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Abstract

This paper deals with the problem of fault location in analog
circuits. The circuit under test is decomposed into subnetworks using
nodes at which voltages have been measured. We localize the faults to
within the smallest possible subnetworks according to the final
decomposition. Then, further identification of the faulty elements
inside the subnetworks is carried out. The method is applicable to
large networks, linear or nonlinear. It requires a limited number of
measurement nodes and its on-line computation requirements are minimal.
The method is based on checking the consistency of KCL in the decomposed
circuit. A measure of the effect of tolerances on the elements is
introduced, and a number of examples are considered to illustrate the

application of the method in both the linear and the nonlinear cases.
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I. INTRODUCTION

This paper addresses itself to the problem of fault location in
analog circuits. There are two main approaches to the problem [1] : the
simulation-after-test approach [2-11] and the simulation-before-test
approach [12, 13].

The simulation-before-test requires the simulation of different
possible faults and storage of the results as a dictionary. The faulty
subnetwork responses are compared with the dictionary entries and the
closest entry to the responses by a certain measure determines the
possible fault. The method is usually suitable for single catastrophic
fault 1location. For multiple soft fault situations the size of the
directory becomes very large and the method is impractical. In the
simulation-after-test approach, using the faulty network responses,
either all network elements are identified (parameter identification)
[31, or a search for the faulty set (assumed of small cardinality) is
conducted to locate the faulty elements [2,4]. In both cases there is a
compromise between the computational effort and the number of accessible
nodes.

Recently [2], there has been a real attempt at reducing the number
of accessible nodes while keeping the computations within an acceptable
limit. For the multiple fault situétion, Wu et al. [2] proposed an
algorithm which is based on a heuristic that the effect of two analog
faults will not cancel each other. They also assumed a maximum bound on
the number of possible faults in the circuit.

Here, we present a new simulation-after-test method for fault
location with the aim of keeping both the computations and measurements

to acceptable bounds. A nodal decomposition [14] of the network into



smaller uncoupled subnetworks is carried out. The measurement nodes
must include the nodes of decomposition. The voltage measurements are
employed to isolate the faulty subnetworks. Utilizing the incidence
relations between subnetworks and KCL we develop necessary and almost
sufficient conditions for a subnetwork or a group of subnetworks to be
fault free. logical analysis of the results of these tests is carried
out to identify faulty subnetworks.

In analog circuits the good network elements are usually not at
their nominal values, but are randomly distributed within specified
tolerance intervals. A probabilistic approach is used to check whether
the testing conditions can be satisfied under these random changes.

Further analysis can be carried out to find the faulty elements or
regions within each faulty subnetwork. This is the second part of our
method. Depending on the size of the subnetwork either fault
verification is carried out immediately or the testing conditions are
applied to find smaller faulty regions inside the faulty subnetwork,

then fault verification [4] is carried out in this region if possible.

IT. NETWORK DECOMPOSITION AND LOGICAL ANALYSIS

Network Decomposition

The topology of the network under test is known. In the pre-test

stage we perform a nodal decomposition of the network. This results in

subnetworks connected by the nodes of decomposition. There should be no

mutual coupling between any two subnetworks and the nodes of
decomposition should be chosen from the set where voltage measurements
can be performed. The decomposition is either performed by inspection

(for networks of relatively small size) or a special algorithm is used



for that purpose, e.g., the heuristic algorithm proposed by Sangiovanni-
Vincentelli et al. [151].

Example 1: illustration of network decomposition

As an example we consider the video amplifier circuit [16] of Fig.
1. Nodes of decomposition are assumed to be nodes 1, 2, 5, 7 and 10.
The circuit is decomposed into eight subnetworks as shown in Fig. 2. In
actual testing we perform»voltage measurements at the nodes of
decomposition indicated. The network is not torn physically.

Logical Analysis

Testing conditionsare applied to identify the nonfaulty subnetworks.
The application of a testing condition is referred to as a test. The

outcome of a test is classified simply as pass or fail. The test passes

if and only if all subnetworks involved in the test are fault-free. The
test fails if and only if at least one of those subnetworks is faulty.
A subnetwork is faulty if it contains one or more faulty elements. A
test that is applied to check whether subnetwork Si is fault-free or not

is described as a self-testing condition (STC). A test that is applied

to check whether a group of k subnetworks Sj ’ Sj 9 eeey Sj are fault-
1 2 Jk
free or not is called a mutual-testing condition (MIC). 1In practice, we

utilize the measurements together with the incidence relation between
subnetworks to expedite these tests.

The results of different tests are analyzed to identify the faulty
and nonfaulty subnetworks. Logical functions are utilized for this

purpose. Every subnetwork has associated with it a logical variable o,

which takes the value 1 if the subnetwork is good and 0 if it is faulty.

Every test is associated with a logical test function (LTF), which is

equal to the complete product of variables cj if the test 1is a pass
i
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if the test is a fail.

A logical diagnostic function (LDF) is given by

L
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where the first g LTFs correspond to successful tests and £ is the total
number of tests. In the LDF, the subnetworks which are represented by
Ei are faulty and those which are represented by Oi are nonfaulty. If a
subnetwork is not represented in the LDF we assume nothing about its
status: more tests are necessary. We usually construct the LDF in a
sequential manner by combining the results of the current test with
previous tests. This ﬁsually reduces the number of tests needed since
some of the tests could be redundant.

Example 2: illustration of logical analysis

In the decomposed network of Fig. 2 let 82 be the faulty subnetwork

in an otherwise fault-free network. We will apply MTCs to evaluate T.._,

23
T3567' T3456’ T58 and T69' Only the test for T23 is a fail so we have
D = (g o
5 (02 u 03) n (03 n o nogn 07)11(03 no,n oy 1 06) n
(05 n 08) n (06 n 09)

=02n03n04n05no6no7n08n09,



from which it is evident that 52 is the only faulty subnetwork.

ITI. APPLICATION OF TESTING CONDITIONS TO SUBNETWORKS

In this section we give necessary and almost sufficient conditions
for a subnetwork or group of subnetworks to be fault-free. The
conditions are based on invoking KCL and topological relations.

For analog circuits the effect of two independent faults is highly
unlikely to cancel at the measurement nodes. We adopt this reasonable
heuristic [2].

The input-output relation for a subnetwork Si,‘that is connected to
the rest of the network by mi+1 external nodes, as shown in Fig. 3, with

one of the nodes taken as the reference, is given by

M Mi M

Pt =nt T, g (5)

wher; ii is ;he vecﬁ:r of the subnetwork parameters and the cardinality
of i i(t), h 1 and v i(t) is m, - We assume that the subnetwork Si is
connected, i.e., there exists a path between any two nodes of subnetwork
Si and the»mi+1 external nodes do not decompose the subnetwork further,
i.e., Wwe cannot partition Si into smaller uncoupled subnetworks using
only the set of mi+1 external nodes. Let

M, =M, uM, uM uM (6)

i ia iB iy is’

where Mia is the set of nodes where both voltages and currents are

known, MiB is the set of nodes where only voltages are known, MiY is the

set of nodes where only currents are known, Mi<s is the set of nodes

where neither currents nor voltages are known and Mi is the set of the

m, nodes. Accordingly, we can rewrite (5) as

Mo Mo Mia Mig My M. s
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If the cardinality of the set Mia is greater than the cardinality

of the set MiG’ i.e., m,

ia > mid’ a necessary condition for the

subnetwork Si to be fault-free is that

M. M M M M M

i ia(t) Q io (x ia(t), v iB(t), v iY(t), X ié(t)’ Q?)’ (8a)

M, M, M, M'B M, Mia 0
1w =t e, v P, v T,y T, ¢0) (8b)
is a consistent system of overdetermined equations at any instant of

time, where gg is the vector of nominal parameter values of the

subnetwork. We refer to this condition as the internal-self-testing

condition (ISTC). We utilize this condition in locating faulty regions

inside faulty subnetworks.
When all the voltages of Mi are known and m is greater than or
equal to one, we can state the following stronger result.

Lemma 1: self-testing condition (STC)

A necessary and almost sufficient condition for a connected
subnetwork Si with mi+1 external nodes that do not decompose it further,

m, > lTandm, =m . = 0 to be fault-free is that
ia iy id

Mia Mio M 0
L7 -h 7 (v ), ) =0 ¥t (9)
The necessity of (9) is obvious. For the sufficiency part of Lemma

1 the adjoint network concept [17] can be utilized to prove that any



change in the subnetwork should be observable at the Mi nodes, thus
changing ;Mi. Iﬁ no change has occurred in ;Mia from that computed
using the given y 1 and the nominal parameters of the subnetwork, this
implies that the subnetwork is fault-free. It is sufficient to check
Lemma 1 using only one external current to the subnetwork.

Normally, the voltages of the m, nodes are directly measured. The
currents i 1o are not directly measured since it is difficult to do so
practically except when they represent the input excitation to the whole
network. The application of KCL and topological relations overcomes
this difficulty. The currents are not measured: they are computed using
the nominal parameter values together with the measured voltages, then
KCL is invoked.

Let us assume we have a set of k subnetworks Si’ i€ Jt’ which are
incident on common node c¢ as shown in Fig. 4. Each subnetwork is
assumed to be connected and has mi+1 external nodes that do not
decompose the subnetwork further. The input-output relation for every
subnetwork is similar to that given in (5). The voltages of the mi
external nodes are assumed to be measured. The current incident to the

common node c from subnetwork S, is given by
i

Mi Mi Mi
1C (t) = hc (X (t)’ '?‘i) . (10)

Lemma 2: mutual-testing condition (MIC)

A necessary and almost sufficient condition for Si’ ie Jt’ to be
fault-free is that
Mi Mi 0
z hc (v "(t), ¢i) =0 ¥t, (11
ieJt ~

i.e., the currents incident to the common node c¢ computed using the



measured voltages and nominal parameter values should satisfy KCL.
If (11) is satisfied, then the current incident with the

measurement node c¢ from subnetwork Si is actually given by

MM 0
by tey, o). (12)

Invoking Lemma 1, this implies that the subnetwork Si is fault-free:
thus all subnetworks Si’ ie Jt’ are nonfaulty.
When the number of subnetworks which are incident to a common node

¢ is two we refer to the test as the bi-testing condition (BTC).

Example 3: illustration of Lemma 2

Consider the decomposed network of Fig. 2. Subnetworks S3, 55, 56

and S7 are incident to node 1. So, according to the MTC of (11) they

are fault-free if and only if

3 5 6 T _
I1+I1+I1+I1-O,

where all currents are computed using nominal parameter values and the

measured voltages of the nodes of decomposition.

Lemma 3: generalized-mutual-testing condition (GMIC)

Let Ei, ie Jt’ denote some external nodes of the subnetwork Si.
Each subnetwork Si is connected and has mi+1 nodes that do not decompose

it further, Ei c Mi. If the currents incident to Ei’ ied , form a cut

t,
set, then a necessary and almost sufficient condition for these
subnetworks to be fault-free is that

M

.M
I I ni(viwy, e =0 ¥t (13)
ied, JeE; 1

Example 4: illustration of Lemma 3

The branches that connect S2, SM’ 55, 36 and S7 with 83 form a cut

set, as shown in Fig. 1. According to the GMTC 82’ Su, SS’ 36 and S7
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are fault free if and only if

2 4 5 5 6 6 7

I2 + I5 + I1 + I5 + I1 + 15 + I1 = 0,
where the currents are computed using the measured voltages of the nodes

of decomposition and nominal design parameters  of the subnetworks

involved in the test.

IV. TOLERANCE CONSIDERATIONS
The actual values of nonfaulty elements can deviate from their
nominal values within prescribed tolerance bounds. Thus, in practice,
we face the situation that Lemmas 1-3 are not satisfied to the required
degree of accuracy. Taking the tolerance changes in the subnetwork
elements into consideration we may write condition (9) as
M. Mo, M, 0

L) - n Py ), ¢+ 88) = 0, (14)

where A¢ 4 [A A¢ A¢ ]T fi i
2= ¢i1 io **° ip defines the tolerance changes in the p
elements of the subnetwork under consideration. For small tolerances
the first-order approximation can be utilized to describe the changes in

the network response. Accordingly, we may write (14) as

M
M, M. M. p dh ia
. 1o 1g 1 0 - fad
j=1 ij
where the partial derivatives are calculated at Qg. Let
Mia A Mia ia Mi 0
AL TT() =1 TT(t) - h (v 7(t), 90 =B, Agp: (16)
where
. . M,
. 3h ia sh ia sh ia
B. = l. e o0 = J L] (17)
~1 351 3o 9ip
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At a certain instant to of time equation (16) is an underdetermined
system of 1linear equations in the variable Agi. The weighted

least-squares solution of (16) is given by [9, 10]

M
+ ,. 1o
Agi = 51 Ai (to) ’ (18)
where
+ A T T.-1
Ei - Sigi CEiSiBi] (19)

and Si is a weighting matrix. For Agi normally distributed with mean 0
— . . : -
and covariance matrix gi » the solution given in (18) is the conditional

expected value of the parameters Agi [91, i.e.,

Mgy = E [ag;1 AiMia(to)J , (20)
where E denotes the expectation. Moreover, the solution is a minimum in
the weighted least-squares sense. 3o Agi is the solution of

minimize Agz 5;1 A, 21

subject to

. ia
Ei Agi = Al (to) . (22)

~

Using the probabilistic interpretation of the result, namely (20),
we can have a measure of how far (9) is satisfied under the variations
caused by the tolerances. If any component of the computed vector Agi
from (18) significantly exceeds its tolerance value we consider that the
test is wunsuccessful. The consideration of the matrix gi in (19)
provides the possibility of considering the known correlation between

the elements of the subnetworks.

The effect of tolerances on conditions (11) and (13) is treated in
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a similar way.

V. FAULT LOCATION INSIDE FAULTY SUBNETWORKS

Further diagnosis 1is wusually necessary to identify faulty
element(s) or at least the faulty region inside a faulty subnetwork.
Our approach to this problem depends on the structure and size of the
subnetwork. For small subnetworks with few elements a search for the
faulty element inside the subnetwork (fault verification) is feasible,
since the number of different combinations to be considered is very few.
For relatively larger subnetworks we first apply the ISTC to find a
smaller region inside the subnetwork that contains the faulty elements.
Then, we apply the fault verification technique to this faulty region if
possible.

Fault Verification Based on Nominal Models

For a faulty subnetwork Si it is required to verify the existence
of f faults inside the subnetwork. These f faults may have been
predicted using an approximate fault location method as reported in
[6,7] or we may try all possible combinations of f faulty elements [4].
The latter strategy is feasible for subnetworks with few elements.
Necessary and almost sufficient conditions for fault verification in
linear and nonlinear networks have been developed in [2,4,5,8,18].

For a faulty subnetwork Si with miY = m16 = 0 and with mia > 0, we
may write (7a) as

.Mia Mia Mi 0 F
i77(t) =h (v 7 (t), ii’ Agi) ’ (23)
where Agg represents the unknown changes from nominal for f faulty

elements of the subnetwork. For mia > f+1 a necessary condition for f
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elements to be the correctly chosen faulty elements is that the over-
determined system of equations (23) is consistent. It is to be noted
that the condition that m 2> f+1 is needed when testing linear networks
using a single excitation and considering (23) at an instant of time
to.

For frequency dependent linear networks as well as for nonlinear
networks mia may be less than f since, by changing the input excitation
(level, frequency, position, ...) further information is revealed about

the subnetwork. Following [8] and considering (23) at instant to with

mia 2 f+1 the solution of (23) is locally unique in Ai? if

MM M MM MM
[ a’b 1 Bb 1 ah 1 J [ ag 1 ab 1 32 1a aE 1o ]
Rank e < Rank cee
%31 945 ;¢ 951 995 %ip 905y
¥oxeAF, b=t (24)

where A is the set of all subnetwork elements ¢i1'¢i2’ coey ¢ip’ and F

.e For 1linear

is the set of ass f . .

et of assumed faulty elements ¢i1’ ¢i2’ ¢if
networks this condition evolves into an almost sufficient condition with
a graph theoretical interpretation [5].

Fault Verification Based on Fault Models

Practically, in any subnetwork there are some elements that are
fault prone. Fault models of these elements are usually known and in
the directory approach they are used to construct the dictionary. We
exploit this to our advantage by computing using the measured voltages
and the fault models

M M M F

iFia(t) =h (v L, iij) y 3215250000k, (25)
J
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F.
where iiJ refers to the subnetwork parameters that model the jth faulty

case and k different faulty cases are considered. Utilizing the nearest
neighbour rule [13], the exact faulty case is the one that has the
M

minimum distance dj from the actual i lc‘(t), where

\ s M M.
dy 2 i) - 1R e, =2k (26)
0 J

Alternatively, we consider dj at just a single instant to as

M, M,
dy= Vgt - e, (27)
j

e.g., in dc testing.

Identification of Faulty Regions

The application of the ISTC starts by partitioning the faulty

subnetwork Si into two smaller subnetworks Sj’ S such that Si =S. u

k J

S as shown in Fig. 5. See also [5]. For at least one of these

"
subnetworks and preferably for both of them, mla > mza, where £ = j or
k, as appropriate. Utilizing condition (8) we can identify whether Sj
or Sk are fault-free or not. We continue the binary partitioning
process in the identified faulty region until we cannot find a partition
that satisfies the cardinality condition, namely mla > mza. At this
stage we apply the verification technique to identify the faulty
elements inside a faulty region that in many cases is much smaller than

the subnetwork Si.

VI. FAULT LOCATION IN LINEAR NETWORKS
For linear networks, the matrix description of the subnetworks

greatly simplifies the computational effort needed for checking the
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testing conditions. Without loss of generality we assume sinusoidal
excitations are applied. Whence, we represent the voltages and currents

by their phasor variables.

General Description

Consider a subnetwork Si which has mi+1 external nodes, one of
which is the reference node, and ni internal nodes. The nodal equations

are given by

B n P‘Mi”T ~ Ml i
’XMiMi 'XMiNi ,l’ ,; +,I.g
z , (28)
N, N,
v
v A Y dg
— - — - - ...J
where
ia
~Ig = ’ (29)
Mi
defines the current sources associated with the subnetwork, V is the
N,
voltage vector of the external nodes, V ' is the voltage vector of the

M.
. 1, .
internal nodes and J 1is the current input vector to the subnetwork

from outside through m, external nodes. Eliminating the ni internal

nodes we get

- - i
Im=- [Eg - un, Anon g |+ W w = Yuy oy wlyss
1 11 ii ivi i'i ii
(30)
or more compactly
Mi i M.
- i
P = ﬂm_ .I,g + ;Y.M. Y ’ (31
1 i
where
A -1
By =-[1 =Yy Lywlo (32)
1 ii ii
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ne>

LI | (33)

Y SN, ~N.M,
iti i

Y -Y Y
5, *

~MiMi ~MiNi ~N
and 1 is a unit matrix of order m, .

Equation (31) describes the input-output relation of the
subnetwork. This relation is the one we are interested in to verify
Lemmas 1-3.

During testing we follow a hierarchical decomposition approach

[19]. This is illustrated in Fig. 6 and is repfesented by the so-called

tree of decomposition. The subnetworks at the final level of

decomposition are called blocks. We begin by considering suitable STCs
and MTCs for the subnetworks at the first level of decomposition. If a
subnetwork is declared nonfaulty no further partitioning of it need be
carried out. Faulty subnetworks and those which we are not sure about
are decomposed further using measurement nodes, if possible.

Since the hierarchical decomposition could be obtained prior to
actual testing, the characteristics of the resulting subnetworks,

namely, Eﬁ and EM 5; are known and could be computed off-line using
i i
nominal values and stored before conducting the actual testing. At the

time of testing, the only on-line computation required is the matrix by
vector multiplication, namely XM gk . let E define the set of
faulty subnetworks or the ones 1which Wwe are uncertain about. The
procedure in carrying out the tests can be summarized as follows.

Procedure for Locating Faulty Subnetworks

Step 0 j = 0.
Ej = {S1}. (S1 is the network under test.)
Step 1 Partition, using the least number of test nodes every Si € Ej'

if possible, into smaller uncoupled subnetworks to constitute
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E, . Otherwise go to 8.
j+1

Comment Only decomposed parts of every Si € Ej will be contained in EJ 1
—_— +

or Si itself if it is not decomposable.

Step 2 For S € E
p or every i 41

Step 3 Check the testing conditions of Lemmas 1-3.

» find the sets M, and M, ,.
io iB
Step 4 Identify faulty subnetworks using a logical analysis of the
tests.
Step 5 Utilize the nonfaulty subnetworks to determine the external
currents of the faulty subnetworks.
Step 6 Update the set Ej+1 by removing nonfaulty subnetworks.

Step 7 j= j+1. Go to 1.

—_——

Step 8 Print out the components of the set E = Ej'

Computational Effort

The number of nodes where measurements are performed and the
computational effort depend on the size of the blocks and the number of
levels of decomposition. If we assume that we have L levels of
decomposition and the resulting hierarchical decomposition is binary and
symmetric, the number of subnetworks (blocks) at the final 1level of
decomposition will be equal to 2L. If each block has n nodes and b is
the number of interconnection nodes between any two blocks, then the
total number of network nodes is approximately given by

N T ol (n=b) + b . (34)

Assume that all the interconnection nodes are measurement nodes. Then
their number Nm can be estimated from
L
N <2b -b. (35)
m
Accordingly, a measure of the needed degree of accessibility is

given by the ratio



N

b
r = -<-;l—_b' (36)

|
CRE

For a smaller r, n should be much greater than b. On the other hand, we
wish to have n as small as possible to obtain better diagnosis and
decreased computational effort. There is clearly a compromise between
the degree of accessibility and the size of the block.

If the faulty elements are in one block, following the hierarchical
decomposition strategy and assuming binary partition, we check the
testing conditions for just two subnetworks at each level. The total
number of subnetworks to be considered is consequently 2L. In a number
of steps proportional to log NT we 1isolate the faulty subnetwork.
Obviously, we do not need to measure all the voltages of the test nodes.

Less than bL measurements are actually required.

Location of Faulty Elements

Representing the change from nominal in a faulty element by a

current source across that element, we may write (31) as

M, M,

1t raey, viaen, o 1f

where lF represents the faulty current sources and H is computed

~M.F
i
using the nominal parameter values of the subnetwork and defines the
M,
transfer relation between [ 1 and QF. It is normally computed using the
adjoint network concept as in [6]. Considering (37) for the m o known

currents we have

v i, (38)

where only rows Mia are considered in the matrices EM
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ZM . If mia is greater than or equal f+1, then the system of equations
ia

is overdetermined. A necessary condition for F to contain the faulty
set is that (38) is a consistent system of equations. The set F is
unique if [5]

Rank |H, ¢ My J=ren, v x¢ F, (39

ia ia

where BMiax represents a transfer vector from a current source across an
element x in the subnetwork to the measurement nodes Mia' and (39) is
considered for all elements x in the subnetwork other than the elements
in the faulty set F.

Internal-self-testing and fault verification in the faulty subnet-
works can be applied as discussed in Section V using (38). All matrices
used in (38) are computed using nominal element values and can be stored
before performing the test. The computational effort will be only that
of verifying the consistency of (38), which is usually performed using
elementary operations on the matrix EMiF as in [51].

Example 5: linear network example

The network under test is composed of two identical low-pass filter
sections in cascade. The low-pass filter section is shown in‘Fig. T and
its nominal elements values are given in Table I [20]. The operational
amplifier is modeled by a controlled source and output resistance, as
shown in Fig. 8. This, in general, facilitates the use of nodal
analysis programs and guarantees the existence of Xﬁ;Ni

network has 52 resistors and capacitors and 16 operational amplifiers.

in (30). The

In the first section, nodes 1,3,5,6,8, 10,12, 14,15, 17 and 19 are taken to
be the measurement nodes. The corresponding nodes in the second section

are chosen as measurement nodes. We simulated the network with a
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sinusoidal current source ig(t) = 0,01 cos 2000t A. A number of faulty
elements were randomly chosen in the first section and they are
identified by an asterisk in Table I. The procedure follows.

Stage 0 EO = {51}. (S1 is the network under test).

Stage 1 S, is decomposed as shown in Fig. 9 into S, and S_.

1 2 3
E,. = {8, S_}.

1 2" 3

Mza = {1} , MZB = {19}
M3a = {37} , M33 = {19}
From the results of Table 1II, S2 is faulty and 53 is
non-faulty.
E1={S2}.

Stage 2 82 is decomposed as shown in Fig. 9 into S4 and SS'
E2 = {Su, SS}.
Mua = {1} , MMB = {10}
M5a = {19} , MSB = {10}
From the results of Table III, Su and 85 are both faulty.
E2={Su, 55}.

Stage 3 Su and 55 are decomposed as shown in Fig. 9. Su is decomposed
into 56’ S7 and 88.. 35 is decomposed into Sg, 510 and S11.
E3 = {S6, S7, 88, Sg, S1o, 811}.
M6a = {p} ’ M6B = {1, 3, 6}
M7a = {g} ’ M7B = {3, 6}
M8a = {9} ’ M8B = {1, 3, 6, 10}
Mga = {g} , M9B = {10, 12, 15}
M10a = {0} ’ M106 = {12, 15}
M = {19} , M = {10, 12, 15}

11a 118

From the results of Table IV, subnetwork S11 is faulty and
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further tests are needed for all other subnetworks.

E3 = {86, S7, 58, Sg, 810, S11

Stage 4 Subnetworks S7, S8’ 310 and 811 are decomposed into S

}.

12° S13'

S S S S S S S S h in Fig. 9.
147 15" 216° C17' ©18° 19’ “20 and 1 as shown in Fig. 9

No further decomposition of 56 and 59 is possible using only

the measurement nodes.

Ey = Bg Sy 513" S1y7 S157 Sqg? 59> S190 S1g0 S1g7 207 5293

M6a = {9} ’ M6B = {1,3,6}

M12a = {@} ’ M128 = {3,5}

M13a = {9} , M138 = {5,6}

M1ua = {9} , Miyg = {3, 8}

M15a = {9} , M156 = {1,8}

M16a = {g} ’ M168 = {6,8,10}

Mga = {9} ’ M9B = {10,12,15}

M17a = {g} , M17B = {12, 14}

M18a = {9} ’ M186 = {14,15}

Mg = {9} ’ Migg = {10, 17}

M20a = {9} ’ MZOB = {12,17}

M21a = {19} , M21B = {15, 17}
From the results of Table V subnetworks 56, 517 and 520 are faulty and
all other subnetworks are nonfaulty.

By = B Sip Syt
No further decomposition is possible for subnetworks S6, 817 and 820
using the measurement nodes. So we have E = E4 = {86,817,320}.

For subnetwork S , m = 3 and we are able to verify the existence

6" 6o
of at most double faults. For subnetwork 817, m17a = 2 and we are able
to verify the existence of a single fault, and for subnetwork 520, mzoa
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= 1 and, since it contains single element, we can immediately find its
value. The fault verification procedure identified R1, C2 in subnetwork

S_ as faulty elements and R in as faulty. Using the computational

S
6 23 17
procedure outlined in [6] we computed the changes in these parameters
and they are given by IAR1I = 0.082, tACZI = 0.01, IAR23l = 4,0 and

IAR25| = 400.0, which are the exact changes.

It is to be noted that in four steps (levels of decomposition) we
were able to identify the faults to within very small subnetworks. Also
since S3 is fault-free after Stage 1, no further decomposition is
carried out and, accordingly, we do not need to measure the accessible
nodes inside S3.

VII. TESTING OF NONLINEAR NETWORKS

In typical nonlinear networks, the network is dominantly linear
Wwith a few nonlinear elements. The nodes of decomposition are chosen
such that the part of the network that contains the nonlinear elements
is decomposed into subnetworks, each of them having very few nonlinear
elements or being completely linear. The part of the network that
contains only linear elements is treated exactly as in the linear case.
We decompose the network into blocks that contain the nonlinear elements
and a number of subnetworks that contain only linear elements. The
latter could be decomposed further.  In applying Lemmas 1-3 for
nonlinear networks we need a nonlinear network solver. Intuitively, by
having very few nonlinear elements in each subnetwork the nonlinear
network solver converges rapidly in just one or two iterations starting
from the nonfaulty state. Also, analyzing several subnetworks

simultaneously 1is possible wutilizing the parallel processing
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capabilities of modern ATE. Any general circuit analysis program, such
as SPICE, can perform the subnetwork analysis.

For 1locating faulty elements within faulty blocks that contain
nonlinear elements we adopt the fault model approach of fault
verification. We analyze the faulty block using assumed fault models of
its elements, then we compare the different cases using the nearest
neighbour rule, as outlined in Section V.

Example 6: nonlinear network example

We considered the video amplifier circuit shown in Fig. 1. Every
subnetwork contains at most one nonlinear element (transistor), which
agrees with our requirements on the decomposition.

We considered dc testing of the circuit. All capacitors are,
therefore, open circuits. To investigate faulty capacitors ac testing
is needed. The nominal values of circuit elements are given in Table
VI. We have considered the well known Ebers-Moll model of the
transistor. The nominal operating conditions for the circuit are given
in Table VII. All transistors are operating in their active regions.

Different faulty situations have been simulated. The results for
four different cases with the nonfaulty parameters assumed at nominal
values are summarized in Tables VIII-XI. In Case 1 (Table VIII), we
considered Q1 faulty, namely its collector-base junction is shorted. A
shorted junction is simulated by connecting a very small resistance
across the junction. The logical diagnosis function of Case 1 is that
which we considered earlier in Example 2. In Case 2 (Table IX), the
base-emitter junction of Q3 is shorted, and in Case 3 (Tablé X), the
resistor R is increased to 7.8 k. In Case 4 (Table XI), transistor

10

Q2 has a shorted base-emitter junction. We considered also Case 2 when
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all resistors are allowed to change within + 10% of their nominal values
and the transistor gain, B = (aN/1-aN), is allowed to change + 10% of

its nominal values or equivalently o to change within + 0.1% of its

N
nominal value. The predicted changes in the subnetworks using equation
(18) for the different tests is summarized in Table XII (Case 5). It is
clear that the diagnosis of the different tests will be exactly as in
the non-tolerance case (Case 2). The matrix Si in (18) has been taken
to be

2 2 2

. 0 0 0
C - LY
< diag {w1 ¢i1' W, ¢12, R Wp ¢ip} ’

where p is the number of elements in the subnetworks considered in the
test that are subjected to tolerance changes and wi is an appropriate
Weighting function.

In all the cases considered we were quite successful in identifying
the faulty subnetworks. In Case 3 further diagnosis may be needed after
repairing the faulty element R10 since, due to abnormal operating
conditions subnetworks Su, 58 and 89 are short circuited, and any fault

in them will not show up until R is repaired. Also, knowing that S

10 T
is faulty we compute
T _ 3 5 6 _
I1 = - I1 - 13- I1 = 2.8379 mA
and
V1- Vcc
10- I7 =708k9 9

which is the exact fault value.
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VIII. CONCLUSIONS

We have described a novel and unified method for fault location in
analog circuits. The method has the following characteristics:
(1) Due to the decomposition of the whole network into smaller
uncoupled subnetworks, the method is directly applicable to 1large
networks.
(2) The testing conditions are a result of network topology and KCL:
they do not depend on network type, so the method is applicable to both
linear and nonlinear networks. Also, depending on the type of circuits
the network could be tested using different types of excitations.
(3) The measurement nodes are chosen as the nodes of decomposition.
Their number can consequently be limited for practical implementation.
(4) For 1linear networks the on-line computational requirements are
minimal (matrix by vector multiplications) and the off-line computation
involves the analysis of the nominal network only. For nonlinear
networks the on-line computation is reduced by performing the
computation in a parallel processing mode.
(5) The decomposition of the network into subnetworks allowed us to
deal with the tolerance problem at the subnetwork level, thus we have
localized its effects.
(6) The method is initially modular, where nominal circuit models are
used for the subnetworks. Subsequently, it is element oriented at which
time faulty elements are located inside subnetworks. Typical faulty
models may be utilized at this stage.
(7) General circuit analysis programs, e.g. SPICE, ECAP, etc, can be
effectively utilized to locate and identify faulty elements.

A computer program realizing this method has been written and other
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practical examples [12] were tested yielding positive results.
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TABLE I

NOMINAL ELEMENT VALUES FOR THE LINEAR NETWORK EXAMPLE

Resistors (k) Capacitors (uF)
R: 0.182/0. 1 c; 0.01/0.02
R, 1.57 c., 0.01
R, 2.64 C1a 0.01
R 10. 00 o 0. 01
R, 10.00
Ry 100. 0
R g 1.1
R 2. 64
Ry 5,41
R 1.0
R, 1.0
Rig u. 84
R, 2.32
Ry 10. 0
*
Rag 10.0/6.0
RZS 500. 0/100. 0
Ry 111.1
Ry 1. 14
Rog 2.32
Ry, 72,4
R 10.0
Ray 10.0

*
refers to a faulty element: its faulty value follows the slash.
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TABLE II

DIAGNOSIS FOR THE FIRST LEVEL OF DECOMPOSITION

Voltage Measurements Computed Currents Diagnosis Test
and Designed Currents
2 . 2
Measured voltages I1 5.53-30.0039 mA I1 - I1 Z 0 T2
V., = 0.956+j0.0044 Vv 12 = 7.05-j1.52 A
1 19 2 3
3 119 + 119 £0 T23
V19 = 1.67-j0.265 V I19 = 9.66=31.57 mA
. 3 3
v = 1.53=30. =0 I -1 =0 T
37 = 1-93-30.421 0 I37 37~ 137 3
Designed Currents
I1 = 10.0 mA
I =0
37
logical diagnostic function: D_ = o_n(6. uo.) no_ =0.n o_.

Result: S3 is declared nonfaulty and I

3

22 3 37 2 3
3

19 is known in Table III.
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TABLE III

DIAGNOSIS FOR THE SECOND LEVEL OF DECOMPOSITION

Voltage Measurements Computed Currents Diagnosis Test
and Designed Currents

Measured Voltages I? = 5.69)(10_3-‘]‘1.05x10_5 A I1 - I? £ 0 TH
V. known RS -17.72+31.61 A
1 10 I4 >
5 -3 -4 10 * 11070 Tys
v10 = -4,39+3j0.386 V 110 = =3.91x10 “+3.44x10 A
5 3 5
k = ° =Ue
V19 nown 119 0.67-0.81 A I19 + 119 £0 T5
Designed Currents
I1 = 10.0 mA
3
I = -
19 I19
Logical diagnostic function D3 =0y n (c,4 u 05) nog =0y, no0g.

Result: no new currents are designable.
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TABLE IV
DIAGNOSIS FOR THE THIRD LEVEL OF DECOMPOSITION

Voltage Measurements Computed Currents Diagnosis Test
and Designed Currents

= 8.911+j0.0143 mA I

6 6 _8
Measured Voltages I1 1+I1 Z I1 T68
V. known I6 = -6657.25+j4. 126 mA
1 3 16..7..8
g S*Ig+I5 £ 0 Terg
3 6
. 7 . 6 .7 .8
V = - = =V - .
g = =25.14§2.17 V I, = -0.0142-j0. 1328 mA Te+lg+Io £ 0 Ters
7 .
V10 known 16 = 13.446-j1.1625 mA 8 .9 11 ~
8 I1O+I1O+I1O =0 T8 9, 11
V., = 0.103+30.69 V. I = 0.439-30.0301 mA » 9
V. - 8.93-31.12V IS = 0.0378-40.0167 mA P411% M x0T
15 37" . 127712712 9, 10, 11
8 .
V19 known I6 = =3.9224+3j0.3392 mA 9 10 11
8 T5tTist s 20 Tg 40, 11
Designed Currents 110 = 3.9039-j0.3436 mA » 1Y
9 ) 11 3
I = 10. = -3, . -
, = 10.0 mA Ijo = -3.8546+j0.3389 mA I, # -I T,
_ .13 9 )
I19 = 119 I12 = -0.0005-30.0772 mA
19, = 3.8473-30. 4837 mA
I}g = 0.0103+3j0.0689 mA
I}g=-540.09-j2728.18 mA
118 = —0.0499+30.0052 mA
11; = =0.0021+j0.0018 mA
11; = 0.1083-30.0136 mA

I19 = 695.12-3593. 77 mA

Logical diagnostic function D6 = (56 u 58) n 511.
Although T is almost 0 it contradicts T
8,9, 11 11

in the LDF, otherwise the LDF = 0.

, hence we do not consider it

Result : no new currents are designable.
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TABLE V

DECOMPOSITION

Voltage Measurements Computed Currents#¥ Diagnosis Test
and Designed Currents
12 ) 6 .15
Measured Voltages I,7=-0.0142-30.1328 mA I+I,° # 1 T
3 1771 6,15
V. known 12 ==0.0435-3j0.5034 mA
1 5 6 14
13 13 13 +I; #0 Te 12 11
V3 known I15°=0.0435+3j0.5034 mA e
. 13 12 13
V_=0.14 . = - =
570 141431, 33V I 7=13. 4462-31. 1625 mA I I 0 T12,13
V_ known 1% 11%0.0378-30.0167 ma '
6 3 8 6 .13
15__ 15 Tgrlg +1g %0 T6, 13, 16
Vg=—0.392+50.339V I,7=-157=0.4391-30.0301 mA » 13y
16 15 _16
v k I "=-3. i0. =
o known 5 =-3.9224+30.3392 mA Is *Is *Igo =0 Ty 15,16
V._ known 110-0.4768-30.0468 mA
12 8 I9 Ja6.019 9 g
V.,==0.0615-30. 413V I1O=3.9039-j0.3436 mA 10 t10 9,16, 19
17 9 117,20
V. k = j
15 known I,220.0082+j0.0552 mA Ip*L o175 # 0 T9’17,20
V. _=1.08-30.136V 1'7.205.185+31379.726 mA
17 14 17 18
18 Ly*Iqy #0 T47,18
V19 known I1u--0 0225-3j0.1787 mA !
) 18 9 _18 _21
De dC t = i =
signed Currents 115 3.9556+30. 4974 mA I15+I15+I15 0 '1"9’18,21
) 119__119
1,=10.0 mA Io° 117 ==0.0493+j0.0047 mA 1192021 ‘o .
13 20 120 1777177717 19, 20, 21
119_ 119 I 5=-177=-0.0020+30.0017 mA
21 21,13
I = - =
15=0+ 1083-30. 0137 mA Igtl7g = O T,
If;=-o.0590+jo.o13o mA
21
I19==9. 66+31.57 mA
Logical diagnostic function D11 =0 09 no,,n 013 no,,n 915 no,n

918 " %19 M %20 " Y1
and S 0

Result: S, S

6" 17

¥ for computed currents of S

are faulty.

S L]
6 and 9 see Table IV
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TABLE VI

NOMINAL VALUES OF NETWORK ELEMENTS

Element Value
R1 1.2 kQ
R2 3.0 k&
R3 5.672 k&
Ru 1.2 kQ
R5 0.33 k&
R6 0.33 k&
R7 1.0 kQ
R8 1.7 kQ
R9 3.3 k@
R1O 0.078 k&
R11 0.5 k&
R12 1.0 k@
13 1.0 k&
C1 1.0 WF
C2 3.3 uF
C3 1.0 uF
C4 1.0 wF
VCC 28.0 V

28.0 V




TABLE VII

NOMINAL OPERATING POINT AND PARAMETERS OF TRANSISTORS

Q Q, Q Q

IC 4,744 mA 9.091 mA 5.891 mA 3.048 mA
I -4.791 mA -9.183 mA -5.951 mA -3.079 mA
Vo 0.764 V 0.798 V 0.776 V 0.7U41 V
Vo -11.767 V -14.506 V -10.208 V -15.315 V
o 0.99 0.99 0.99 0.99

o 0.5 0.5 0.5 0.5

I 1070 ma 1078 ma 1078 ma 107° ma
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TABLE VIII

CASE 1 - Q1 FAULTY

Measurements Computed Currents Di agnosis Test
V. = 27.1008 V 12 - 4.7437 mA 12 + 13 4 0 T
1 - ¢ 2 - 2 2 23
V_ = 3.1321 V
2 I? = 9.9952 mA 1? + I? + I? + IZ =0 T 6
V5 = 2.4126 V 3 3567
V.= 1. \'} I I =
7 725 Ig - 19949 mA 5+ I+ I5 + I5 0 T3456
V10 = 1.7606 V 15 8
y 7 + I7 =0 T58
15 = 2.010’4 mA
6 9
I + I =0 T
1? = 1.0049 mA 10~ 10 69
Ig = 0.0101 mA
5
17 = -1.050 mA
I6
1 = 005282 mA
Ig = 0.0053 mA
1?0 = -0.5335 mA

IZ = -11.5283 mA
= 1.0150 mA

= 0.5335 mA

2 3 3 5

n 69) =06.N0_.No NOG_no, no

logical diagnostic function D5 = (6., uo)n (o,no_n og 0 07) n (og
21 931 9y N dgn dgn ggn

no no.no
4 5 6
o, n o_.

8 9
Result: 82 is the only faulty subnetwork.

) n (05 n 08) n (06
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TABLE IX

CASE 2 - Q3 FAULTY

Measurements Computed Currents Di agnosis Test
= 2 _ 2 3
V1 = 26.1850 V 12 = 4,7437 mA 12 + I2 =0 T23
V, = 11.6790 V
2 13 = 13.9057 ma 13,17 . I? . IZ 40 T
V5 = 10.8809 V 3
12 = =4,7437 mA 3 y 5 6
V7 = 10.8599 V 3 I + I + 15 + I5 £ 0 T3u56
IS = =9,1620 mA
V1O = 10.1296 V 15 8
y 7 + I7 0 T58
I5 = 9.0675 mA
6 9
I + I =0 T
I? = 5.8736 mA R %9
5 2 7 8 4
I- = 0.
5 0.0593 mA 12 + I1 + I7 + I5
5 _ 9 .
I7 = -5.9329 mA + 110 =0 T24789
6
I1 = 3.0389 mA
Ig = 0.0307 mA
6
110 = —3.0696 mA
IZ = -23.2685 mA
2.6
7 = .3882 mA
19 - 3.0696 mA
10
Lo%lcal dlagfostlc function D6 = (02 n 03) n (03 u 05 u 06 u 07) n (o
uoG, uod_u 06) n (0_u 08) n (o 6_no.nodg no)=20

n 09) n (o

y ¥ % 5 6 2 M P M G0 Ty nfy

n 03 n 04 n 05 n 06 n 07 n 08 n 09.

Result: S5 is the only faulty subnetwork.
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TABLE X

FAULTY

Measurements Computed Currents Diagnosis Test
2 2 3 _
V1 = 5.8645 V I, = 2.8379 mA I,+1,=0 T23
V= =2,6491 V
2 3 _ 3 5 T
v - 0.0 I1 = 2.8379 mA I1 + I1 + I1 + I1 # 0 T3567
V5 I = -2.8379 mA s w5 6
= 0.0 I+ I_+I° +I_=0 T
v = 0.0 5
10 IS 8
15 = 0.0000 mA
6 9
I + I = T
1? = 0.0000 mA 10 10 69
IZ = 0.0000 mA
I? = 0.0000 mA
6
11 = 0.0000 mA
Ig = 0.0000 mA
6
110 = 0,.0000 mA
17 - 28 A
1%~ 3.7879 m
I8
7 = 0.0000 mA
17 - 0.0000 mA
10 - °°
Leglcai dlagnostic function D5 = (05 n 08) n (06 n 09) n (02 n 03)-n
(03 U og U ogu 07) n (03 noynogn 06) =o,n o n g, n o n o, n o,

n G .

9

Result: S
7

noa

is the only faulty subnetwork.
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TABLE XI

CASE 4 - Q2 FAULTY

Measurements Computed Currents Diagnosis Test
V, = 26,1241 V12 = 4.7437 mA 2+1340 T
1 - ¢ 2 " 2 2 23
V, = 11.6001 V
2 13 = 48414 ma 34124 1? + 17 40 Tacer
V5 = 11.6001 V
Ig = 4. 8414 mA s 5 6
V., = 10.8001 V IZ2 +I_ +I2 +I°#£0 T
7 Ig = 0.000 mA 5 5 5 5 3456
V10 = 10.8445 V 5 8
4 I7 + I7 =0 T58
6 9
I + I =0 T
12 = 6.28% mA 107 710 69
5 _ 2 7 8 I
I5 = 0.0635 mA 12 + I1 + I7 + I5
5 9 .
6
I1 = 3.2533 mA
Ig = 0.0329 mA
I6 = =3.2862 mA
10 ~ ¢
IZ = —24.0497 mA
18 - 6.3530 ma
7 - .
17 = 3.2862 mA
10 °
Logical diagnostic function D6 = (02 u 03) n (03 UG5 UG, u 07) n (03 u

0'3!’]0'4110'51106{10'7(108!10'9.

Result: S3 is the only faulty subnetwork.

oy u 35 u 36) n (05 n 08) n (06 n 09) n (02 n oy n 07 n 08 n 09) = g,

n
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TABLE XII

CASE 5 - Q_ FAULTY WITH TOLERANCES ON THE NONFAULTY ELEMENTS

3

Percentage Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
Deviation T23 T3567 T3456 T58 T69 T24789
IAR1/R1| 0.0 0.0
IAR /R, | 1.983 13.54 0.0
IAR3/R3| 1.774 2.1
IARM/RM' 26.99% 4,076
|AR5/R5| 0.088 6.71 9.09
IAR6/R6| 0.012 0.0 0.136
IAR7/R7l U6, 47* 0.31 70. 82%
'ARB/R8I 27.Th* 2.45
IAR9/R9I 0.878 1. 382
IAR1O/R1O| 51.44% 8.96
IAaN1/aN1I 0. 0224 0. 026
IAaNZ/aNZI 0.0513 0.71% 0.408%
IAaN3/aN3I 0.0 0. 001 0.194%
'AaNM/aNMI 1.27% 0.072 0.14

Pass Fail Fail Fail Pass Pass
%ogical diagnostic function D6 = T23 n T3567 n T3456 n T58 n T69
24789
=0,N 0,00, n 35 nogn o, nogn o
Result: S_ is the only faulty subnetwork (see Table IX).

5
*

deviation significantly exceeds tolerance.
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Fig. 5 Decomposition of Si into two subnetworks Sj and Sk'
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Fig. 8 Equivalent circuit for the Op-Amp.
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