. Let

S~ A
S =P + j |V (22)
g g J I g|’
hence
6S. = &P - 3 &V |. (23)
g g 34 8'
Since
% *
2P =V I +V I, (24)
g g g g 8
then
* * * *
2P =V 61 + I &V +V 8I + I &V . (25)
g g g g g g g g g
Using (5), we write Ig as
I = yT v ., (26)
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where yT represents the corresponding row of the bus admittance matrix

~|

YT’ hence

~

T

T
sI = V o+ V . (27)
g Xg 5~M ~M 5Xg

fiser v v vH172 vioe vt ez (28)
6 ' = 6 = V 6 + 6 o
IVl g 8 Wy Vg Vg &V, I g!

~%
Using (25)-(28), it is straightforward to show that GSg of (23) is given

by
sgz = Eg 6YM + Eg GY; + v: Ya czg/z + vg Y;T 522/2, (29)
wmere k 22y y sy T e - RN DT (30)
~g g g g8 .M g g ~8
and
Eramy sy 3@ Pl (31)
-8 g g lg M g g g

and where ug is a column vector of unity gth element and zero other

elements. Using (29), the equation of (17) corresponding to the gth bus

is replaced by

KL oV + KL sV = d (32)
~g ~M g <M g’
where P - i sV VAT e 2 -v VT g2 (33)
d =3¢ - [ - [y - [\ .
g g =98IVl = Vg Yy &, g .M ®g

Standard Complex Form

We write (17), including (19) for slack bus and (33) for generator
buses, in the form

K T sV

Koy + X oV

*
Note that the elements of GVM and 6VM

. *
can be replaced by the relative quantities 5V1/|Vi| and 5Vi/|Vi},

= d. (34)

*
, hnamely, svi and GVi, i=1,...,n

respectively. In this case the elements kij and Eij of the ith row of

the coefficient matrices K and K are replaced by 'lekij and |Vj| Eij'

respectively. Note also that we could equally well specify |Vg|2
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instead of IVgl for a generator bus. In this case IVgI2 replaces IVgI
in (22) as a control variable and the required modifications for

subsequent derivation can be performed in a straightforward manner.

IV. MODES OF FORMULATION

In the previous section, we have considered the complex formulation
of power system equations. We shall exploit this formulation to derive
compact forms of sensitivity expressions. In this section, we
investigate, via suitable transformations, the relationship between the
complex formulation and other formulations. This investigation provides
the possibility of formulating the adjoint equations to be solved in the
same mode as the original load flow problem. Hence, the available

Jacobian of the load flow may be used in solving the adjoint system.

Transformation for Rectangular Formulation

We define the transformation matrix

*
Ly Ly L
Ld 8 =5 . (35)
~ %
Ly Lo -3
where 1 is the identity matrix of order n and
jAj1, (36)
hence
1 J
waH! - : (37)



n denoting the number of buses in the power network.

3
o
and (7), that
1
e
hence
8V 1
V>

Using the perturbed form (40),

(34) can be written in the form

~

L

where we have set

N

K

and
d

It

(51 + 51) (—52 + K

—(EZ + K.)) (=K

It follows, using

(38)

(39)

(40)

is straightforward to show that

) 41)

(42)

(43)

(44)

The 2n x 2n matrix of coefficients in (41), denoted by Kcrt’

constitutes the well-known Jacobian matrix of the

rectangular form. Moreover, writing (34) in the form

flow problem in



Y
[K K] = d, (45)
= -
§'y
it follows that
[ *
Ly Ly
(K ] = k¥ §93 , (46)
T - - *
L, Ly
.

where K% and X9 are formed directly from the Jacobian of (41) as

q _ 7 . =
K* = (§1 + 51) + J(§2 + K

~ ~

2) u7)
and
74 _ 7 Y =
E = ( §2 + 52) J( 51 + 51) . (48)
Observe that (46) relates the Jacobian of the complex formulation

(34) to the Jacobian of the rectangular formulation (41).

Transformation for Polar Formulation

For polar formulation, we set

Vo= IVl L8y 1=, wily o, (49)
where Vi are elements of VM’ and we define the vectors
V.|
MELR (50)
AN
L J
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and

-
61-W
A .
§ = . . (51)
§
n
L J
Then, we define the transformation matrix
L L*
) .6
A
P 2 | (52)
~ L L
~V vV

*
where gs. L Ev and %v are diagonal matrices whose elements represent

~8’
*
the formal partial derivatives 936./8V;, 36;/8V;, 3|V,|/aV, and

*
a|Vi|/aVi, respectively, hence

L, £ diag (L) (53)
and
L % diag {L .}, (54)
-V vi
where
Ldi = -j/(2 Vi) (55)
and
L. = V./IV,]) . (56)
vi i i
The inverse of Ep is given by
. - 7
EG Ev
whh : (57)
Iy
-8 )

~ ~

~ ~%
where LG’ LG’ LV and LV are diagonal matrices whose elements are the

* *
partial derivatives aVi/asi, aVi/adi, aVi/a|Vi| and aVi/alVil'

respectively, hence
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~ A ~
L, = diag {Lai} (58)
and
L 2 diag (L .} (59)
v ag vi®
where
LGi = jVi (60)
and
Lyi = U700 - (61)

Similarly to (40), we may write

*
L L
S P | Y ]
. = . L* V* . (62)
6|~| v v 6~M

Using the perturbed form (62), it is straightforward to show that

(34) can also be written in the form

S
Ky Ky s [ d
= , (63)
p —P
Ko Ko |eIY -do
o - L
where we have set
p _ P . P
K™ = Ky + 3 K (64)
and
X - Kg + ] Kg . (65)

and where the matrices Kp and KP are related to K and K through the

o~

relationship
*
~8 ~06
K K] = (kK° EPI < | - (66)
- ~ ~ L L
~V ~V

1
The 2n x 2n matrix of coefficients in (63), denoted by kP r’

constitutes the well-known Jacobian matrix of the load flow problem in

polar form. Observe that (66) relates the Jacobian of the complex
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formulation (34) to the Jacobian of the polar formulation (63), where %p
and-—If_p are formed directly from the Jacobian of (63).
At the end of this section, we illustrate the foregoing concepts by

two simple examples.

Example 1

Consider first the 2-bus sample power system of Fig. 1 which
consists of a load bus and a slack bus. The solution of the load flow
equations (13) is given by

vy

0.7352 - j 0.2041
and

S5

5.6705 + j 1.0706.

Note that S2 is the injected power at bus 2. The matrices K and.E of

~ o~

(45) are given by

(8.0852 - j 12.0097) (-8.4934 + j 13.4802)
K =
~ 0 0
and
_ (-5.2623 + j 5.5411) 0
K = .
- 0 1

Hence, using cartesian coordinates, the matrix of coefficients of (41)

has, using (42) and (43), the form

.
2.8229 -8.4934 17.5508 -13.4802
Kcrt _ 0 1 0 0
~ 6.4686 -13.4802 -13.3475 8.4934
0 0 0 1
- J

which is the Jacobian of the load flow problem in cartesian coordinates

when the slack bus equations are included.
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For the polar formulation, the matrices L_ and Lv of (57) are given

~8
by
~ (0.2041 + j 0.7352) 0
-8 0 ;
and
~ (0.9636 - j 0.2675) 0
“v F 0 1

Hence, using (52), (57) and (66), the matrices KP and P are given by

-
D (13.4802 + j 8.4934) (-13.4802 - j 8.4934)
K¥ =
- i 0 -j
and
_ (=1.9745 - j 9.8031) (-8.4934 + j 13.4802)
K¥ = ’
- 0 1

-

from which the matrix of coefficients of (63) has the form

13,4802 ~13.14802 ~1.9745 -8.1493Y |
Kplr _ 0 0 0 1
~ ~8.14934 8.4934 9.8031 -13.14802
Lo 1 0 o

which is the Jacobian of the load flow problem in polar coordinates when

the slack bus equations are included.

Example 2
Now, consider the 2-bus sample power system of Fig. 2 which
consists of a generator bus and a slack bus. The solution of the load
flow equations (13) is given by
§, = -0.1995 rad,

Q1 = 1.9929
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and

S, = B.27T42 - j 1.7131.

2

The matrices

(2.3920 - j 9.4199)

K =
~ 0
and
_ (2.1938 + j 8.4398)
K =
- 0
Hence, using cartesian coordinates,

has, using (42) and (43), the form

K and E.of (45) are given by

(-4.4300 + j 8.2864)

0

(-4.4300 - j 8.2864)

1

the matrix of coefficients of (41)

17.8597  -16.5729 ]
0 0
-0.1982 0
0 1

[ 4.5858 -8.8600
Kcrt - 0 L
~ 0.9802 0
0 0

which is the Jacobian of the load flow problem in cartesian coordinates

when the slack bus equations are included.

For the polar formulation, the matrices L(S and LV of (57) are given

by ~
~ (0.1784 + j 0.8822)
~8 0
o
and
~
~ (0.9802 - j 0.1982)
L =
~V 0
-

Hence, using (52), (57) and (66), the matrices KP and &P are given by

16.5729
kP -
~ 0

-16.5729

=J

J

0

1
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and
0.9556 - j 1.0 -8.8600
% . ,
- 0
from which the matrix of coefficients of (63) has the form
r 3
16.5729 -16.5729 0.9556 -8.8600
0 0 0 1
Kplr‘ -
~ 0 0 1 0
0 1 0 0
L J

which is the Jacobian of the load flow problem in polar coordinates when

the slack bus equations are included.

V. COMPLEX ADJOINT ANALYSIS

In this section, we derive the required sensitivity expressions

using the compact complex form (34). We exploit the relationships

derived in the previous section to provide flexibility in solving the
resulting adjoint system of equations in other modes of formulation. We

have shown that, using cartesian coordinates, (34) has the form

sV d
~M1 ~1
Kcrt - ,

Vo -4,

(67)

where the 2n x 2n matrix of coefficients Kcrt which constitutes the

~

Jacobian matrix of the load flow problem in rectangular form is given

from (41). Also, using polar coordinates, (34) has the form

88 d,

gP1r , (68)

SV |92
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where the 2n x 2n matrix of coefficients Kplr which constitutes the
Jacobian matrix of the load flow problem in polar form is given from

(63).

Standard Complex Form

We write (34) in the form

SRSICANE

= . (69)
—% * ] *
SRS CTNE

It can be shown [8] that the matrix of coefficients of (69), denoted by
gCmp

, has the same rank as that of (67) and the system of equations (69)
is consistent if and only if the system (67) is consistent.

For a real function f, we may write, using (3) and (4)

SVM
~ )\* ~
sf = [uT i T] + &f , (70)
~ ~ * o] :
8V
where we have defined
" é% (71)
~ M
and used
*
e XY, (72)
M BYM

Gfp denotingthe change in f due to changes in other variables in terms

of which f may be explicitly expressed. Hence, from (69)
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K X d
~ l\* ~ ~ ~
sf = [uT u T] + ¢&f (73)
~ ~ % * * p
K K d
or
d
~ I\* ~
sf = [VD V'L +6F (74)
~ ~ % o}
d
where
_* ~ ~
kI L[ v "
= (75)
_ * ~% ~%
=T FT S )
or, simply
Vv
T =*T - ~
[K K "1 = u . (76)
V*

Hence, the first-order change of the real function f and corresponding

gradients can be evaluated by solving (75) and substituting into (74).

Cartesian Coordinates

Similarly to (70), we may write, using the rectangular formulation

ap ~p. | 1
§f = [Br ES] + Gfp , (77
6YMZ
where we have defined
~ A af
| T (78)

V1
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and
¥s
Hence, from (41)
ST OT
8f = [Yr Ys
where
- T
- T
| (K)o (K

b2 (79)
_M2
d
] + Gfp , (80)
-5
_ T ~ } A
+§2) ( Yr Br
= . (81)
— T "~ ~
+§1) L Ys LBS

Observe that the matrix of coefficients of (81) is the transpose of the

Jacobian matrix of the load flow problem in rectangular form (67).

Theorem 1

The solution vectors Vr

~

(a)

(81) are given by

<>

"

and

~

\
~8

~

where V is given from (75).

~

The RHS vectors M. and Mg of

~

(b)

are given by

and VS of the adjoint system of equations

2 Re{§}

2 Im{V},

the adjoint system of equations (81)
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e D
"
[

where i is given by (71) and L, and L, are given by (35).

Proof

Comparing (74) and (80), and using (66), we get

= (Yr + ] Ys)/2 . (82)

1 <<>

From (82), the first part of the theorem is proved. Now,
multiplying (81) from the left by the transpose of L? of (35) and using

the relation

[ r r T
=T =T qT q¥*T .
Ky + KD =K, + K) K™ K T3
2 = . (83)
=T - = T —qT —q*T .
(K5 + K07 Ky + K K* K -3
- - - J

it follows from (46) and (82) that

T *T ~ T T ~
K K v L1 Lo |l
= . (84)
—T *T || ~% *T _*T ||~
KK v 21 2 | ¥s
hence, from (75)
T T ~
X Ly Lo ¥
~% | T | %7 *T A (85)
" E1 E2 ¥s
or, simply
M
W= (LT L1 B o

e
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The relationship (86) could also be derived by applying, formally, the
chain rule of differentiation using the definitions (71), (78) and (79).

Observe that equation (82) relates the solution of the adjoint
system (81) to that of (76), and equation (86) relates the RHS of (81)

to that of (76).

Polar Coordinates

Using the polar formulation, we may write

88
sf = [us uv] + ¢f , (87)
S KN °
where we have defined
~ A if—.,
Mo 5 a8 (88)
and
~p f
EV = m . (89)
Hence, from (68)
d
§f = [V V'] + &f , (90)
§ \' -d o
2
where
pT _ pT ~ ~
K51V Hs

= . (91)

>

2T 7T || ¢
51 52 Yv

e

The matrix of coefficients of (91) is the transpose of the Jacobian

matrix of the load flow problem in the polar form.



- 22 _

Theorem 2

(a) The solution vectors V‘S and VV of the adjoint system of equations

(91) are given by

V = 2 Re{V}

~8 ~
and

YV =2 Im{Y}y

~

where V is given from (75).

(b) The RHS vectors ﬁd and ﬁv of the adjoint system of equations (91)
are given by

T T A
s Mo Ly by

~ ~

3 =2

=L

where {i is given by (71) and L6 and Lv are given by (53) and (54).

Proof

Comparing (74) and (90), and using (44), we get

Vo=V, + ] Qv)/z . (92)

From (92), the first part of the theorem is proved. Now, multiplying

(90) from left by the transpose of LP of (52) and using the relation

~ r 4
*
kPT kT | kPT kT
1 T2 - - J
2 = , (93)

— — — — ¥
T Pt 2T 2*T _j
o <K -3

- - J
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it follows from (64) and (92) that

_* ~ ~
kI % (v R [
~ ~ ~ ~8 ~Vv ~8
= . (o)
_ % ~% *T % ~
g k|| v VT LT
~ ~ ~ ~6 v ~V
hence, from (85)
B EG Ev Ba
~g | T FT *T 0 (95)
B ~8 vV Bv
or, simply
Hs
b= Ly L] B o
Yy

Again, the relationship (96) could also be derived by applying,
formally, the chain rule of differentiation using the definitions (71),
(88) and (89).

Equation (92) relates the solution of the adjoint system (91) to

that of (76), and equation (96) relates the RHS of (91) to that of (76).

Remarks

We remark that using (82) or (92), the adjoint system can be
formulated and solved in a convenient mode, preferably the same
formulation as the original load flow problem, while the first-order
change of f and corresponding gradients may be derived compactly using
the adjoint variables Q. On the other hand, the relations (86) and (96)

allow the use of more elegant formal derivatives which, in many cases,

facilitate the formulation. For example, consider the function
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£ : v )
= o]V, - le = o(Vi—Vj)(Vi—Vj) s (97

where Vi and Vj are the ith and jth components of VM’ respectively, and
o is a real scalar or variable. Note that f of (97) may represent, for

example, the power loss in line 1ij. For the polar formulation, ﬁv and

ﬁa of (91) are calculated as follows. The ith and jth components of D

and §i, are given by

Hgi = o[-2 (|V;| cos &, - |Vj| cos 6j) |V, | sin &,
+2 (|V, ] sin &; - [Vj] sin Sj) |V, | cos &1,
gy = ol 2 (|V;| cos &, - |Vj[ cos Gj) IVj| sin §;
-2 (V] sin &, - |Vj| sin sj) |Vj| cos Gj],
iyg = ol 2 (V;] cos &, - |Vj| cos Gj) cos &,
+2 (|V,| sin & - |Vj| sin Gj) sin g1
and
By = ol 2 (V| cos ¢, - |Vj| cos aj) c0s 4
-2 (|V,| sin §, - |V.| sin §.) sin §.].
1V, | 8y = 175 §5) 551

A1l other components are zero. On the other hand, one may calculate

= 1
* *
v, - Vj)

s *
-, - Vj)

L 0 J
~ ~ T - .
and use (95) to calculate B, and %, where (P ! is the transpose of
-1 " " R
Py of (57). In this example, the derivation of the formal

derivatives is clearly easier.
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We also remark that other forms of power flow equations can be
handled in a similar way. The previous theorems can be easily
generalized for other formulations provided that transformations similar
to (35) and (52) are defined.

We illustrate the foregoing concepts by the two simple examples

considered before.

Example 3

For the first system, as shown in Fig. 1, consider the function
2 *
1| = V.V .

f = |V V4

From (71),

v 0.7352 + j0.2041

— R

e D
"
1]

0 0
and (76) has the solution

0.0562 + j0.0892

<>
n

1.6788 + jO.0

Also, for the polar formulation, we have from (88) and (89)

He = 0
and
2|V, | 1.5261
,].\l: = ,
~V 0 0
and (91) has the solution
-
~ 0.1123
Vs =
3.3577
-
and
~ 0.1783
VV = .
~ 0
L
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~ ~

Note that the V(s and v, obtained for the polar formulation and V satisfy

(92).

Example U4

For the second system, as shown in Fig. 2, consider the function

*
V., +V
PR I i
J(V1—V1)
From (71)
~ —j/(2V1) 0.1101 - jO.5445
u = -
~ 0 0

and (76) has the solution

0.0302 - jO0.0288

1 <<>
n

0.2673 + jO.5
Also, for the polar formulation, we have from (88) and (89)

1

f =
~8 0
and
iy = 0
and (91) has the solution
~ 0.0603
VG =
- 0.5346
and
~ -0.0577
VV =
~ 1.0

~ ~

Observe that the obtained VG and VV for the polar formulation and V satisfy

(92).
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VI. GRADIENT CALCULATIONS

In the previous section, we have derived the adjoint systems in
different modes of formulation and investigated the relationships between
the corresponding excitation and solution vectors. In power system studies
such as contingency analysis, the first-order change of f is of prime
interest. The first-order change 6f can be calculated from (74), (80) and
(90). On the other hand, the derivatives of f w.r.t. control variables are
required to be calculated, for example, in planning studies.

In the following, we consider the buses to be ordered such that
subsecripts %=1, 2, ..., nL identify 1load buses, g = nL+1, ooy nL + nG
identify generator buses and n = n o+ nG+1 identifies the slack bus.

The vector d of (34) is now partitioned into subvectors associated with

the sets of load, generator and slack buses of appropriate dimension in the

form
d
g = 9@ , (98)
d
n
where d; has elements dz given from (18) by
. d S* V* VT (99)
9, - 6 9, - 2‘ ~M 622’9 99
T .
Yl representing the corresponding row of the bus admittance matrix YT’ dG
* ~ ~l\
has elements dg given by (33) and dn is 5Vn from (19). Also, the vector V
of (74) is partitioned correspondingly in the form
rI\
~
\~/ =l V! - (100)
\')
n
L

Note that the above formulation leads to expressing the vector d solely

in terms of variations in control variables, the gradients in terms of which
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can be obtained by writing (74) in the form

~ ~ ~ T
T af
§f = YL SL + YG SG + Vndn + (3;) 68
ART % NRT R % % of *T &
+V. " d + V., d. +Vd + (=) 6p . (101)

~L L -G .G nn ap ~

The first term of (101) is given, using (99), by

A .
Vpodp o=z Vo dy
=1
S P Lon .,
= 3 (V §8S)- 3 3 (V. V V. & ), (102)
=1 L % =1 m=1 L oM m

where ng is an element of ¥T’ which is assumed, for simplicity, to be a
symmetric admittance matrix (the case of unsymmetric admittance matrix can
be analyzed in a similar straightforward way), or

n

n
v.T g - (V6™ L Vot (v vy
L9 I g 2 2 I Ty Ty
=1 =1 m=1
m# g
n ~ *
- vV V.V , 10
121 ( . VY sylo) (103)

where Yom denotes the admittance of line &m connecting load bus & with bus m
(=%, g or n), and Y0 is the shunt admittance at bus %. The second term of

(101) is given, using (33) by

AT n-1 ~
\' d, = z V d
~G -G =n, +1 g 8
g=ny
n-1 ~

I V. (sP_ -3 s|V_|)
g:nL+1 g g g
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n-1 n -

%
- z z V_Re{V_ V Y '} (104)
g:nL+1 m=1 g g m gm
or
AT n-1 . n-1 n . %
V. d, = T V (P -js|V |) + 5 g V_ Re{V (V -V ) sy 1}
~G -G g=n_+1 g g g=n.+1 m=1 g m 8 en
L L
m#g
n"1 ~ *
- 3 V. Re{V_V_ gy .}, (105)
g:nL+1 g g g go

where ygm denotes the admittance of line gm connecting generator bus g with
bus m (=%, g or n), and ng is the shunt admittance at bus g. The third
term of (101) is given, using (19) by

~ ~ *

Vn d, = Vn GVn . (106)
The fourth term of (101) is simply the first-order change of f due to
changes 1in other variables p in terms of which the function f may be
explicitly expressed.

Equations (103)-(106) provide useful information for gradient
evaluation since they provide direct expressions w.r.t. the control
variables of interest. The derivatives of the function f w.r.t. the control
variables are obtained as follows, where we temporarily assume that p does

~

not contain such control variables.

Load Bus Control Variables

From (103) and its complex conjugate, the derivatives of f w.r.t. the

*
demand Sz and Sm at load bus ¢ is given by

— =V (107
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and

. (108)

Generator Bus Control Variables

From (105) and its complex conjugate, the derivatives of f w.r.t. the
real generated power Pg and the voltage magnitude |Vg| at generator bus g

are given by

— =V (109)
ds &
g
and
v, (110)
g
ds
g

where Sg is given by (22).

Slack Bus Control Variables

From (106) and its complex conjugate, the derivatives of f w.r.t. the

*
slack bus voltage Vn and Vn are given by

df  _ %
5 vn (111
n
and
CLER (112)
n
dv
n

In practice, the phase angle of the slack bus voltage is set to zero as
a reference angle. Hence, the slack bus has only one effective real control

variable,
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The derivatives of f w.r.t. line control variables yij‘ can be obtained

from (103) and (105) and their complex conjugate as follows.

For yzz\,

between load buses & and &, we have from (103) and its complex conjugate

df
dy

L
and

df
*

dy, .
y%l

~ * ~ *
V V - V ~ V ~ V ~ - V 11
( . Uy o Uy ) ( . 2) (113)

WV —vov s -vh (111)
A A AR Y A

For Ye0 between load bus & and ground, we have from (103) and its complex

conjugate
df 3 *
—— ==V VvV V (115)
a4y, 9 L 8 R
and
% *
a _ _viv v, (116)
dy L R
2,0
For ygg‘ between generator buses g and g , we have from (105) and its
complex conjugate
df W, VoV v (- V) (117)
dy_«~ gl g g1 ¢ g 8
ge
and
A Wy - vy o v (118)
ay. . 8l g glg’ e g’
gg
where
Vm = Vm1 + Vm2 (119)

and m is a bus index.

from (105)

For ygo between generator bus g and ground, we have
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~ *
LA v v (120)
Vg0  ay gl g g
g 20

For yzg between load bus & and generator bus g, we have from (103) and (105)

and their complex conjugate

df w.vo-v vy o - (121)
dy,, ~ 8l g Ty g - SO
g
and
df V.V vy o v (122)
w0 o ele ) 2) ( [ S
Yoa

For Yon between load bus % and the slack bus n, we have from (103) and its

complex conjugate

daf ° *
=V VvV (V-V) (123)
dyln g & n g
and
daf i~ ¥ %
s VoV, (=) (121)
Yon

Finally, for ygn between generator bus g and the slack bus n, we have from

(105) and its complex conjugate

daf - *
=V V. (V. -V) (125)
dygn gl ‘g n g
and
df - * ¥
. ¥ = Vg1 Vg (Vn—Vg) . (126)
y
gn

Special Considerations

If p of (101) contains some of the above control variables, the partial
derivatives of f w.r.t. appropriate control variables must be added to the
expressions obtained.

When any of the control variables Uy is a function of some real design
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variables we write

u

ATy gt (27

§up = I
1

8Tyi
where ;ki is the ith design variable associated with Uy and Acki denotes the
change in Tpi® Hence,

au
af - _k (128)

dey; AUy 3z

The control variables associated with other power system components,
e.g., transformers, which are represented in the bus admittance matrix Y
can be easily considered. The corresponding sensitivity expressions may be
derived in a similar straightforward manner.

Equations (107)-(118) and (120)-(126) compactly define the required
formal derivatives of the real function f w.r.t. complex control variables.
In practice, gradients w.r.t. real and imaginary parts of the defined

control variables are of direct interest. These gradients are simply

obtained from

dgf - Re{gg— (129)
K1 K
and
dgf , -2Im{§--§-w , (130)
K2 K

where the complex control variable u, is given by

k
(131)

uo= U+ 3, .

Table I summarizes the derived expressions of function gradients w.r.t.

real control variables of practical interest.
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Example 5

Using the values of V obtained, we have for the first system

~

df ~
o - 2V, = 0.1123
af 5
567 =2 12 ° 0.1783 ,
df ~
dV*-= 2 V21 = 3.3577 ’
21
ar 25
&L -2, % v, = 0.1038 ,
10
df _ ok _
£ = 2 Re{V, V¥ (V,-V)} = -0.0192 ,
12
and
9f  omv. vt (v.-v.)} = -0.0502
a8, Vg W=V . '

where Gmm‘ and Bmm‘ denote, respectively, the conductance and susceptance of

line mm  connecting buses m and m*, m =0 denotes the ground.

Example 6

For the second system, we have

af 5
& 2V, =0.0603 ,
daf ~
AT - 2 V., = =0.0577 ,
df -
—— =2V = 0.5346 ,
av_, 21
a%f— = 0.0 ,
10
9 5 U Re{V® (V.-V.)} = 0.00ul
aG 11 1 V)b = 0.

12
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and

df _ . * -
Cvd 2 V., In{V,V,} = -0.0108.

The gradients obtained can be easily checked by small perturbations

about the base case values.

VII. SENSITIVITY OF COMPLEX FUNCTIONS

In the previous sections, we have derived the required sensitivity
expressions and gradients for a general real function. The relationships
between different modes of formulation have been investigated and
expressions relating the RHS and solution vector of corresponding adjoint
systems have been derived.

The sensitivities of a general complex function can be obtained using
the previous formulas derived simply by considering the real and imaginary
parts separately. In this case, only the RHS of the adjoint system of
equations has to be changed. In other words, only one forward and one
backward substitutions are required for each real function, provided that
the LU factors of the formed matrix of coefficients are stored and that the
base case point remains unchanged.

In this section, we show how the compact complex formulation can be
exploited to formulate the adjoint system corresponding to a general complex
function and to derive the required sensitivities. The relationships
between different modes of formulation are again investigated for the

complex function case.
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For a complex function f, we may write, using (3)

8Vy

“T
11] + §f ,

Y

6f = [u

~

where we have defined

3 =
Q
<l

and

re |
ne>
Qo
~

(132)

(133)

(131)

Gfp being the change in f due to changes in other variables in terms of

which f may be explicitly expressed. Hence, from (69)

kK ® |7 d
Gf = [u uT] + (Sf
~ ~ —% * * p
K K d
~~ ~J -
or
d
§f = [VT VT] + &,
~ o~ *
¢ )
where
r' -
% ~
K. KT (v )
= b
_ * 2~ 2
KT T 7 "
L~ ~ L~ L~
which represents the adjoint system of equations to be solved.

(135)

(136)

(137)

The

first-order change of the complex function f can be evaluated by solving
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(137) and substituting into (136).
The relationships between the adjoint solution of different modes of
formulation are derived as follows. Let
f = f1 + ] f2, (138)
hence
§f = ofy + J 8f,, (139)
o1 o1 .
and let Vr and Vs be the solution vector of the adjoint system (81) using
cartesian coordinates for the real function f1. Similarly, let Vf and Vi be

the solution vector of (81) for the real function f2. Hence, using (80) and

(136), one may write

T d 2T

°T ST % ST 1T . 02 -
Y g * Y g - (Yr 31 - Ys 92) * J(Yr o Ys 92)’ (140)
hence, from (44),
~ _ A1 I\2 . A,l l\2
Y = (YF - YS)/Z + J(Ys + Yr)/Z (141)
and
V= (V) + 992 + 5=V + V) 2. (142)
- r s .5 .r

Equations (141) and (142) relate the solutions of the adjoint system (81)

for both f1 and f2 to the solution of (137) for the complex function f.
Similarly, let V; and Vl be the solution vector of the adjoint system

2 and V2
Y

(91) using polar coordinates for the real function f1. Also, let V
be the solution vector of (91) for the real function f2. Hence, using (90)

and (136), one may write

oT =T % T d 1T 22T

0 2T
Vid + Vid = (Ve dy = Vo do) + 3V dy = Vo dy), (143)
hence, from (4U4)
- 1 2 L0 T2
Y = (YG - YV)/2 + J(Yv + YG)/2 (144)
and
: A1 A2 . I\1 I\2
Y = (Yd + YV)/2 + J(—Yv + Y6)/2 . (145)
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Equations (144) and (145) relate the solutions of the adjoint system
(91) for both f1 and f2 to the solution of (137) for the complex function f.
For gradient calculations, we proceed as before and use the partitioned

forms (98), (100) and

A )
L
Y = YG , (146)
v
n
L J
and we write (74) in the form
oT °T - af \ T
§f = YL gL + YG SG + Vn dn + (33 Gg
2T % 2T % 2 % 9f T
+ YL gL + YG gG + Vn dn + (—) GE. (147)

ap

The first, second and third terms of (147) are given by (103), (105)

and (106) respectively. The fifth term of (147) is given, using (99), by

np n
7Tt Fosoer 1 ovaah o
Vpdp= 2 W sS)w z 3 V V(V-V) sy,
=1 2=1 m=1
m# %
noa ® %
-z VL Vl Vz 8Y,0° (148)
=1
Also, the sixth term of (147) is given, using (33) by
AT % n-1 n-1 n . *
V.d, = : V (8P + Js|V_|) + = I V_ Re{V_(V -V ) sy_ }
~G G g=n_+1 g & g=n.+1 m=1 g g m g gn
L L
m#g
n-1 .
- 3z V Re{V_V_ sy .} (149)
g0
g=n_+1
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and the seventh term of (147) is given, using (19) by

>
>

d =V 6Vn . (150)

Equations (103), (105), (106), (148), (149) and (150) provide useful
information for gradient evaluation of the complex function f w.r.t. the
control variables of interest. Under the assumption that p does not contain
such control variables, the derivatives of the complex function f are

obtained as follows.

Load Bus Control Variables

*
From (103) and (148), the derivatives of f w.r.t. the demand Sz and SQ

at load bus & is given by

df =
T Vl (151)
%
and
L=y, . (152)
dSz

Generator Bus Control Variables

From (105) and (149), the derivatives of f w.r.t. the generator control

variables are given by

— =V (153)

and

(154)

where Sg is given by (22).
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Slack Bus Control Variables

From (106) and (150), the derivatives of f w.r.t. the slack bus voltage

*
. Vn and Vn are given by

A

dv
n

and

df .

.__._=V
*

av n
n

Line Control Variables

The derivatives of f w.r.t. line control variables ‘A
from (103), (105), (148) and (149) as follows.

% and &%, we have from (103) and (148)

df  _ @ v oV vy o V)
dy, v 2 2 IR A A}
and
2 ol * *
A @ v mT V) (e — ¥
dy' . L8 L8 % )
28

~ *
Eiﬁ_ = -V V. v
yLO [ A
and
af _ & *
g"i_ ==Y
Y50
For Vg between generator buses g and g, we have from (105) and (149)
af 1.0 K ~ 2 *
== [V + VIV - (V. +V OV (V. -=V)
dygg\ 2 g g 8 g g g g g

(155)

(156)

3 can be obtained

For yll\ between load buses

(157)

(158)

(159)

(160)

(161)
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and

~

[V VW - (V. +T OV 10 vy . (162)
g g g g g g g g

af  _ 1
dy*. ~ 2
Yeg

For ng between generator bus g and ground, we have from (105) and (149)

af ar 1~ o~ s
- == (V. +V)VV . 16
dy ¥ > ( g + g) g'g (163)
80 dy,q

For Yog between load bus % and generator bus g, we have from (103), (105),

(148) and (149)

LS SR AR AR R (161)
dy2 2 g g’ g [} [} g
g
and
df 1@ sV v -V vl -y . (165)
d * 2 g g’ g [} [} g
ylg

For ymn between load bus g and the slack bus n, we have from (103) and (148)

ddf v v (V= ) (166)
yzn L %
and
af S * %
<5 - VU, (v (167)
Yon

Finally, for ygn between generator bus g and the slack bus n, we have

from (105) and (149)

df 1§ LTy v (V) (168)
dy 2 g g g n g
gn
and
a1 5 = %
= = (V vV vV V =V . (169)
3 o+ V) V) 9

gn
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Remarks

If P of (147) contains any of the above control variables, the partial
derivatives of f w.r.t. appropriate control variables must be added to the
expressions (151)-(169).

Equations (151)-(169) compactly define the required formal derivatives
of the complex function f w.r.t. complex control variables. The gradients

of f w.r.t. real and imaginary parts of the control variables are obtained

using
ar o ar , af (170)
k1 k du
k
and
S REAL LR
k2 k du

where Uy is given by (131).
Expressions of forms (170) and (171) can be directly obtained from

(151)-(169) .

Example 7
Now, we consider the first 2-bus system and the complex function
f = V1 = V11 + j V12.
Using cartesian coordinates, the adjoint system solutions for V11 and V12

are given, respectively, by

~q 0.0883
LA ,
~ 2,314

i
Ay |0.1161
LA ,
~ 0.2041
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0.0428
V§=
- 0.1117
-
and
-0.0187
2 ,
L 0.7352

hence, from (141) and (142)

0.0535 + j 0.0794

<>
"

- 0.7896 + j 0.1579

and

0.0348 - j 0.0366

<
"

1.5248 - j 0.0462

The derivatives of f w.r.t. control variables are calculated, using the

derived expressions, as follows. For S1,

daf R .
and
- v, = 0.0535 + j 0.0794 ,
1
ds
1
hence, from (170) and (171)
g% = 0.0883 - j 0.0428
1
and
af . 0.1161 - j 0.0187.
dQ1
For V29
df = .
-d—V—' = V2 = 1.5248 - J 0.0462
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and

91*7 =V = 0.7896 + J 0.15791
dv

2
2
hence, from (170)
9f 23148 4§ 0.1117.
av »
21
4L v 2V, = - 0.0311 - j 0.0462
dy 1 1
10
and
- v, 1V, = - 0.0203 + j 0.0213,
Y10

hence, from (170) and (171)

4f _ _0.0514 - j 0.0249
aG
10
and
4df . 5.0676 - j 0.0109.
)
10
For y12.
Ay v* (v.-v.) = - 0.0080 + j 0.0231
dy 1 Vg Yol . .
12
and
df ol ¥ %
s =V, V., (V,-V)) = - 0.0022 - j 0.0127,
4y,

hence, from (170) and (171)

S = - 0.0102 + j 0.0104
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and

af  _ :
d_B1.5 = - 0.0358 - j 0.0059 .

VIII. APPLICATIONS TO A 6-BUS SAMPLE POWER SYSTEM

In this section, we present some of the numerical results obtained
for a 6-bus power system [13] using the sensitivity formulas derived in
the paper.

The system consists of three specified load buses (2= 1,2,3), two
generator buses (g = U4,5), the slack bus (n=z6) and eight transmission
lines (t = 7, ..., 14). The single line diagram for this system is
shown in Fig. 3. The line and bus data are shown, respectively, in
Tables II and III. All values shown are in per unit. The application
of the adjoint network approach results in the load flow solution shown
in Table IV,

§

Examples of sensitivities of bus states, namely |V1|, Q and

y’ -1
64 w.r.t. system bus and line control variables are shown in Tables V to
VIII. The estimated effects of the line and circuit outages on the
different states, based on first-order changes, are also shown.

Observe that the sensitivities w.r.t. non-existing elements, e.g.,
the shunt parameters in Tables V - VIII can be evaluated as well.

Although the sensitivites of a general function can be evaluated
using the same adjoint matrix of coefficients at the load flow solution
and by defining the BRHS of the adjoint equations corresponding to the
function considered, these sensitivities can also be obtained, directly,

using the results of Tables V to VIII, For example, consider the

function
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2 2 2
O e | PR N I S (172)

which may denote the loading of line 1,4, The sensitivities of this

function w.r.t. a control variable uk is given by

v, -V
df _ af DIV -V lIY. P v, -V,
= + 20V =y Yyl B, ’

(173)
duk auk

which, when substituting values at the load flow solution and noting

that lvul is constant, reduces to

3|V, | 36 36
§£_ --§§- - 1.6871 a;1 - 4.8588-351 N 4.8588-3;5 .
Uy Kk Kk Kk Kk

Now, let uk denote the conductance of line 2,4. Hence, from Tables V,

VII and VIII, we get
~~ = - 0003240

0y

Similarly, if U denotes the susceptance of line 2,4, we get

- = - 0009320
dB24

The effect of line 2,4 outage on the function considered can be
estimated using the relation

df df
6f = = —— G, - ——
dG,, 24 T dB,

B (174)

24

where we have set the changes in 1line conductance and susceptance,

respectively, to -G and -B Substituting the values of G

24 2u°
(=0.5882) and B2M(=-2'3529) in (174), we get

24

f = 0.019 - 0.219 = - 0.200,
which is identical to the result presented in the Tellegen's theorem
approach of [13] where the function f = lI1ul2 was considered, directly,

in the adjoint simulation without state transformations.
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IX. CONCLUSIONS

A unified study for the class of adjoint network approaches to
power System sensitivity analysis which exploits the Jacobian matrix of
the load flow solution has been presented. Generalized sensitivity
expressions which are easily derived, compactly described and
effectively used for calculating first-order changes and gradients of
functions of interes£ have been obtained. These generalized sensitivity
expressions are common to all modes of formulation, e.g., polar and
cartesian.

A first step towards deriving these generalized sensitivity
expressions has been performed where we have utilized a special complex
notation to compactly describe the transformations relating different
ways of formulating power network equations to a standard complex form.
This special notation and the derived transformations have been used to
effectively derive the required sensitivity expressions only by matrix
manipulations.

The use of these generalized sensitivity expressions requires only
the solution of an adjoint system of linear equations, the matrix of
coefficients of which is simply the transpose of the Jacobian matrix of
the load flow solution in any mode of formulation. These generalized
sensitivity expressions are applicable to both real and complex modes of
per formance functions as well as the control variables defined in a

particular study.
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TABLE I

DERIVATIVES OF A REAL FUNCTION f W.R.T. CONTROL VARIABLES

Control Variable Description Derivative
P9v demand real power 2 V!L1
Qz demand reactive power 2 V22
P t eal power 2V
g generator r p Ag1
v generator bus voltage 2V 5
g magnitude g
Vrl1 real component of 2 Vn1
slack bus voltage
G, - conductance between 2 Re{(V V =V .V )(V .=V )}
o two load buses SR . L
vVt v Do ooy
Bll\ susceptance between -2 Em{(VQVl- R oV,
two load buses
G shunt conductance of -2 |v |2V
20 L 21
a load bus
B0 shunt susceptance of 2 |V2|2 L
a load bus
G ductance bet 2 Re{(V_ V'V . V')V =V )}
N con uctance etween e - ~ N \N -
ge two generator buses glg gle g &
B_ . susceptance between -2 Im{(V_.V =V ..V )V -V}
&g two generator buses gle g 18 g g
Ggo shunt conductance of -2 |V |2 v 1
a generator bus g g
B shunt susceptance of 0
g0
a generator bus
ng conductance between 2 Re{(V 1V -vzvz)(vl-v )}
load and generator gl g g
buses
B tance bet V-V VY -V )
% susceptance between =2 Im{( g1a VsV VL_ g

load and generator
buses
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Control Variable Description Derivative
Nk
G conductance between 2 Re{V V (V -V )}
an load and slack buses Yaemoh
A~k
B susceptance between =2 Im{V V (V. -V )}
n
o load and slack buses baemob
~ *
ng conductance between 2Vg1 Re{Vg(Vn—Vg)}
generator and slack
buses
B v I *V
gn susceptance between -2 Vg1 m{Vg n}

generator and slack
buses
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TABLE II

LINE DATA FOR 6-BUS POWER SYSTEM

Terminal Resistance Reactance Number of
Line No. Buses Rt (pu) Xt (pu) Lines
1 1,4 0.05 0.20 1
2 1,5 0.025 0.10 2
3 2,3 0.10 0.40 1
4 2,4 0.10 0.40 1
5 2,5 0.05 0.20 1
6 2,6 0.01875 0.075 4
T 3,4 0.15 0.60 1

8 3,6 0.0375 0.15 2




- 52 &

TABLE III

BUS DATA FOR 6-BUS POWER SYSTEM

Bus n “n lvm|1£59
Index, m Bus Type (pu) (pu) (pu)
1 load -2.40 0 - [-
2 load -2.40 0 - /-
3 load -1.60 -0.40 - /-
by generator -0.30 - 1.02 /-
5 generator 1.25 - 1.04 /-
6 slack - - 1.04 /0




TABLE IV

LOAD FLOW SOLUTION OF 6-BUS POWER SYSTEM

Load Buses

V1 = 0.9787 / -0.6602
V2 = 0.9633 / -0.2978
V3 = 0.9032 / -0.3036

Generator Buses

QM = 0.7866, 64 = -0.5566

Q5 = 0.9780, 65 = -0.4740
Slack Bus

P6 = 6.1298, Q6 = 1.3546
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TABLE V

6-BUS SYSTEM: SENSITIVITIES OF |v1l

Line Quantities

Total Derivatives

Contingency Effect

Line Outage of Outage of
Conductance Susceptance One Line Circuit
1,4 -0.006326 -0.005283 0.017421 0.017421
1,5 -0.011838 -0.008884 0.027880 0.055760
2,3 0.000027 -0.000012 0.000044 0.000044
2,4 -0.000207 -0.000597 -0.001282 0.001282
2,5 0.000163 0.000294 -0.001192 -0.001192
2,6 -0.000002 0.000039 -0.000123 -0.000494
3,4 -0.000265 -0.000443 0.000591 0.000591
3,6 -0.000017 -0.000120 0.000362 0.000724
Load Bus Quantities - Total Derivatives
Bus Real Reactive Shunt Shunt
Power Power Conductance Susceptance
1 0.029522 0.070273 -0.028275 -0.067306
2 -0.000131 -0.000005 0.000122 0.000005
3 0.000378 0.000169 -0.000308 -0.000138
Generator Bus Quantities - Total Derivatives
Bus Voltage Real Shunt Shunt
Magnitude Power Conductance Susceptance
4 0.357365 0.002243 -0.002334 0.0
5 0.732004 -0.001804 0.001951 0.0
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TABLE VI

6-BUS SYSTEM: SENSITIVITIES OF Q,4

Line Quantities

Total Derivatives Contingency Effect
Line Outage of Outage of
Conductance Susceptance One Line Circuit
1,4 -0.056140 -0.044515 0. 143437 0. 143437
1,5 0.065943 0.060168 -0.205565 -0.411130
2,3 0.000236 0.004289 -0.009954 -0.009954
2,4 0.256340 0.022413 0.098051 0.098051
2,5 -0.015503 0.028010 -0.150048 -0.150048
2,6 0.046139 0.039093 -0.086459 -0.345835
3,4 0.243148 -0.031249 0. 144371 0. 144371
3,6 0.062174 0.056610 -0.128837 -0.257674

Load Bus Quantities - Total Derivatives

Bus Real Reactive Shunt Shunt
Power Power Conductance Susceptance
1 -0.457852 -0.358531 0.438519 0.343391
2 -0.115872 -0.168723 0.107512 0.156551
3 -0.127525 -0.258052 0. 104029 0.210506
Generator Bus Quantities - Total Derivatives
Bus Voltage Real Shunt Shunt
Magnitude Power Conductance Susceptance
4 7.51274 -0.550625 0.572870 0.0
5 -4.,66462 -0.219233 0.237122 0.0
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TABLE VII

6-BUS SYSTEM: SENSITIVITIES OF 61

Line Quantities
Total Derivatives Contingency Effect
Line Outage of Outage of
Conductance Susceptance One Line Circuit
1,4 0.001197 -0.010358 0.050152 0.050152
1,5 -0.004594 -0.016180 0.070737 0.141473
2,3 -0.001609 0.000178 -0.001366 -0.001366
2,4 -0.010354 -0.031650 0.068981 0.068981
2,5 -0.011653 -0.025839 0.107885 0.107885
2,6 -0.005283 -0.025867 0.077008 0.308030
3,4 -0.020029 -0.036084 0.054530 0.054530
3,6 -0.002723 -0.019449 0.058881 0.117762
Load Bus Quantities - Total Derivatives
Bus Real Reactive Shunt Shunt
Power Power Conductance Susceptance
1 0.309969 -0.002339 -0.296880 0.002240
2 0.085296 0.026631 -0.079143 -0.024709
3 0.061420 0.027332 -0.050104 -0.022297
Generator Bus Quantities - Total Derivatives
Bus Voltage Real Shunt Shunt
Magnitude Power Conductance Susceptance
L 0.192793 0.208858 -0.217296 0.0
5 0.271949 0.223549 -0.241790 0.0
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TABLE VIII

6-BUS SYSTEM: SENSITIVITIES OF §

i

Line Quantities

Total Derivatives

Contingency Effect

Line Outage of Outage of
Conductance Susceptance One Line Circuit
1,4 -0.006119 0.005953 -0.035213 -0.035213
1,5 -0.004959 -0.011033 0.046087 0.092174
2,3 -0.000725 -0.000212 0.000073 0.000073
2,4 -0.017094 -0.051045 0.110050 0.110050
2,5 -0.006343 -0.016282 0.069157 0.069157
2,6 -0.0053560 -0.024608 0.072997 0.291989
3,4 -0.028650 -0.050482 0.067952 0.067952
3,6 -0.003276 -0.023336 0.017661 0.035321
Load Bus Quantities - Total Derivatives
Bus Real Reactive Shunt Shunt
Power Power Conductance Susceptance
1 0.222333 0.005176 -0.212945 -0.004957
2 0.081031 0.026460 -0.075185 -0.024551
3 0.073688 0.032826 -0.060111 -0.026778
Generator Bus Quantities - Total Derivatives
Bus Voltage Real Shunt Shunt
Magnitude Power Conductance Susceptance
4 -0.047087 0.281747 -0.293130 0.0
5 0.272518 0.164929 -0.178387 0.0
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bus 2 y12=6“‘j20 : bus 1
S B
= I e e
v,=10/0
Yo0=13 Yi0=12

IS 777

Fig. 1 2-bus load-slack sample power system
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1
bus 2 i bus1 —=—
¥,56-j20
O S
V,=10/0 IV,1=0.9
Yog i3 Y10°i2
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Fig. 2 2-bus generator-slack sample power system
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bus 1 bus 4

bus 5

bus 2

bus 6 — bus 3

Fig. 3 6-bus sample power system



