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Abstract

We present a comprehensive comparison between the widely used
Lagrange multiplier and Tellegen's theorem approaches to sensitivity
calculations in electrical networks. The two approaches are described
on a unified basis using the conjugate notation. Different aspects of
comparison can thereby be investigated. The linear electronic circuit
analysis case is seen to be a special case. Analytical and numerical

results are shown for 2-bus and 6-bus power syStems.
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I. INTRODUCTION

Sensitivity calculations are performed routinely in electrical
network analysis and design to supply first-order changes and gradients
of functions of interest w.r.t. practically defined control or design
variables.

Two approaches, namely the Lagrange multiplier approach [1,2] and
Tellegen's theorem approach [3,4], are intensively used for sensitivity
calculations in both electronic and power networks. Methods based on
the two approaches have been described and applied [1-4] on an
individual basis. A complex formulation of the Lagrange multiplier
approach has been described in [5].

The material presented in this paper aims at investigating
relationships between the two approaches. This investigation is
accomplished by employing common bases of description and analysis
through which the required aspects of comparison can be clearly stated.

We state the notation used and the basic formulation in Section II.
In Sections III and IV, we describe, on a unified basis, the application
of the Lagrange multiplier and the Tellegen's theorem approaches to
sensitivity analysis of electrical networks. A comprehensive discussion
of some aspects of comparison is then presented in Section V and
applications to a 2-bus and a 6-bus sample power systems are presented

in Section VI.

II. BASIC FORMULATION
We denote by f a single valued continuous complex function of 2nx
*
system complex state variables (x, X ) and 2nu complex control variables

*
(u, u ) arranged as column vectors. We also denote by h a set of nx



* *
complex equality constraints relating (5, X ) to (u, u).

~

Using the conjugate notation [4-6], the first-order change of f is
written as

— * —T %
§f=f " 8x +f" 8x + f Su + f  6Su , 1

where § denotes first-order change, T denotes transposition and £x’ £x’

— *
£u and £u denote the formal derivatives [5] 9f/9x, 9f/9x , 3f/9%u and

*
of/3u , respectively. Also, the first-order change of h is written as

— * — *
h=H 8x +H 6x +H Su+H Su =0, (2)
= = T T T, *T T T
where Ex’ Ex’ Eu and Eu stand for (dh"/3x)", (dh /3x )", (9h /du)" and
T, *T .
(dh"/3u )", respectively.
* *

When dealing with electrical networks, x, X , u and u may be

classified [4] into 2-component subvectors

ted

X and Eb' respectively,

associated with different element (branch) types, b denoting the bth

branch. The elements of ib and Eb

pairs of network variables. In general, Zb and Eb constitute node

may constitute complex conjugate

branch variables x and u and line branch variables x. and u,. For
~m ~m ~t ~
example, zm may represent node voltages in a typical linear electronic
*
network. In this case the components of x are V and V .
~m m m
In power networks x and Em are further classified [4,6] into
~m
vectors associated with 1load (52, El)' generator (5g, gg) and slack
generator (x , u ) branches. An element of x,, X , X and x, may be
defined as Vg, Qg + Jsg, Pn + JQn and It' respectively, where Pm and Qm
are the real and reactive powers associated with bus m and Vm = Vm.Z§m‘
2 1

as Pz + JQz, Pg + JIVgI, Vn and Yt.

A corresponding element of u Eg’ En and Et is defined, respectively,



In general, we write

{x, x} = {;gb} = {x , gt} (3)
and
*
{u, u} = {gb} = {gm, gt}. (4)

In this formulation, we have assumed that the number of state or control

variables defined is 2nB, n_ denoting the number of branches in the

B
network. This assumption is made to simplify the comparison between the
Lagrange multiplier and Tellegen's theorem approaches performed in the

following sections. Both approaches can, however, be applied [2,5] for

a general number of state variables.

III. LAGRANGE MULTIPLIER APPROACH
In this approach, we use (2) and its complex conjugate to write the

first-order change 6f of (1) in the form [5]

- . *T — *
A)TGE+('§U-HT)\-HTA)TSE, (5)

%
T o T

where ) and A are vectors of Lagrange multipliers obtained by solving

the adjoint equations

A+ A=f, (6a)
_ *T — —
HT A+ H T A =1 . (6b)
Hence, from (5)
df T =*T —
a-g = gu - 'Iiu 2\1 - Eu 2\’, (78)
— — * —
d_ _F _H N -HTIT. (7o)



In practice, we solve the 2nx complex adjoint equations (6) for the
Lagrange multipliers A and Z which are then substituted into (7) to
obtain the required total formal derivatives of f w.r.t. control
variables.

For use later, we now describe the approach in a slightly different
way. We employ the classifications of (3) and (4) to define the change

of an element-local Lagrangian term as

s 20 m B 1.3 m o n D ex o+ (A [h B I
b~ '~ “~bx ~bx" *~ 'Rpx ~bx’ ~b T '~ ‘~bu ~bu
T . h 1) su (8)
3 By o)) Sty
where
A
H = h oo h
~x [~1x NnBX]’ (92)
- A —
H = [h O h ] (9b)
S T M T enpgx
and
H £, ...h 1, (10a)
~ ~1u ~nBU
— A — p—
= [h ees h
H [~1u ~nBU]’ (10b)
h d h i .
hox an b being nB vectors
We also define
sL 2zl (11)
b
hence, from (2) and (8)
§L = 0. (12)
Using (8), (12) and
§f = I ([fbx fbx] Gib + [fbu fbu] ng) (13)

b



we may write, from (11)

§SL = 6f — L {([f T AN & o on 1) sx
L= - b [ bx bx] T~ T~bx ~bx] T~ [be be ~ *
£ T A [h B o n 1) 6u ) (14)
- - u L ]
(t bu bu] ~ ~bu "“bu:| ~ [nbu t"bu ~b

Observe that when A and A of (14) satisfy (6), namely

T —*T

Box 2+ By 2= Ty (152)
—T *T — —
be 2‘, + be 2‘, - fbx’ (15b)
then (14) reduces to
By .
T bu u | =T
- - b - A - A 8 1
~bu ~bu
hence, from (12)
T H*T
T ~bu ~pbu |[=\T
§f = ¢ f T - A - § (1
~bu ~bu
so that
—%
ar h Boi )
du_ ° il I B P R Y (18)
~b fbu Eﬁu ~bu l

which is a form of (7).

IV. TELLEGEN'S THEOREM APPROACH
In this approach, the application of Tellegen's theorem [4] results

in the identity

§T = 0, (19)



where

st & 3 8T, » (20)
b
and the element-local Tellegen term GTb is defined as

A AT K
b = by %% * Npy Yy (21)

and the 2-component vectors ﬁbx and ﬁbu are linear functions of the
formulated adjoint network chrrent variables Ib and voltage variables Vy

-~ A

A

and their complex conjugate. Hence, the ﬁbx and nbu are related through

Kirchhoff's current and voltage laws formulating a set of network

equations. Using (13) and (21), we may write, from (20)

- T —= T
8T = 6f - f -1 f f -7 § .
f -1z {([fbx bx] be) 65b + ([ bu bu] ﬂbu) gb} (22)

b

The adjoint network is defined by setting

r%b
A X
I:l'b X 7
_ bx

’ (23)

hence (22) reduces to

§T = 6f =z (| Y= 5 7T sy, (24)
b F ~bu ~b

from which

. (25)

In practice, we formulate the adjoint network using (23) and solve the
2n adjoint network equations to get ﬁbu’ which are then substituted into
(21) to obtain the required total formal derivatives of f w.r.t. complex

control variables.



V. ANALOGY AND COMPARISON

In the last two sections, we have described both the complex
Lagrange multiplier and Tellegen's theorem approaches to sensitivity
calculations in electrical networks. In this section, we investigate
the analogous features of the two approaches and state é general
comparison between them.

Both approaches have been applied to both real and complex
functions [6]. The application of the Lagrangian approach to complex
functions in power networks implies the direct solution of 2nB X 2nB
complex equations of (6) or (15). For real functions £x = £: and it is
sufficient to solve either (6a) or (6b) where A = 3*. On the other
hand, the application of the Tellegen theorem approach to real function
sensitivities implies a consistency analysis [6] which depends on the
particular network being analyzed. In order to attain a reasonable
comparison between the two approaches, only the case of real functions
will be considered. The equations derived are general and the case of
complex function sensitivities can be analyzed in a similar,
straightforward manner.

We remark on the resemblance between the element-local Lagrangian
term GLb of (8) and the element-local Tellegen term GTb of (21). We
also remark on the resemblance between equation (12) formed to satisfy
(2) and equation (19) formed by applying Tellegen's theorem. The &f of
(14) and (22) is expressed solely in terms of the control variables via
defining, respectively, the adjoint systems (15) and (23). The solution
of the adjoint network is then used to obtain the total derivatives
df/dgb from (18) and (25), respectively.

In the complex Lagrange multiplier approach, the adjoint system of



equations to be solved for the adjoint variables (Lagrange multipliers)

A and X constitutes a 2nB X 2nB complex matrix of coefficients. In

general, when other state variables are defined [2], the order of the
matrix of coefficients 1is determined by the total number of state
variables defined. On the other hand, the adjoint system of equations
in the Tellegen's theorem approach represents a set of network equations
and constitutes only a 2n x 2n real matrix of coefficients, n denoting
the number of nodes (or buses) in the original network.

The compactness of the adjoint system formulation in the Tellegen's
theorem approach is afforded in essence by realizing, when formulating
the adjoint equations, Kirchhoff's relations between the different
adjoint variables which constitute a fictitious electrical network.

Assuming that the effort required is divided into formulation and
solution parts of the adjoint system, we immediately see that the
Tellegen's theorem approach sweeps the major effort into the formulation
part and results in only 2n real adjoint equations to be solved. In
contrast, the Lagrange multiplier approach requires almost nothing to
formulate the adjoint system which then constitutes nx adjoint equations

to be solved.

VI. APPLICATIONS
In this section, we illustrate the implementation of the sensiti-
vity approaches described in the previous sections by analytical and

numerical results for a 2-bus and a 6-bus sample power systems.

Application to a 2-Bus Power System

This simple system is mainly used to clarify analytical aspects of
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the sensitivity approaches. The system consists of a load bus (m=£=1),
the slack bus (n=2) and three transmission branches (t=3,4,5). The
single line diagram for this sample system is shown in Fig. 1. The

system complex state variables (5,5*) of Section II are

A R
82 SS
X = I3 and x* = I§ ’
Iu Iﬁ
LISJ L.Ig,

where nx=5 for this example. Similarly, the system complex control

variables (g,g*) are

— - r“*“1
S1 S1
*
V2 V2

u = Y and u¥ = Y¥* .

~ 3 ~ 3
*
Yu Yu
Y Y*

;S_J L.S_,

The vector h of n complex equality constraints relating (x,x¥) to
~ X ~'

(E’E*) is given, for example, by

EX VL 4 YOV, - VR Y v;
S; + VS(YM + YS)VZ - Vg Y5 V1
= | I -Y 0, =0,
Iu - Yu V2
s % Nt Y, J
hence, the first-order formal partial derivative matrices Ex’ Ex' Eu and

Eu of (2) are given by
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. =
VE(Y Y 0 0 0 0
g+ Y5
V¥ Y
5 s 0 0 0 0
H = -Y 0 1 0 0 ,
~X 3
0 0 0 1 0
-Y 0 0 0 1
L 5

[V1(Y + YS)- Y

V.l o0 0 0 0
3 5 2
0 1 0 0 0
A = 0 0 0 0 ol,
~X
0 0 0 0 0
0 0 0 0 0
- -
8 V% %V % - .
0 v1 Y5 V1 : 0 V1(V1 V2)
0 VE(Y Y VE v VE(V_ -V
2y + 1) 0 2 2 205 = V)
H = 0 0 -V 0 0
~u 1
0 -Y 0 -V 0
4 2
0 0 V -V
LO Y5 (2 1)_J
and
— —
1 0 0 0 0
0 Y YOIV ~-Y V
[( y + 5) 5 5 1] 0 0 0
H, = 0 0 0 0 0
0 0 0 0 o1l,
0 0 0 0 0
L

Note that ﬁ; # Ex and ﬂ: £ ﬁu since h = 0 represents general complex

equality constraints. Note also that the quantities YS(V1 - V2) and
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Y3 V1 in terms of the state V1 and controls V2, Y3 and Y5 could be

replaced in the vector h by the states 15 and I3, respectively.
Now, consider the real function
2
f = |V = V#
I1| V11 ’

which represents the square of the load bus voltage magnitude. Hence,

(26)

the first-order formal partial derivatives f , f,f and T of (1) are
~XO~MXT ™M ~

given by
— j 7
* Vv
V1 1
0 0
f = 0 ’ f = 0
~x ~X
0 0
0 Lo
and
.-f;u = f;u = ,9,'
Note that for the real function f, f*¥ - F and f* - F .
— ~x T oAy ~u T A

The matrices H , H, H and H can easily be partitioned into the

element vectors be, be, Ebu’ Ebu’ respectively, as given by (9) and
(10). For example,
. . Co T
V¥ (Y Y V¥ v
(T3 + ¥g) 11
V¥ Y 0
2 5
h = =Y h = -V .
~1x 3 ’ ~3u 1
0 0
- 'Y5 . L 0 _

Similarly, fbx’ ?bx’ fbu and ?bu are simply the corresponding elements

of f, T, £ and T calculated before. Therefore, the Lagrange
~X X ™M ~

multipliers A and Z can be calculated from (6) or (15) which constitute
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10 equations each (2nx = 10). The total derivatives can subsequently be

evaluated from (7) or (18) as described in the paper.

In the Tellegen's theorem approach, the transformed adjoint network

vectors be and nbu are given [6] for various elements by
- I, + Vs I*/y ~ - V*/V
I gty . N
* - *
I? + V1 11/V1 V1/V1
- - V¥/V ~ I* y*/y
n, = 27> Con. = L+ 13V,
~2x T . Sou 7| 2 .
- V¥ ¥ I v
v,/ D+ v
R I/Y_ -V - v I./Y_
Ny - A3 3 § , D3u - 3 A3 3
I%#/Y*% -~ Vx V¥ Ix/Y¥*
33 3 L 3 3 3]
A ~ ‘T — ~ —
I./Y -V ~ v 1./Y
I
M * E:/Y: G:Q P T v: E:/Y*
St T TR T L 4 Ty y
. Ig/Y, = Vg n v Is/Yéj
nsx = ~ ~ ] D,Su = ~
I#/Y% — Vs V# Ix/Y¥*
L5 5 T 5 55 5

The adjoint network is described by (23), namely

) anesy

21 + Q? I‘!]"/V1 V?

E? + 61 11/V? V1
-VS/V2 0
_gz/vg 0

23/Y3 - §3 = 0 .
1y - s :
Iu/Yu - V4 0
fﬁ/Yﬁ - 0
35/Y5 -, 0
f;/yg - Gg 0

L B S
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~

Note that the adjoint transmission elements are modelled as It = Yt Vt’

t = 3, 4, 5 as in the original networks.
The solution of the adjoint network which constitutes four
equations (2n = 4) provides the unknown adjoint network currents and

voltages. The total derivatives can subsequently be evaluated from (25)

, . and

using the values of fb bu ﬁbu calculated before.

u

Application to a 6-Bus Power System

Consider the 6-bus power system [6] shown in Fig. 2. The system
consists of three load branches (£ = 1, 2, 3), two generator branches (g
= U4, 5) and the slack generator branch (n = 6) as well as eight
transmission branches (¢t = 7, 8, ..., 14). Therefore, for this system,
n = 6 and nB = 14, Tables I and II show, respectively, the bus and line
data of the system using the notation described in Section II. The
power flow solution associated with the base-case data of Tables I and
IT is shown in Table III,

The element state and control variables X, and 9 of (3) and (4),
respectively, are given as follows [4,6].

The element variables for a load are defined as

Tl [ 172 B
* |
IV, | (v, V1) |
~ -1
s - *
X0 62 tan [J(Vi Vl)/(Vz + Vz)]
- A
Zg = | = = 27)
* o *
4, P, (V, 1% - V% I))/2
-
Q (VE T, - V. I%)/2 3
L e AN AR P )

or, for example, as
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S ~ -

Vl vl

v v

A L
7, *= - N (28)

*
Sl V£ I2

Sk v T
L L2 74
— L- -

The element variables for a generator are defined as

—

s ) tan” L5V = V) /(U + V)]
g g g g g
Alx 7] A Q JUE T -V I%)/2
~g g g 8 g 8
’%g = = = (29)
) IV | (v vxy/2
g g g g
-
P (V I* 4 v* T )/2
g g g g 8
- J
or, for example, as
— V - - V "
g g
I I
zg é g 2 = g . (30)
|V vV V%
g' g 8
S + S# V I* 4+ V# I
g g g g g g
- - - J
The element variables for the slack generator are defined as
— —T i~ -~
P (V I* 4+ V¥ T )/2
n n n n n
X | Q J(VE I -V I%)/2
~n n n n n n
- A
z, =|_ | = ] (31
1/2
v *
En ! nI (Vn Vn)
-
s tan-1[j(v* -V )/(V + V¥)]
L n n n n n o

or, for example, as
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ne>
=

:§Nl

V*
L
For other branches, the element variables are defined according to

the element type. The element variables for a transmission element, for

example, may be defined as

— “ - -
T#*
Re{It} (It + t)/2
F Im{I (1% - I
X, m{ t} J( h t)/2
7, 0= |_ | ¢ = (33)
G I A b
u t ( 1‘_'/Vt + It/vt)/2
-
B j(V¥/y* o T /V
R R R A A
or, for example, as
7 r R
I I
t t
I* I*
A t
z, = | " = . (34)
Y It/vt
Y* I*/V#*
t t
- — L- -/
Now, consider the function
2
f =2 IR
t t t
1 1 1
= (I, IN(5 + 7)) (35)
g2t e

which represents the total transmission losses in the power network.
Using either set of element variables (zb or Zb) defined in
(27)=-(34) and following the procedure of Section III for the Lagrange

multiplier approach (28 adjoint equations are to be solved) or the
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procedure of Section IV for Tellegen's theorem approach (12 adjoint
equations are to be solved), the reduced gradients of f with respect to
various control variables can be evaluated. For the set of element

variables ib’ these reduced gradients are given in Table IV.

VII. CONCLUSIONS
The two widely used approaches to sensitivity calculations in elec-
trical networks, namely the Lagrange multiplier and Tellegen's theorem
approaches have been described and compared. The description has been
performed on a unified basis, where we have defined and employed
element-local terms in formulating the two approaches so that different
aspects of comparison are clearly investigated. The resemblance in for-

mulating the adjoint systems of the two approaches has been discussed.
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TABLE I

BUS DATA FOR 6-BUS POWER SYSTEM

Bus Py 9 A PEA
Index, i Bus Type (pu) (pu) (puw)
1 load -2.40 0 - /-
2 load -2.140 0 - /=
3 load -1.60 -0.140 - /-
4 generator -0.30 - 1.02 /=
5 generator 1.25 - 1. 04 /=
6 slack - - 1.04 /0
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TABLE II

LINE DATA FOR 6-BUS POWER SYSTEM

Branch Terminal Resistance Reactance Number of
Index, t Buses Rt (pu) Xt (pu) Lines

7 1,4 0.05 0.20 1

8 1,5 0.025 0.10 2

9 2,3 0.10 0.40 1

10 2,4 0.10 0.40 1

1 2,5 0. 05 0.20 1

12 2,6 0.01875 0.075 y

13 3,4 0.15 0.60 1

14 3,6 0.0375 | 0.15 2
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TABLE III

LOAD FLOW SOLUTION OF 6-BUS POWER SYSTEM

Load Buses
V., = 0.9787 /-0.6602

V_ = 0.9633 /-0.2978

2

V3 = 0.9032 /-0.3036
Generator Buses

Qu = 007866, 6’4 - -0-5566

= 0. 0 6 = =Ue.

Q5 9780, 5 0.4740
Slack Bus

P. = 6.1298, Q = 1.3546
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TABLE IV

RESULTS OF 6-BUS EXAMPLE

Line Quantities

Line Derivatives w.r.t. Gt Derivatives w.r.t. Bt
1,4 0.016462 0.008741
1,5 0.048977 0.027370
2,3 0.003490 0.002102
2,4 0.084665 0.044962
2,5 0. 045468 0.022680
2,6 0. 103966 0.060904
3,4 0.089397 0.042758
3,6 0.113314 0.069869
Load Bus Quantities
Bus Derivatives w.r.t. Pz Derivatives w.r.t. Qz
1 -0.453538 -0.020390
2 -0.201703 -0.054098
3 -0.221666 -0.094646
Generator Bus Quantities
Bus Derivatives w.r.t. IVgl Derivatives w.r.t. Pg
4 -0.373561 -0.375812

5 -0. 184047 -0.312838
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bus 2 bus 1

Fig. 1 2-bus power system,
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bus 1 bus 4

bus 5

bus 2

bus 6 | bus 3

S

Fig. 2 6-bus sample power system,



