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MMLC -~ A FORTRAN PACKAGE FOR LINEARLY CONSTRAINED MINIMAX OPTIMIZATION

J.W. Bandler and W.M. Zuberek

Abstract

MMLC is a package of subroutines for solving linearly constrained
minimax optimization problems. It is an extension and modification of
the MMLA1Q package due to Hald. First derivatives of all functions with
respect to all variables are assumed to be known. The solution is found
by an iteration that uses either 1linear programming applied in
connection with first-order derivatives or a quasi-Newton method applied
in connection with first-order and approximate second-order derivatives.
The method was described by Hald and Madsen. The package and
documentation have been developed for the CDC 170/730 system with the

NOS 1.4 1level 552 operating system and the Fortran Extended (FTN)

version 4,8 compiler,
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I. INTRODUCTION

The package for linearly constrained minimax optimization of a set
of nonlinear functions [1] has been extended and modifieq to provide a
uniform printed output of input parameters as well as intermediate and
final results of optimization. Consequently, the calling sequences have
been modified appropriately, however, the original call to the
subroutine MMLA1Q has been preserved to ensure compatibility with the
previous version of the package.

The whole package is written in Fortran IV for the CDC 170/730
system. At McMaster University it is available in the form of a library
of binary relocatable subroutines which is 1linked with the user's
program by an appropriate call to the main subroutine of the package.
The name of the library is LIBRMML. The library is available as a group
indirect file under the charge RJWBAND. The general sequence of NOS3

commands to use the package can be as follows:

/GET (LIBRMML /GR) - fetch the library,

/LIBRARY(LIBRMML) =~ indicate the library to the loader.

The user's program should be composed (at least) of:

- the main segment which prepares parameters and calls the main
subroutine of the package,

- the segment which calculates the values of residual functions and
their first partial derivatives at points determined by the
package; the name of this subroutine can be arbitrary because it is

transferred to the package as one of the parameters.
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This document includes the user's manual of the MMLC package
presented together with illustrative examples. A Fortran listing of the

package is found in [2].
II. GENERAL DESCRIPTION

Given a set of nonlinear differentiable residual functions fi(z),

i=1,2,...,m, of n variables x = [x1 Xy ees xn]T, it is the purpose of

the package to find a local minimum of the minimax objective function

F(x) = max f_(x)
1<idm

subject to linear constraints
cT

&4 £ + bi = 0, i= 1, ee ey R‘eqy
T .
g X+ bi >0, i= Zeq+1, ceey &y

where Si and bi’ i=1, ..., &, are constants.

The objective function is in general a non-differentiable function
and normally the minimum is situated at a point where two or more
residual functions ére equal and/or some of the constraints are active
(a constraint is active if its value is equal to zero). If there is no
smooth valley through the solution and the minimum is numerically
well-defined then the minimum is characterized by only first derivatives
of the residual functions and the constraints which determine it. For
such cases it 1is possible to construct algorithms based on first
derivative information only with fast final convergence. It has been
proved [3,4] that if the so-called Haar condition (which ensures that no
smooth valley passes through the solution) is satisfied then quadratic
final rate of convergence can be obtained. If there is, however, a

smooth valley through the solution, the first-order derivatives may be
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insufficient and some second-order information may be needed to obtain a
fast final convergence. For such cases the quasi-Newton iteration has
been proposed [4] in which the second-order derivatives are approximated
by the Powell's method.

The minimax algorithm is a two-stage one [4]. 1Initially, Stage 1
is used and at each point the nonlinear residual functions are
approximated by linear functions using the first derivative information.
However, if a smooth valley through the solution is detected, a switch
to Stage 2 is made and the quasi-Newton iteration is used. If it turns
out that the Stage 2 iteration is unsuccessful (for instance, if the set
of active functions has been wrongly choosen) then a switch is made back
to Stage 1. The algorithm may switch several times between Stage 1 and
Stage 2 but normally only a few switches will take place and the
iteration will terminate either in Stage 1 with quadratic rate of
convergence or in Stage 2 with superlinear rate of convergence [4].

The algorithm is a feasible point algorithm which means that the
residual functions are only evaluated at points satisfying the linear
constraints. 1Initially a feasible point is determined by the package,

and from that point feasibility is retained.

Stage 1
The Stage 1 algorithm is similar to that of [3]. At the kth

iteration the change QF of the approximation gk_1 is determined as the

solution of the linear minimax problem

T
Minimize F(xX~1, 0% = max (£, (XN + £ (X" B6
oK 1<idm t

~



subject to the constraints

9_,1(5 +h)+Db, =0, i=1, ..., Zeq,
c'?(xk_1 hk) +b, >0, i=z=24 +1, ..., %,
~i~ i~ eq
k-1
< 87,

where 8¢ is equal to 0.251n71, 1n*”!

Iy or ZHQF_1H according to an
unsuccessful, not unsuccessful or successful (k-1)th iteration. The jth

iteration is unsuccessful if

j=1 j=1
F(x'™) - Py

it is successful if

Fed™y CrT b s 0urs (T - FGITT, R

and is not unsuccessful otherwise. In each iteration of Stage 1, the
step size is thus updated according to the goodness of the 1linear
approximation. If the change of the objective function F slightly
differs from the change predicted by linear approximation, the step size
is increased; if it differs significantly, the step size is decreased.
The initial step size 62 is defined by the user (argument DX).

k-1 k

In order to accept x + h" as the next point it is wusually

required that the value of the objective function F decreases, namely,

k-1

F(x !

+ 15 < R,

It is shown in [5], however, that this criterion is not always
sufficient to guarantee convergence and, therefore, the stronger

condition is used. If

F(;gk'1) - F.()gk-1 + nk) > 0.01 (F(zk_1) - F(g“, nk))
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k k=1 k k=
then x = x + h, otherwise Lk = X 1.

The algorithm terminates in Stage 1 when any one of the following

conditions is satisfied:

(1) the number of residual function evaluations exceeds the limit
defined by the user (argument MAXF),

(2) the consecutive change QF of the approximation Lk of the solution
is sufficiently small

ke < e ik,

where € is defined by the user (argument EPS),

(3) the consecutive change QF reaches the machine accuracy

1 < ey 1S,

where €O is the smallest positive number such that

1+€o>1,
(4) the consecutive change gk is insignificantly small, namely,
T % 10_50

(when the solution x* is equal to Q, the conditions (2) and (3) may
be insufficient to terminate the iteration),
(5) the consecutive solution of the linear minimax problem does not
decrease the value of the objective function
Fof™, 09 o r 5.
Moreover, the user can terminate the iterative procedure and cause the

return from the package by setting one of parameters during evaluation

of residual functions (see argument FDF).

Switch to Stage 2

For each kth Stage 1 iteration the set Ak = A? + AE of active
E is determined.

residual functions A? and active constraints A
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Initially this set contains all the equality constraints provided that

the equality and inequality constraints are satisfied for the starting

point (otherwise the starting point is adjusted appropriately by the
package) . Subsequently, the sets Ak, k = 1,2,..., are updated in
consecutive iterations, corresponding to consecutive approximations 5F

of the solution. A switch to Stage 2 is made after the kth Stage 1

iteration if the following conditions are satisfied simultaneously:

(1) the sets of active residual functions and constraints for the last
t Stage 1 iterations are identical

Ak—t+1 . Ak-t+2 -l = Ak
(parameter t is defined by the user - argument KEQS - and normally
t = 3 is an appropriate value),

(2) there have been at least n Stage 1 iterations (n is the number of
optimization variables)

k >n,

(3) the approximation of the Hessian matrix is positive definite for
the set Ak of active residual functions and constraints,

(4) the value of the objective function F(&k) decreases in consecutive
switches to Stage 2 (for the first switch this condition is
omitted)

F(X) < F(E7%) - 81575
where 53-5 is the point at which the previous switch to Stage 2 has
14

been made, and § is a small positive number (& = 10~ is used in

the package) .

Stage 2

At the kth Stage 2 iteration an approximate Newton method is
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applied to the following system of equations

' - -

pX AK f.. (xk ! + hk) + b Ag (c'I:(xk ! + hk) +b.) =0,

jeA? jeAi
i=1,...yn; f . = ij/axi,
z XL? =1,
J

JjeA
c'l.q(xk_1 + hk) +b, =0, JeAk.
fFETT o) e G e n®y 20, genk, g oenk, 545,

k k

where the unknowns are [gk, AF], and Ak = Ap + Ac is the set of active

residual functions A? and active constraints Ag. The iteration is
n -
approximate because instead of fj(gk ! + gk) the approximated second-

order derivatives are used.

If the solution of the given system of equations is non-singular,

the residual r(x, A, A) is evaluated at the point x<' + n*
- ! -
PG gk, K, AN - n{xg fji<5k D e, 1s 12,000,

k . K
+h) + bj) | JeAc},
k . .k
+h) + bj | JEAC},

k=1 k k

X h jeA - {j }HI
X +h) | ] £ {JO}
and if the residual decreases

e B A A5 <oug9g r(ETT, AT, AT
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k=1 k k k-1 k
then (g + h ) is accepted as the next point, X = X + h,

otherwise 5# = §¥_1.

Moreover, in each Stage 2 iteration the approximation of the
Hessian matrix is updated similarly as in Stage 1, and persistence of
the set Ak of active residual functions and active constraints is
checked.

The algorithm terminates in Stage 2 if any one of the following
conditions is satisfied:

(1) the number of residual function evaluations exceeds the 1limit
defined by the user (argument MAXF),
(2) the consecutive change gk of the approximation zk of the solution
is sufficiently small
ugku <e uiku,
where € is defined by the user (argument EPS),
(3) the consecutive change Qk reaches the machine accuracy
Hgkﬂ < EO uiku,

where EO is the smallest positive number such that

1 + 60 > 1,
) K . ..

(4) the consecutive change h is insignificantly small, namely,
i ¢ 107°

(when the solution x* is equal to 0, the conditions (2) and (3) may
be insufficient to terminate the iteration).
Moreover, the user can terminate the iterative procedure by setting one
of the parameters during the evaluation of residual functions (see the

argument FDF),
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Switch to Stage 1

At each kth Stage 2 iteration the following conditions are checked:
(1) whether the set of active residual functions and active constraints

is preserved

(2) whether residuals ;(i, A, A) are decreasing

r'(ggk'1 + NF, &F, 2% < 0.999 r(ik'1, Ak-1, Ak-1),

(3) whether the system of equations solved by the approximate Newton
method has a non-singular solution.

The Stage 2 iteration is continued when all the conditions are

satisfied, otherwise the algorithm returns to Stage 1.
III. STRUCTURE OF THE PACKAGE

There are 2 different entries to the package and 2 corresponding
"main" (or interfacing) subroutines:

1. subroutine MMLC1A - standard entry which provides uniform printing
of input parameters as well as intermediate and final results,

2. subroutine MMLA1Q - original entry, as defined by Hald [1]; this
entry is preserved to ensure the compatibility with the previous
version of the package.

Block diagrams of the package, corresponding to entries 1 and 2 are
shown in Fig. 1 and 2, respectively. It can be observed that the
PRINTOUT package of subroutines is used only when entry 1 (subroutine
MMLC1A) is called, and that the subroutine MMX00Q (Fig. 1), which is for
printing the values of functions and their first derivatives, is

replaced by dummy subroutine MMX00Z (Fig. 2) when entry 2 is used.
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e PRINTOUT:
MAIN MMX0OB
| MMXQOC
N MMX
MMLC1A MMXGLM
MMXEVL
MMXHDR
MMXLLM
MMXPLM
MXPSZ
MMLCSA
l REGRADs
MMLCIA FERST DECCL
Y
UTRNS
UTTRNS
MMLPA RSOLV
TSOLY
LIMIT
BFGS
S2LALQ
| | LINSYS
FOF
L mMxo0Q  |—
|

Fig. 1 Structure of the MMLC package corresponding to the standard

entry (subroutine MMLC1A).
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MMLCSA

l REGRAD:
MMLCSA FEAST DELCE
HACUM
. UTRNS
V UTTRNS
MMLPA RSOLV
TSOLY
LIMIT

BFGS

S2LR1A

FDF

— MMX00Z —

Fig. 2 Structure of the MMLC package corresponding to the original

entry (subroutine MMLA1Q).
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The common part of the package is composed of subroutines MMLC8A,
MMLC9A, FEASI, MMLPA, S2LA1Q, BFGS, LINSYS and the set of subroutines
REGRAD, Checking of input parameters and subdivision of the working
space (defined by the user) is performed in MMLCB8A. The Stage 1
algorithm is implemented in MMLC9A, and the Stage 2 algorithm in S2LA1Q.
FEASI determines a feasible starting point, and the linear subproblems
of Stage 1 are solved by MMLPA. Both, MMLPA and FEASI, use the set of
subroutines REGRAD for projected gradient calculations. The subroutine
BFGS is an implementation of the BFGS formula for updating an
approximate Hessian matrix containing second-order information. LINSYS
uses Gaussian elimination for solving systems of linear equations.

The main segment MAIN and the subroutine FDF for the evaluation of
residual functions and their first-order derivatives must be supplied by
the user.

When the standard entry (Fig. 1) is used, the subroutine MMLC1A and
the set of subroutines PRINTOUT provide printed output containing
principal input parameters of the minimax problem to be solved, and the
solution obtained by the package. Moreover, the subroutine MMX00Q
outputs the values of residual functions and their derivatives according

to the argument IPR in the call of MMLCI1A.
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IV. LIST OF ARGUMENTS

Standard entry (subroutine MMLC1A)

The subroutine call is

CALL MMLC1A (FDF,N,M,L,LEQ,B,C,LC,X, DX, EPS,MAXF,KEQS,W,IW,ICH, IPR, IFALL)

The arguments are as follows.

FDF

is the name of a subroutine supplied by the user. It must have
the form

SUBROUTINE FDF(N,M,X,DF,F)

DIMENSION X(N),DF(M,N),F(M)

and it must calculate the values of the residual functions fi(g)

and their derivatives afi(i)/axj at the point X corresponding to

X(1),X(2),y...,X(N), and store the values in the following way:

F(I) = fI(g), I=1,...,M,
DF(I,J) = 3f (X)/3x ;,  I=1,...,M, J=1,...,N.

Note: The name FDF can be arbitrary (user's choice) and must
appear in the EXTERNAL statement in the segment calling
MMLC1A.

The user can terminate the iterative procedure and force the

return from the package by setting to zero (in the subroutine

FDF) the variable MARK in the common area MML0O0O
COMMON /MML000O/ MARK

(on entry to the package MARK is set to 1).

is an INTEGER argument which must be set to n, the number of

optimization parameters. Its value must be positive and it is

not changed by the package.
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LC
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- 15 =

is an INTEGER argument which must be set to m, the number of
residual functions defining the minimax objective function. Its
value must be positive and it is not changed by the package.

is an INTEGER argument which must be set to &, the total number
of equality and inequality constraints. Its value must be
positive or zero, and it is not changed by the package.

is an INTEGER argument which must be set to zeq, the number of
equality constraints. Its value must be positive or zero and
not greater than N, and not greater than L. Its value is not
changed by the package.

is a REAL array of length LC > L. The elements of B must be set
to the constant terms in the linear constraints, i.e. B(I) = bI,
I =1,..., L. The contents of B are not changed by the package.
is a REAL matrix of dimensions (LC,N). The first L rows of C

must be set to the coefficients of x in the linear constraints,

i.e.,

T
I’

is an INTEGER argument which must be set to the length of the

(c(r,1), €(1,2),...,C(I,N)) = ¢ I=1,...,L.

array B and to the number of rows of the matrix C. Its value
must be not less than L, and it is not changed by the package.
is a REAL array of the length at least N which, on entry, must
be set to the initial approximation of the solution, X(I):xg,
I=1y...,N. On exit, X contains the best solution found by the
package.

is a REAL variable which controls the step length of the itera-
tive algorithm. On entry, it must be set to such an initial

value that in the region {x | "gfgo" < DX} the residual func-
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MAXF
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tions fi(g) can be approximated reasonably well by 1linear
functions. If the residual functions are nearly linear, DX
should be set to an approximate value of the distance between
the initial approximation 59 and the solution, but if more
curvature 1is present this value may be too 1large. Normally
DX:O.1*H50H is an appropriate value, but an improper choice of
DX is usually not critical, since the value of DX is adjusted by
the package during the iteration. The value of DX must be pos-
itive. On exit, DX contains the last value of the step size 6:.
is a REAL variable which on entry must be set to the required
accuracy of the solution. The iteration terminates when ﬂgkﬂ <
EPS*nﬁkn, where Qk is the correction to the kth approximation 5#

of the solution. If EPS is chosen too small, the iteration

terminates when no better estimation of the solution can be

obtained because of rounding errors. On exit, EPS contains the
length of the last step taken in the iteration.

is an INTEGER variable which must be set to an upper bound on
the number of calls to FDF (i.e., the maximum number of residual
functions evaluations). On exit, MAXF contains the number of
calls to FDF performed by the package.

is an INTEGER variable which must be set to the number of
successive iterations with identical sets of active residual
functions and active constraints that is required before a
switch to Stage 2 is made. Normally, KEQS=3 is an appropriate
value. If KEQS > MAXF, the Stage 2 is never used. On exit,
KEQS contains the number of switches to Stage 2 that have taken

place.
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is a REAL array which is used as workspace. Its length is given
by IW. On exit, the first M elements of W contain the residual
function values at the solution, i.e., W(I):fl(g), I=1,...,M.
is an INTEGER argument which must be set to the length of W.
Its value must be at least

IWR = 2% M¥N+5 *N¥N+4*¥M48 ¥N+4 ¥LC+3,
The values of IWR-4*¥LC for a set of initial values of arguments
M and N are given in Table 1.
is an INTEGER argument which must be set to the unit number (or
channel number) that is to be used for the printed output
generated by the package. Usually it is the unit number of the
file OUTPUT. 1If ICH is less than or equal to zero, no printed
output will be generated by the package. The value of ICH is
not changed by the package.
is an INTEGER argument which controls the printed output
generated by the package. It must be set by the user and is not
changed by the package. The absolute value of IPR, as a decimal
number, is "logically" composed of 4 fields

|IPR| = pgrs

where q, r and s are the least significant one-digit fields, and
p is the remaining part of the number. If q is not equal to
zero (i.e. gq=1, ..., 9) then the first q evaluations of residual
functions (i.e., the first q calls to FDF) are reported in the
printed output. Further, if p is not equal to zero then every

pth evaluation of residual functions is reported in the printed
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output. Consequently, if p=1, the value of q is insignificant
because all function evaluations will be reported by the
package. Printing of partial derivatives is controlled by the
fields r and s. If s is not equal to zero (and is not greater
than q) then the values of partial derivatives calculated in the
first s calls to FDF are reported in the printed output. If r
is not equal to zero (and p is greater than zero) then every
(p*¥r)th evaluation of partial derivatives is reported as well.
Moreover, if q is equal to zero and p is not equal to 1 (i.e.,
when the first call to FDF is not reported by the package), then
the "starting point" values of optimization variables LO and
corresponding residual function values g(gp) are printed; if, at
the same time, s is greater than zero, the values of partial
derivatives are included in the "starting point" information.
It should be noted that the values of partial derivatives can
only be printed for those evaluations for which printing of
residual function values is indicated.
Note: The function evaluations reported by the package are

indexed by two numbers in the form i/ j where

i 1is the consecutive number of function evaluation,

J 1s the stage of the iterative algorithm:

0 - initial function evaluation,
1 - Stage 1 iteration,

2 - Stage 2 iteration.
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If the value of IPR is negative, the partial derivatives
calculated by FDF are verified numerically by comparing values
supplied by FDF with the differences of residual function values
in the small enviromment of the starting point. All partial
derivatives which differ from the numerically approximated ones
by more than 1% (with respect to the numerical approximation)
are reported in the printed output.

IFALL is an INTEGER variable which, on exit, contains information

about the solution:

IFALL = -2 feasible region is empty,

IFALL = -1 incorrect input data,

IFALL = 0 regular solution; required accuracy obtained,
IFALL = 1 singular solution; required accuracy obtained,
IFALL = 2 machine accuracy reached,

IFALL = 3 maximum number of function evaluations reached,
IFALL = 4 iteration terminated by the user.

Original entry (subroutine MMLA1Q)

The subroutine call is

CALL MMLA1Q (FDF,N,M,L,LEQ,B,C,LC,X,DX,EPS,MAXF,KEQS,W,IW,IFALL)

The arguments are generally the same as for the foregoing standard

entry. The detailed description is given in [1].
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V. AUXILIARY SUBROUTINES

The package contains several auxiliary subroutines which can be
used to change or to set the values of additional parameters controlling
the form of the printed output generated by the package. All these
subroutines (if used) should be called before the standard entry to the

package.

Subroutine MMXHDR

Subroutine MMXHDR defines the title line which is printed within
the page header. The title must be a string of up to 80 characters
which is stored in consecutive elements of a
REAL array, 10 characters in one element.

The subroutine call is

CALL MMXHDR(L,T)
where L is the number of array elements required for the title, and T is
the name of an array or the first element storing the title. If L is

equal to zero, no title line is printed by the package.

Subroutine MMXPSZ

Subroutine MMXPSZ defines the "page size", that is the maximum
number of lines printed on a page. The preset value is 65,
The subroutine call is
CALL MMXPSZ(L)
where L is the defined page size. If the value of L is equal to =zero,

the printed output is generated without page control.
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Subroutine MMXPLM

Subroutine MMXPLM defines the limit of printed pages. The preset
value of this limit is 10, and it cannot be changed to more than 50.
The subroutine call is
CALL MMXPLM (L)
where L is the defined limit of pages.
When the limit of pages is reached the further output generated by

the package is suppressed except of the results of optimization.

Subroutine MMXLLM

Subroutine MMXLLM defines the limit of printed lines. The preset

value of this limit is 750.
The subroutine call is
CALL MMXLLM(L)
where L is the defined limit of lines,
When the 1limit of printed lines is reached the further output
generated by the package is suppressed except of the results of

optimization.

Subroutine MMXGLM

Subroutine MMXGLM defines the bounds on the number of variables and
the number of residual functions when the matrix of partial derivatives
is printed by the package (for some problems this matrix can be quite
large and it can be reasonable to print the initial part of it only).
The preset bound on the number of variables is 10, and on the number of

functions is 25.
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The subroutine call is
CALL MMXGLM(K,L)
where K is the defined bound on the number of variables, and L is the

defined bound on the number of residual functions.

Subroutine MMXGVL

Subroutine MMXGVL defines, for the matrix of partial derivatives,
the number of columns printed in one line. The preset value is 10, and
it corresponds to 120 character lines. If the standard form of
generated output is to be preserved this number should be defined as 6.

The subroutine call is

CALL MMXGVL (K)

where K is the defined number of columns per line.

VI. GENERAL INFORMATION

Use of COMMON: COMMON/MMX000/ (for standard entry only),
COMMON/MMLO00O/ (see argument FDF).

Workspace: Provided by the user; see arguments W and IW.

Input/output: Output (for standard entry only) as defined by the
user; see argument ICH.

Subroutines: MMLC8A, MMLC9A, S2LA1Q, FEASI, MMLPA, LINSYS, BFGS,
ADDCL, DELCL, UTTRNS, UTRNS, RSOLV, TSOLV, HACUM,
LIMIT and:
a) for standard entry: MMLC1A, MMX00Q, MMXOOV,

MMX00G, MMXOOH, MMX00B, MMXPSZ, MMXPLM, MMXLLM,

MMXHDR, MMXGLM, MMXGVL ;
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b) for original entry: MMLA1Q, MMX00Z.
Restrictions: N>0, M>0, L>0, LEQ>0, LEQ<L, LEQ<KN, LC>L, DX>O,

EPS>0, MAXF>0, KEQS>0, IW>IWR.

VII. EXAMPLES

Example 1 [1, Example 1]

Minimize
F(x) = max f_(x)
1<1i<3
subject to
where
2 2
f1(5) = XX, 4 x1x2 -1,
f2(~) = sin(x1),
f = - .
3(5) cos(x2)
The starting point is
0 -2
% = .

To show the influence of the parameters DX and KEQS the
optimization has been performed several times for different values of DX
and KEQS. The resulting numbers of residual function evaluations
required to achieve the accuracy EPS = 10-6, as well as the numbers of
shifts to Stage 2 are summarized in the following table (the numbers of

shifts are given in parentheses):
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KEQS

DX 2 3 4

0.1 10(2) 10(2) 12(1)
0.2 9(2) 9(1) 10(1)

0.4 12(2)  12(1)  14(1)

It can be observed that the increasing values of KEQS correspond,
generally, to smaller numbers of shifts to Stage 2 (some too early
shifts are eliminated), and to slightly increased numbers of residual
function evaluations. Moreover, too small and too large values of DX
require more residual function evaluations because of adjustments which

are performed by the package.
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PROGRAN TRIITL1(OUTPUT, TAPE1=0UTPUD)
.BALD - EXAMPLE 1.

DIMENSICN X(2),W(87),B(1),C(1,2),H(4)
KXTERNAL FDF

DATA H/1©HPROGRAM TR, 19HMTAL1 : J.H, 19HALD - EXAT, 10HPLE 1
CALL MTEDR(4,HD

N=2

=3

L=1

LEQ=9

LC=1

B(1)=-2.3E0

€(1,1)=-3.0

C(1,2)=-1.90

X(1)=-2.9

2)=-1.0

D¥X=0.2

EPS=1.E-6

MAXF=50

FFes=3

IW=67

ICH=1

IPC=-10

CALL MMLCIA(FDF,N,M,L,LEQ,B,C,LC, X, DX, EPS, MAXF, KEQS, W, IV,

1 ICH, IPC, IFALL)

STCP

EID

SUBRQUTINE FDF(N,M,¥,DF,F)
DIMENSION X(N),F(ID ,DF(IM,N)
H1i=X(1)

X2=X(2)

FOO =1x1+¥20R2+X1wxH2-1.0
F(2)=8TI{X1D)

F(3)=-CO08(¥2)

DF(1, 1H)=X1+Xi1+¥X2
DF(1,2)=X2+X2+X1

DF(2, 1)=CCB(X1)
DF(2,2)=90.0

DF(3,1)=0.9
DF(3,2)=SIN(X2)

RETURN

END

0C0%o1
080002
000003
060004
000003
O0CO006
0S0067
0C00903
00eCO9
000010
00€011
600612
200018
008014
000015
6000106
000017
000018
C0OC019
000020
000021
000022
200023
000024
000025
000026
0027
200028
000029
000030
026031
000032
0C0033
00CO34
000033
000026
000037
000038
000039
080040
000041
000042
008043
0T0044
000043
00046



DATE : 382/04,22. TINE

PRCGRAM TRIMML1 J.HALD - EXAMPLE 1

INPUT DATA

NUIIBER OF VARIABLES (ID . . . . . . . . . .
NUMBER OF FUNCTIONS (M . . . . . . . . . .
TOTAL HNUMBER OF LINEAR CONSTRAINTS (L) . .
NUIMBER OF EQUALITY CONSTRAINTS (LEQ)
STEP LENGTH (DX> . . .
ACCURACY (EPSY . . . .
MAX NUMBIR OF FUNCTION EVALUATIONS (IMAXF) .
HUMBER OF SUCCESSIVE ITERATIONS (XEQS)
VCRKING SPACE (IW)
PRINTOUT CONTROL (IPR) . . . . . . . . . .
STARTING POINT :
VARIABLES
1 -2.C060000000C2E+920
2 -1.000000806003E+00
VERIFICATION OF PARTIAL DERIVATIVES PERFORMED.

SOLUTIOH

VARIABLES

1 =-8.9285371423571E-61
2 1.785714285714E-01

TYPE OF SOLUTION (IFALLY . . . . . . .
NUIMBER OF FUNCTION LEVALUATIONS . . . . .
NUIMBER OF SHIFTS TO STAGE-2 . . . . . . . .
E¥ECUTION TIME (IN SECONDS) . . . .

15.17.59.
LINZARLY CONSTRAINED MINIMAX OPTIMIZATION (IDPILC PACKAGE)

(SN

I r=

.

PAGE :
(V:82.04

1

. e e e e . 2
. . . S
. . 1
5]
2.0600E-01
e+« « « .+ . . 1.000E-06
. . 50
. . S
N . . 67
-10
FUNCTIOCH VALUES
6. 0000D0000CCOE+00
-9.092974258257E-01
-5.402023053681E-91
FUNCTION VALUES
-3.2035714285715-01
=7.788668984362E-01
-9.846984453126E-01
. i
. . 9
. 1
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Example 2 [6, Example 3]

This is the problem proposed by Brent [7] as an example in which
the continuous analog of the Newton-Raphson method is not globally
convergent, The problem is to solve the system of 2 nonlinear equations

4(x1+x2) =0,
(x,=%)((x,2)% + x2) + 3x, +5x_ =0 .
12 1 2 1 2
More details and some solutions are given in [6]. It can be observed,
however, that the solution can be obtained by minimizing the objective
function
F(x) = max (f(x), = f(x))
subject to the linear equality constraint
Mx1 + 4x2 = 0,
where
f(x) = (x,-x,)((x —2)2 + x2) + 3x, + 5x
~ 172 1 2 1 2 °

The solutions are shown for 4 different starting points 50

as in [6]. For this example all the solutions have been found in Stage

1 only.
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PROGRAM TRMML2(OUTPUT, TAPE6=0UTPUT)

C BRENT EXAMPLE

C

29

DIMENSION X(2),XX(4,2),B(1),C(1,2),T(3),W(59)
EXTERNAL FDF

DATA X¢X/2.0,-2.0,2.0,2.0,

1 2.0,-2.0,0.90,1.0-

DATA B/0.6/,C/4.0,4.6/

DATA T/10HTRMML2 : B, 10HRENT EXAMP, 10HLE s
CALL MIMXHDR(3,T)

N=2

M=2

LEQ=1

L=1

IL=1

IPR=-10

DO 20 I=1,4

X(1)=XX(I, 1)

X(2)=XX(I,2)

DX=0.2

EPS=1.E-6

MAXF=50

KE@S=2

IW=59

ICH=6

CALL MMLCIA(FDF,N,M,L,LEQ,B,C, IL, X, DX, EPS, MAXF,KEQS, W, IV, ICH,
1 IPR, IFLAG)

IPR=0

CONTINUE

STGP

END

SUBROUTINE FDF(N,M,X,DF,F)
DIMENSION X(N),DF(M,N),F(M
X1=X(1)

X2=X(2)

R1=X1-X2

R2=(X1-2.0) %*k2+X2%xX2
F(1)=R1*R2+3.9%X1+5.06%X2
F(2)=-F(D

DF(1, 1)=R2+(R1+R1)*(X1-2.0)+3.0
DF(1,2)=-R2+R1x(X2+X2)+5.0
DF(2,1)==-DF(1, 1)
DF(2,2)=-DF(1,2)

RETURN

END

06060601
008602
060603
000004
0¢0095
000096
006697
000098
006009
060010
000911
000012
000013
000014
090015
000016
066917
060018
000919
096020
060021
000022
060023
069624
0086025
000026
060027
090628
0606029
000039
060031
090032
000033
0060634
000035
0006036
000037
006038
000039
000040
066041
000042
0606943
000044
000045
000046
000047
060648



DATE : 82/04,22. TIME : 15.26.07. PAGE : 1
LINEARLY CONSTRAINED MINIMAX OPTIMIZATION (MMLC PACKAGE) (V:82.64)

TRIMML2 : BRENT EXAMPLE

INPUT DATA
NUMBER OF VARIABLES (IN) . . ¢ ¢ ¢ 4 ¢ ¢ ¢ ¢ o o o o o o o o o o o o o o & 2
NUMBER OF FUNCTIONS (M) . ¢ & ¢ o ¢ ¢ ¢ ¢ ¢« o o o v o o o v o o o o o o = 2
TOTAL NUMBER OF LINEAR CONSTRAINTS (L) . . .« . . .« ¢ ¢ v v o ¢« o« o o o W 1
NUMBER OF EQUALITY CONSTRAINTS (LEQ) . . . . . . + +« ¢ « v o ¢« o« o« o o & 1
STEP LENGTH (DX) . . « & ¢« ¢« ¢ ¢ ¢ ¢« o o« « o s o o« o« o o 4 « « « « 2.000E-01
ACCURACY (EPS) . . . & « ¢ ¢ ¢ o & ¢« « ¢ « « o o o« « o o &« & o« « « 1.000E-06
MAX NUMBER OF FUNCTION EVALUATIONS (MAXF) . . . ¢ ¢ ¢ v « v « o o o o o« & 50
NUMBER OF SUCCESSIVE ITERATIONS (KEQ@S) . . . « « « ¢ ¢ v v v o o o o o« W 2
WORKING SPACE (IW) . ¢ . ¢ ¢ 4 v v ¢« o o o o o o o o o o o o o o o o 59
PRINTOUT CONTROL C(IPR) . . . . « ¢ ¢« v « v v v e o o o ¢« o« o o o o o o W -10

STARTING POINT :

VARIABLES FUNCTION VALUES
1 2.0000000%0000E+00 1 1.600000000000E+01
2 2.000000000000E+060 2 -1.6060000000000E+01
VERIFICATION OF PARTIAL DERIVATIVES PERFORMED.
SOLUTION
VARIABLES FUNCTION VALUES
1 -1.894780628693E-14 1 3.635671051258E-27
2 1.326346440086E~-13 2 -3.635671051258E-27
TYPE OF SOLUTION C(IFALL) . . ¢ « ¢ ¢ o o ¢« o o o o o o o o o o o o o« o 7]
NUMBER OF FUNCTION EVALUATIONS . . . . . « ¢ ¢ « v « o o v o« o o o o o & 3
NUMBER OF SHIFTS TO STAGE-2 . . . . « « ¢ ¢ ¢ v v v v o 4 o v o o s o o o

EXECUTION TIME (IN SECONDS) . . . « ¢ « ¢« ¢ ¢ v v v o o o o v o o o o .911



DATE : 82/64/22:

TRMML2 : BRENT EXAMPLE

INPUT DATA

NUMBER OF VARIABLES () . .
NUMBER OF FUNCTIONS (D . .

TOTAL NUMBER OF LINEAR CONSTRAINTS (L)

.

32 -

TIME
LINEARLY CONSTRAINED MINIMAX OPTIMIZATION

NUMBER OF EQUALITY CONSTRAINTS (LEQ)

STEP LENGTH (DX . . . . . .
ACCURACY (EPS) . . . . .

.

.

.

.

.

.
s

.

.

15.26.07.
(MMLC PACKAGE)

MAX NUMBER OF FUNRCTION EVALUATIONS (MAXF)

NUMBER OF SUCCESSIVE ITERATIONS (KEQS)

WORKING SPACE (IW) . . . . . .
PRINTOUT CONTROL (IPR) . . . .
STARTING POINT :

VARIABLES

1 -2.00006006000009E+09
2 -2.000000000009E+09

SOLUTION

VARIABLES

1 1.8947806286%94E-14
2 =-1.326346446086E-13

TYPE OF SOLUTION (IFALL) . .
NUMBER OF FUNCTION EVALUATIONS
NUMBER OF SHIFTS TO STAGE-2 .
EXECUTION TIME (IN SECONDS)

.

.

.

.

.

.

PAGE : 1
(V:82.04)
c e e e e e e e e . . 1
C e e e e e e e e e e 1
e e e e e e e v . 4 . 2.000E-01
. . « « + + « . 1.0060E-906
. . . « e N 50
. . e e e e e e e . 2
e e e e s e e e e e e 59
e e e e e e s . e . U]

FUNCTION VALUES

1 -1.600000000000E+01

2 1.600000090000E+01

FUNCTION VALUES

1 =-2.019483917366E~-27

2 2.019483917366LE-27
P S . . . %)
. . o e e e . . . 3
. . . e e e e e e e ]
o e e e e e . . . .010



DATE : 82/64-22. TIME :
LINEARLY CONSTRAINED MINIMAX OPTIMIZATION
TRMML2 : BRENT EXAMPLE

INPUT DATA

NUMBER OF VARIABLES (I . . . . . . . . .
NUMBER OF FUNCTIONS (M . . . . . . . . .
TOTAL NUMBER OF LINEAR CONSTRAINTS (L) .
NUMBER OF EQUALITY CONSTRAINTS (LEQ@ . .
STEP LENGTH (DX) . . . . . . . .+ « .+ . .
ACCURACY (EPS) . . . . « ¢ v « v v v o &
MAX NUMBER OF FUNCTION EVALUATIONS (MAXF)
NUMBER OF SUCCESSIVE ITERATIONS (KEQS)
WORKING SPACE (IW) . . . . . . . . . . .
PRINTOUT CONTROL (IPR) . . . . . . . .
STARTING POINT :
VARIABLES
é 3.0000000000®®E+00

SOLUTION

VARIABLES
1 =-1.514612938024E-28
2 1.514612938024E-28
TYPE OF SOLUTION (IFALL) . . . . . . . .
NUMBER OF FUNCTION EVALUATIONS . . . . .
NUMBER OF SHIFTS TO STAGE-2 . . . . . . .
EXECUTION TIME (IN SECONDS) . . . . . . .

15.28.23.
(MMLC PACKAGE)

PAGE : 1
(V:82.04)
S S . 1
e e e N . 1
.« e s e . . . 2.0060E-01
. .« e . e 1.000E-06
e e e e e e . .. . 50
e e e e e e . 2
e e e e . e e e . 59
. . e e . e 7]
FUNCTION VALUES
1 6.000000000000E+060
2 -6.000006000000E+060
FUNCTION VALUES
1 -9.0687677628146E-28
2 92.087677628146E-28
. e . . . . e 2
. . . e . . .. 17
. . . N 2
o e . . e . . . 046
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DATE : 82/04/22. TIME :

LINEARLY CONSTRAINED MINIMAX OPTIMIZATION (MMLC PACKAGE)

TRMML2 : BRENT EXAMPLE

INPUT DATA

NUMBER OF VARIABLES (N> . . . . . . . .
NUMBER OF FUNCTIONS (M) . . . . . . . .
TOTAL NUMBER OF LINEAR CONSTRAINTS (L)
NUMBER OF EQUALITY CONSTRAINTS (LEQ@ .
STEP LENGTH (DX) . . . . . . . . . . .
ACCURACY (EPS) . . . . . « « « « « . .

15.28.23.

MAX NUMBER OF FUNCTION EVALUATIONS (IMAXF)

NUMBER OF SUCCESSIVE ITERATIONS (KEQS)
WORKING SPACE (IW) . . . . . . . . . . .
PRINTOUT CONTROL (IPRY . . . . . . . . .
STARTING POINT :
VARIABLES
1 2.000699600000E+00
2 1.0000690000000E+60

SOLUTION

VARIABLES
1 -2.389010899710E~-16
2 2.3890190899710E-16
TYPE OF SOLUTION (IFALL) . . . . . . .
NUMBER OF FUNCTION EVALUATIONS . . . .
NUMBER OF SHIFTS TO STAGE-2 . . . . .
EXECUTION TIME (IN SECONDS) . . . . .

.

.

.

D) e

PAGE : 1

(V:82.04)

. .« e . e . 1

SN e e e 1

e s e e+ . . . 2.000E-01

« « + « +« . . 1,000E-06

. “ e e e 50

. . . . . 2

e e e e e e e e e 59

.« .o . . ]
FUNCTION VALUES
1.200000606000E+01
1.260060000006E+01
FUNCTIGON VALUES
1.433406539826E~-15
1.433406539826E-15

P . . 2

e e e e e . 8
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Example 3

Minimize the Beale constrained function

2 2 2
f1(5) =9 - 8x1 - 6x2 - 4x3 + 2x1 + 2x2 + x3 + 2x1x2 + 2x1x3

subject to the constraints
xizo,i=1£3,
3 - Xy = X5 = 2x3 20.
The function has a minimum f1(5?) = 1/9 at the point x* = [4/3 7/9
1/91%.
The numbers of residual function evaluations required to achieve

the accuracy EPS = 10-6, as well as the numbers of shifts to Stage 2,

for the starting point

1%
u

o oo
L ]

N RGRS

and several values of parameters DX and KEQS are summarized in the

following table:

KEQS

DX 2 3 y

0.125 10(1) 10(1) 13(1)
0.25 9(1) 10(1) 9(1)

0.5 11(1) 1101) 12(1)

1.0 11(1) 11(1) 11(1)

It should be noted that the obtained results are much better then the
results reported in [8, Example 5], where the constraints have been

converted to additional residual functions.
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PROGRAM TRMML3{(OUTPUT, TAPE2=0UTPUT) : 000001

C 0000062
C BEALE CONSTRAINED FUNCTION 000003
C 0060004
DIMENSION X(3),W(98),C(4),DC(4,3),T(4) 060005
EXTERNAL FDF 000906

DATA C/0.06,0.0,0.0,3.0/ 000067

DATA DC/1.9,0.0,6.0,-1.0, 000008

1 0.0,1.0,6.0,-1.0, 006099

2 0.0,0.9,1.0,-2.0/ 068010
DATA T/10HTRMML3 : B, 16HEALE CONST, 16HRAINED FUN,5HCTION/ 000011

CALL MMXHDR(4,T) 060912

N=3 006913

M=1 000014

L=4 0006015

LEQ=90 006616

IC=4 000017
X(1)=90.5 0009018
X(2)=0.5 060019
X(3)=0.3 006020
DX=0.25 000021
EPS=1.E-6 000022
MAXF=590 0066023
KEQS=2 0066024

IwW=98 000025
IPR=-10 000026

LCH=2 000027

CALL MMLC1A(FDF,N,M,L,LEQ,C,DC, IC, X, DX,EPS, MAXF,KEQS, W, IV, 000028

1 LCH, IPR, IFALL) 060029

STOP 00600306

END 000931

C 200032
C 066033
SUBROUTINE FDF(N,M,X,DF,F) 000034
DIMENSION X(N),F(ID ,DF(M,N) 0090035
X1=X(1) 000036
X2=X(2) 060037
X3=X(3) 006038
F(1)=9.90-8.0%X1-6.0%X2-4.0%X3+2. 0% ( X1k (X1+X2+X3) +X2*%K2) +X3%X3 096939
DF(1,1)=4.0%X1+2.8%(X2+X3)-8.0 0009040
DF(1,2)=4.0%X2+2,0%X1-6.0 0006041
DF(1,3)=2.0%(X1+X3)-4.0 000042
RETURN 006043

END 000044
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DATE : 82/04,22. TIME :

15.33.23.

LINEARLY CONSTRAINED MINIMAX OPTIMIZATION (MMLC PACKAGE)

TRMML3 : BEALE CONSTRAINED FUNCTION
INPUT DATA
NUMBER OF VARIABLES () . . . . . . . . . . .

NUMBER OF FUNCTIONS (ID . . . . . . « « « « .
TOTAL NUMBER OF LINEAR CONSTRAINTS (L) . . .
NUMBER OF EQUALITY CONSTRAINTS (LEQ) . .
STEP LENGTH (DX) . . . . . . « « « « o « + .
ACCURACY (EPS) . . . . . +« v v v v o o .
MAX NUMBER OF FUNCTION EVALUATIONS (MAXF) .
NUMBER OF SUCCESSIVE ITERATIONS (KEQS) . .
WORKING SPACE (IW) . . . . . . . . . . . .
PRINTOUT CONTROL (IPR) . . . . . . . . . .
STARTING POINT :
VARIABLES

1 5.000000009000E-01

2 5.000000906600E-01

3 5.0000006600000E-01

VERIFICATION OF PARTIAL DERIVATIVES PERFORMED.

SOLUTION

VARIABLES
1 1.333333333333E+60
2 T.TTTTTTTTCTTTC4E-0 1
3 4.444444444448E-01
TYPE OF SOLUTION (IFALL) . . . ... . . . .
NUMBER OF FUNCTION EVALUATIONS . . . . . . .
NUMBER OF SHIFTS TO STAGE-2 . . . . . . . . .

EXECUTION TIME (IN SECOIDS) . . . . . . . . .

2

.

.

PAGE : 1
(V:82.604)

o e e e e e e e e 1

e e e e e e e e e 4

C e e e e e e e e ]
2.500E-01
¢« + « « + . 1.000E-06
e e e e e e e e e 50
e e e e e e e e e 2

e e e e e e e e °8

-10

FUNCTION VALUES
2500609600000E+00

FUNCTION VALUES
111111111109E-01
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Example 4

This is again the Beale constrained function (Example 3)

2 2 2
=9 - - -4
f1(5) 9 8x1 6x2 X3 + 2%, + 2%, X3

but in this case the constraint

+ 2x1x2 + 2x1x3

3 - X, = X, - 2x3 >0
which is the only constraint active at the solution, is transformed into
additional residual function by the common technique [9]

fz(g) = f1(§) -a (3 - X, = X5 = 2x3),
and o = 1 is assumed (as in [8]). The objective function is thus
F(x) = max(f1(5), fz(g))

and it is minimized subject to constraints

x, 20, i=1,2 3.

The results obtained for the same starting point and the same parameters

DX and KEQS as in Example 3, are summarized in the following table:

KEQS

DX 2 3 4

0.125 | 10(1) 13(1) 15(1)
0.25 10(1) 1101) 12(1)
0.5 11(1) 12(1) 1101

1.0 10(1) 11(1) 12(1)

The results obtained in Example 3 seem to be slightly better than those
of Example 4 (the total number of function evaluations is 128 for
Example 3, and 138 for Example 4), however, the differences are not

significant.



PROGRAM TRMML4(OUTPUT, TAPE2=0UTPUT) ' ! 0006001

C 000002
C BEALE CONSTRAINED FUNCTION 000003
C 000004
DIMENSION X(3),W(104),C(3),DC(3,3),T(4) " . 000005
EXTERNAL FDF 000006

DATA C/0.0,0.0,0.0/ 600007

DATA DC/1.0,0.0,0.0, 600008

1 0.06,1.0,0.0, 000009

2 9.9,0.0,1.06/ . 60606010
DATA T/10HTRMML4 : B, 16HEALE CONST, 10HRAINED FUN,5HCTION/ 006011

CALL MMXHDR(4,T) 600012

N=3 660013

M=2 006014

L=3 6006015

LEQ=0 000916

I1C=3 090017
X(1)=0.5 600618
X(2)=0.5 000019
X(3)=0.5 0006020
DX=0.25 : 006021
EPS=1.E-6 0600022
MAXF=50 000623
KEQS=2 000624

IW= 104 600025

LCH=2 060026
IPR=-10 066027

CALL MMLC1A(FDF,N,M;L,LEQ,C,DC, IC,X, DX, EPS, MAXF,KEQS, W, IW, - ) 006028

1 LCH, IPR, IFALL) 666629

STOP 060630

END 600631

C 006932
C 600633
SUBROUTINE FDF(N,I,X,DF,F) 0009034
DIMENSION X(N),F(M ,DF(M,N) . 006035
X1=X(1) 000036
X2=X(2) 090937
X3=X(3) 0060638
F(1)=9.0-8.0%X1-6.0%X2~4, 0%KX3+2, 0% ( X1k (X1+X2+X3) +X2*X2) +X3%X3 ' 026039
DF(1,1)=4.0%X1+2.0%(X2+X3)~8.0 000940
DF(1,2)=4.0%X2+2.0%X1-6.0 60094 1
DF(1,3)=2.6%(X1+X3)-4.0 000042
F(2)=F( 1) +X1+X2+X3+X3-3.0 0090643
DF(2,1)=DF(1,1)+1.0 6006044
DF(2,2)=DF(1,2)+1.6: 600945
DF(2,3)=DF(1,3)+2.0: 000046
RETURN 000047

END 006648
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DATE : 82-/04-22. TIME :
LINEARLY CONSTRAINED MINIMAX OPTIMIZATION

TRMML4 : BEALE CONSTRAINED FUNCTION:

16.40.03.

(MMLC PACKAGE)

VERIFICATION OF PARTIAL

INPUT DATA
NUMBER OF VARIABLES (N) . . . . . . . . .
NUMBER OF FUNCTIONS (M. . . . . . . . .

TOTAL NUMBER OF LINEAR CONSTRAINTS (L) . .
NUMBER OF EQUALITY CONSTRAINTS (LEQ@ . .
STEP LENGTH (DX) . . . . . ¢ « ¢ « o « &
ACCURACY (EPS) . . R B
MAX NUMBER OF FUNCTION EVALUATIONS (MAXF)
NUMBER OF SUCCESSIVE ITERATIONS (KEQS) .
WORKING SPACE. (IW) . . . . . . . . . . .
PRINTOUT CONTROL (IPR) . . . . . . . . .
STARTING POINT :
VARIABLES
1 5.000000000000E-01

2 5.000000000000E-01
3 5.0000006000669E-01

SOLUTION

VARIABLES
1 1.333333333174E+00
2 7.TTTRTTIITEI03E-01
3 4.444444444676E-61
TYPE OF SOLUTION (IFALL) . . . ... . . .
NUMBER OF FUNCTION EVALUATIONS . . . . .
NUMBER OF SHIFTS TO STAGE-2 . . . . . . .
EXECUTION TIME (IN SECONDS) . . .. . . . .

DERIVATIVES: PERFORMED.

2
1.

.

1.
1.

PAGE : 1
(V:82.04)

© W N W

2.500E-01
1.000E-06

FUNCTION VALUES

250000000000E+00
2506000000000E+00

FUNCTION VALUES

11111109E-01

11
1111111169E-01
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Example 5

The problem is to determine an optimally centered point x* = [x?
x;]T that maximizes the relative tolerance r in the region Rc defined by
the inequalities

2+ 2x, - x, 20,

2

143 - 11 x, - 13 x, 2 0,

1
=60 + 4x + 15x_ > 0
Xy 15x, 20,
i.e., to find a point x* and a tolerance r such that the tolerance
region RS
R_o={x | (1-r)x* < x_ < (1+r)x*, i = 1,2}

€ ~ i— i- i
is in the constraint region Rc and is as large as possible.

It can be shown [10] that if the constraint region Rc is one-
dimensionally convex (and it is in this case) then it is sufficient that
all vertices of Re belong to Rc to guarantee that the whole tolerance
region RE is in the constraint region Rc'

For minimax formulation of the problem it is convenient to assume
that the tolerance r 1s an additional optimization variable; then,
however, the vertices of the tolerance region R€ will be described by
nonlinear expressions

[(1tr) x* (1ir)x*]T
1 2
and therefore it is reasonable to introduce independent tolerances for

variables X, and x2 (say x3 and Xy respectively), and to require that

x|

— kL) %
1

ol ]

N k| =%

(provided that xT > 0 and x; > 0). The minimax objective function can
then take the form

f(x) = max(f1(5), f2(5))



subject to the constraints

2+ 2(x1ix )

-+
3 (x2—xu) >0,

143 - 11(x11x ) 13(x,%

3 25%y)
- + +
60 + Ll(x1 x3) + 15(x2 xu) > 0,

>0,

x3 > 0,
xu >0,
where
£,(0) = —x3/x1,
f2(5) = -XM/XZ’
since x3 and xu are to be maximized.
It should be observed that due to x_, > 0 and x, > 0, the first 3

3 )

constraints (and in fact, 12 constraints) can be simplified to the form

2 + 2(x1 - x_) - (x_ + xu) >0,

3 2
143 - 11(x1 + x3) - 13(x2 + xu) >0,
-60 + Ll(x1 - x3) + 15(x2 - xu) >0,

or, finally,

2 + 2x1 - x2 - 2x3 - xu >0,

143 - 11x, - 13x2 - Mx, - 13xu > 0,

1 3
-60 + ux1 + 15x2 - ux3 - 15x4 > 0.

The solution 1is shown for the starting point 50 = 1, which 1is
infeasible, and is adjusted by the package. The resulting relative

tolerance r is equal to 0.3414 or 34.1%.
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PROGRAM TRIMMLS (OUTPUT, TAPE6=0UTPUT)

C TOLERANCING EXAMPLE

C

DIMENSION X(4),B(5),C(5,4),W(159),H(3)
EXTERNAL FT

DATA B/2.0,143.0,-60.0,0.9,0.0/

DATA €/2.0,-11.0,4.0,06.0,0.0, .

1 -1.0,-13.0,15.0,0.0,0.0,

2 -2.0,-11.0,-4.0,1.0,6.0,

3 -1.0,-13.6,-15.¢€,0.0,1.0/ :
DATA H/10HTRMMLS : T, 16HOLERANCING, 10H EXAMPLE /-
CALL MMXHDR(3,H)

N=4

M=2
DX=1.0
EPS=1.E-6
IC=5

L=3

IW=159

ICH=6

IPR=-1600

CALL MMLCI1A(FT,N,M,L,LEQ,B,C, IC, X, DX, EPS,MAXF,KEQS, W, IW, ICH, IPR,
1 IFLAG)

STOP

END

SUBROUTINE FT(N,M,X;D,F)
DIMENSION X(IN),D(M,N),F(IM
X1=X(1)

X2=X(2)

X3=X(3)

X4=X(4)

F(1)=-X3/X1

F(2)=-X4-/X2

D(1, 1)=X3/(X1%X1)
D(1,2)=0.0
D(1,3)=-1.06/X1
D(1,4)=0.0

D(2,1)=0.0
D(2,2)=X4/(X2%xX2)
D(2,3)=0.0
D(2,4)=~1.0/%X2

RETURN

END

080091
0000602
0906003
000004
600005
600006
000607
00600068
0006609
060010
000011
000012
000013
600014
060015
0006016
000017
000018
000019
000020
0069021
000022
006023
000024
006025
000026
600027
000028
000029
6906030
000031
060032
006033
600034
060035
6006036
0009037
006038
600039
0000490
000041
000042
000043
0006044
006045
0006046
600047
000048
0060049
000050
006051
000052
000053



DATE : 82/05/19.

LINEARLY CONSTRAINED MINIMAX OPTIMIZATION
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TIME :

TRMMLS : TOLERANCING EXAMPLE

INPUT DATA

NUMBER OF VARIABLES (W) . . . . . . . . .

NUMBER OF FUNCTIONS (M . . . . . . . . .

TOTAL NUMBER OF LINEAR CONSTRAINTS (L)

NUMBER OF EQUALITY CONSTRAINTS (LE®) .

STEP LENGTH (DX
ACCURACY (EPS) .

e e s s e e s s+ e e

L) D T T P Y

MAX NUIMBER OF FUNCTION EVALUATICONS (MAXF)

NUMBER OF SUCCESSIVE ITERATIONS (KEQS) .

WORKING SPACE (IW)
PRINTOUT CONTROL (IPR)

VERIFICATICN OF PARTIAL DERIVATIVES PERFORMED.

FUNCTION EVALUATION :

FUNCTION EVALUATION

FUNCTICN EVALUATION

B W~

.

B 0O R

.

e e e e s s e e e

e s s e e e e

170
VARIABLES

1.760389105058E+60
3.626459143962LE+00
2.996108949416E-61
0.

271

VARIABLES
1.871126283894E+09
4.397257078478E+09
3.627527318041E~-01
7.024900257014E-01
371

VARIABLES
3.331240161110E+60
5.053505822104E+00

2.6181062856049E-01
1.685353858905E+090

14.56.41.
(MMLC PACKAGE)

1
2

1
2

1
2

PAGE : 1
(V:82.04)
e e e e e e e e 4.
e e e e e e e . 2
e e e e e e e e 5.
o e e e e . . ]

o e e e e & e

FUNCTION VALUES
-1.762013729977E-01

FUNCTION VALUES

-1.938686527610E-01
=-1.647196841922E-01

FUNCTION VALUES

-2.887243906439E-01
-3.835019683561E~-01

1.C00E+690
1.090E-06

25



DATE : 82/065/19.

LINEARLY CONSTRAINED MINIMAX OPTIMIZATION (IMMLC PACKAGE)

TRIMMLS =

FURCTION EVALUATION

FUNCTION EVALUATION

FUNCTION EVALUATICON

B GO DN

.

OO N

.

W WD =

FUNCTION EVALUATION :

SOLUTION

B CO I

> CO N =

- 45 -

TIME :

TOLERANCING EXAMPLE

4 7/ 1
VARIABLES

3.664248088332E+60
5.1623335407992E+60
1.238478618379E+CO
1.7492053995067E+00

5/ 1
VARIABLES

3.670134774875E+00
5.094850208331E+60
1.252999111358E+09
1.7394294186532E+69

6 /1
VARIABLES

3.670138928252E+690
5.094845628088E+00
1.2539802358981E+60
1.739413513653E+696

T2
VARIABLES

3.670138928954E+09
5.094845628085E+69
1.253099358086E+690
1.739413513650E+69

VARIABLES

3.679138928954E+00
5.094845628685E+00
1.2530093580686E+069
1.732413513656E+09

TYPE OF SOQLUTION (IFALL> . . . . . . .

NUMBER OF FUNCTION EVALUATIONS . . . .

NUMBER OF SHIFTS TO STAGE-2 . . . . .

EXECUTION TIME (IN SECONDS) . . . . . .

14.56.41.

[\

PAGE : 2

FUNCTION VALUES

-3.379828381485E-01
-3.4282458%90865E-01

FUNCTION VALUES

-3.4140411409767E-01
-83.414875210309E-01

FUNCTION VALUES

-3.414965195725E-01
-3.414065195742E-01

FUNCTION VALUES

-3.414065195737E~01
-3.414865195V37VE-01

FUNCTION VALUES

-3.414665195737VE~-61
-3.414065195737E-01

(V:82.064)
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