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Abstract

This paper presents a topologically based theoretical background
for designing tests for identification of faulty parameter values in
linear subnetworks. Nodal voltages are assumed to be obtainable either
by measurements or, indirectly, as a result of a nodal fault analysis.
A formulation of nodal fault analysis for subnetworks is presented. It
is shown how this approach can be used to evaluate faulty elements
within inaccessible faulty subnetworks. The objective of this work is
the reduction of the number of required current excitations and,
thereby, the number of voltage measurements. Coates flow=-graph

representation of a network is used.
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I. INTRODUCTION

Fault diagnosis and automatic testing techniques for analog
circuits often require parameter identification. Recent papers on the
subject [1-17] present different techniques of parameter indentification
and/or fault region location involving the solution of linear equations.
Most of the authors assume voltage measurements, which are more
convenient in practice, and consider current excitations only.

A central problem is the formulation of a sufficient number of
independent equations subject to a specified number of excitations or
voltage measurements. For linear analog circuits, necessary and
sufficient conditions related to the network topology have been
formulated, resulting in the identification of faulty nodes or
subnetworks [12-171.

The principal aim of this paper is to develop topologically based
conditions for the evaluation of faulty -elements within a linear
subnetwork under test with a reasonably small number of excitations at a
single frequency and, thereby, a small number of measurements. The
paper extends the results presented by Biernacki and Starzyk [9] and
proposes an efficient approach to the design of test nodes. The Coates

flow graph representation of network elements is used [18].

II. LOCATION OF FAULTY NODES AND DESIGN OF NODAL VOLTAGES
Necessary and sufficient conditions for 1location of faulty nodes
have been discussed [14-16] for linear networks, and more generally [13]
for subnetworks selected during the fault location process in a large

network. External voltages and currents of a subnetwork may be



measured or designed through identification of nonfaulty parts of a
large network [13].

Consider the nodal equations for a nominal subnetwork isolated
during a fault location process for a large network as

{02 y0 0

~

’ (1)
where XO denotes the response of a nominal subnetwork to a given current
excitation io.

Four types of external nodes are associated with this subnetwork:
o~nodes, where both voltages and currents are known; B-nodes, where only
voltages are known; y-nodes, where only currents are known; and §-nodes,
where neither voltages nor currents are known.

We assume that all the elements spanned over the nodes 8 and § have
been arbitrarily associated with other subnetworks and they are not

represented in (1). See Fig. 1.

Solving (1) we obtain
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where z represents internal nodes and Zab denotes a submatrix of (X’O)_1
obtained by the intersection of rows a and columns b. Symbol g:b is
. T -1 . -1
defined as (Z7),,, symbol Z , is defined as (Z '), , where -1 denotes
inversion,
For any subnetwork, with card a > card §, we obtain an internal-

self-testing condition [131]:
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Result 1 (Fault-free subnetworks) If the system of equations (3) is

consistent and
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where X € o u Yy u ¢, then there are no faulty elements incident with

nodes x.

According to Result 1, only the elements spanned over the external
nodes B u § can be faulty. Because we have associated these elements
with other subnetworks we can declare the subnetwork under consideration

8

as fault free. Equation (3) can then be solved for i" and 35, hence all

the voltages of this subnetwork can be calculated. Consequently, the B-

and S-nodes of this subnetwork become o~nodes of adjacent subnetworks.
Let nodes n ¢ca u y u ¢z be faulty, and card o > (card §) + (card

n). Let in be the vector of node currents representing faults.

Result 2 [13] (Faulty subnetworks) If the system of equations
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where X € a U y u ¢-n, then the only faulty elements can be those span-
ned over the set of nodes F = n u g u §. These nodes are called faulty

nodes although there may be no faulty element incident with g and §.
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Assume that by solving (5) we have evaluated i
again proceed to evaluate all voltages of the subnetwork under
consideration and use the information obtained to analyse the adjacent

subnet works .

For the assumed faulty subnetwork, (1) can be replaced by
.0
i

~

=Yv, (7)
where v is no longer a nominal response.

If i is defined as

i=1 44, (8)
where Ai represents changes in nodal currents due to faulty elements,
then we can evaluate nodai voltages in the faulty network v from the
formula

i= 10 vo. (9)
After solving (5), we know the left-hand side of (9) and we can solve
(9) to get v.

For all independent current excitations we are, therefore, able to
calculate voltages in the faulty network if the conditions of Result 2
are satisified. These voltages, which would otherwise have to be
measured, are required by the approach presented in [9] for evaluating
all the elements of a network. 1In the present paper we only need to

evaluate unknown elements, i.e., those which are spanned over the faulty

nodes,

ITII. ELEMENT EVALUATION FOR SUBNETWORKS SPANNED OVER FAULTY NODES
The elements spanned over faulty nodes may form separate subnet-
works within a given subnetwork, as shown in Fig. 1. The subnetworks

may be remote and inaccessible from the point of view of direct



excitation and measurement. We can formulate conditions for element
evaluation within each of these subnetworks separately and combine the
results obtained to establish conditions for the whole network. These
conditions will show which external nodes should be excited
independently to evaluate all faulty elements,

Consider a linear subnetwork spanned over n faulty nodes. Let the

0

n-dimensional vectors I and V be subsets of i- and v, respectively,

corresponding to this subnetwork. We can then write

(10)

W<l
<
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for the ith excitation. Our goal is to evaluate z and then the element
values. Although we concentrate our discussion on the nodal equations,
it is applicable to any other description based on an independent set of
cut-sets (see [9]).
For n independent excitations, we can write a matrix equation
g z = I , a1
where the square matrix

A =1 =2 7"

Y= [x 4‘\’1 L) X (12)

is the matrix of voltage responses and the square matrix
b LI CHPOR £ (13)
is the matrix of current excitations. From (11), we find the unknown
matrix Y as
=177, (14)
provided that z is nonsingular. As a consequence of equations (11) and
(14), the following result provides sufficient conditions for the

evaluation of z.

Result 3 [9] 1If a given linear subnetwork can be described by the

nodal equation (10) and the current excitations are chosen in such a way



that :I,- is a nonsingular matrix, then j is also nonsingular and the

solution (14) exists.

Proof of this result follows from equation (11) since

n = rank

Ll

£ rank

<

<n.

Thus, in order to identify the values of all elements of zl, we
could arrange for n independent current excitations, design or measure
all nodal voltages and then apply equation (14).

In order to perform the least number of tests, however, we must
obviously eliminate whole columns of ! We propose a systematic way
which enables us to identify tests necessary for component evaluation.
"I‘ne method assumes that all components have nonzero values.

Numerical and Topological Conditions

Equation (11) can be rewritten in the form
Al SR O (15)

Consider the product of ZT and the jth column of gT. We have
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y Y31
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y Yo
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where ~ is used to represent a column of the appropriate transposed
matrix (or, equivalently, transposed row of the corresponding original
matrix) .

Let the k unknown elements of ; be identified by the set of indices
C = {j1, ooy jk}. We denote the set of elements yji’ i € C, a reduced

cut-set. Transferring the known terms from the left-hand side to the



right-hand side of (16) and adjusting i appropriately we rewrite the

equation as
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where \ZEC consists of columns C from zT, N is the set of subnetwork
nodes, and Iij is the equivalent external current for a reduced cut-set
at the jth node due to the ith current excitation.

In order to determine the elements y.. , ...y V.- » We can solve a

i, 33y
subsystem of (17) given by
r- -
Ii .
13
T ~C )
Ysc X = . , (18)
I, .
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where the k equations are chosen from (17) in such a way that the square
submatrix \ZEC’ obtained as the intersection of rows B = {11, ceey ik}
and columns C, is nonsingular. See Fig, 2 for an illustration.

According to relationship (15), the matrix \ZEC can be defined as

I S . Je
Tac = Ly @ yc o (19)

T

where ng consists of rows B from I 1

and (ZT);J'C consists of columns C

from (gT)'1. On the basis of (19) and the Cauchy-Binet theorem [19] we



may formulate the following result.

Result 4 If the matrix zgc is nonsingular then

<T
aD:det Too

where D = N = D, T = N - C (see Fig. 2).

# 0 and det Ys» # 0, (20)

Consider a sequence of sets Cj’ j = j1. ey jM, which corresponds

to a sequence of reduced cut-sets of the current graph [20] of the

subnetwork. Only those reduced cut-sets will be considered for which
external currents, if any, can be specified. Based on (11) and (18),
the following result can be summarized.

Result 5 If independent excitations which appear at or are applied
to the subset of nodes A C N are sufficient for the identification of

all elements of g then

=T -
¥ Cj BBjC A 3Dj.det 'I'B. D.¢ 0 and det Z’ﬁ.c. 0 @21)
J J J J
where
card Bj = card Cj = card Dj' (22)

Nodes A in Result 5 can be chosen from a remote inaccessible subnetwork,

therefore we call them injection nodes. For each subnetwork the set A

must be a subset of the external nodes of this subnetwork.
As a consequence of (22), we have the following corollary.

Corollary 1 card A > max card Cj . (23)
J

t is seen from (23) that the choice of the sequence of Cj is crucial
for the minimization of the number of sufficient tests.

Now, in order to characterize Dj feasible for a given Cj’ we
consider topological equations for the nodal admittance matrix.

T

= A Yo A, (24)

=<l

where the element ij of A is equal to 1 if the jth edge is directed
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towards the ith node, otherwise zero; and the element ij of A+ is equal
to 1 if the jth edge is directed away from the ith node, otherwise zero;
Ze is a diagonal matrix of edge admittances.

The submatrix of 2 obtained by removing columns Cj can be expressed
as

Y = A A'T , (25)

1
where A+ is obtained from L* by removing rows Cj‘ In the Coates graph,
this corresponds to deleting all the edges outgoing from nodes Cj‘
Similarly,

A ’ (26)

]
where A is obtained from ) by removing rows Dj' In the Coates graph,
this corresponds to deleting all the edges incoming to nodes Dj'
Let G denote a directed Coates graph [18] and let P denote a set

of node pairs of G, namely, P = {(Vs1’ve1)’ ceey (vsk,vek)}, where sz #

Vom for 2 Z m (p,n = s,e).

Definition [21] A k-connection of a graph G is a subgraph c, of the

P

form a set of k node-disjoint directed

graph, such that elements of cp
paths and node-disjoint directed circuits incident with all graph nodes.
The starting point and the endpoint of the paths are indicated by the
pairs of P.
Let us consider the Coates graph G(D|C) obtained from the graph

of the given subnetwork after deleting all the edges incoming to nodes
D and all the edges outgoing from nodes C. The following theorem can be
proved on the basis of the Cauchy-Binet theorem [19] and the concept of

the k-connection [21].

Theorem 1 If det zﬁﬁ # 0, there exists in G(D|C) at least one k-



- 11 =

connection Cp (see Fig. 3), where

P={(vg, v)) | vgeD, v, eC} @7

S e

and

k= card P = card D = card C . (28)
(vs, ve) represents a path directed from the node Vg to the node Ve OT
isolated node when Vg = Vgo

Proof According to the Cauchy-Binet theorem and relation (26), we

have

det ¥sx = 3 det K edet K*, (29)
where Kf is a major submatrix of A:-Xe with order equal to (n - card D)
and §+ is the corresponding major submatrix of A;T. If det ZﬁC + 0,
then there exists at least one pair of corresponding determinants, both
different from zero. A major determinant of Al'!e is different from
zero if and only if there exists one nonzero element in every row of the
chosen submatrix (chosen set of columns). This corresponds to the set
of (n - card D) edges, such that every edge has a different endpoint,
belonging to the set of nodes (N - D). The corresponding submatrix is
different from zero if the same edges have different origins, belonging
to the same set of nodes (N - C). Now it is easy to check that these
edges form a k-connection, as stated in Theorem 1.

Remark If rank IXN = card A, where iT consists of rows A from

AN
iT, then
=T
¥ Bj c A EIDJ. det gBij 0. (30)

As a consequence of Theorem 1 and the Remark, we have an important

corollary.
Corollary 2 From Result 5 it follows that we should find a set Bj

such that, after deleting all the edges outgoing fram nodes Cj and after
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deleting all the edges incoming to nodes Dj’ there are no isolated

nodes in the set 3;—1'1_‘63

Definition A node is said to be a corner if there exists a complete
subgraph containing all the edges incoming to the node as well as the
edges having the same weight as any of the incoming ones.

The order of this complete subgraph is not defined. In particular,
it may be a complete graph of zero order - see Fig. U4a, in which vertex
v is a corner, Also, there may exist edges outgoing from a corner to
other parts of the graph of the network which are not part of the
complete subgraph - see Fig. U4b, in which both vertices labeled v are
corners. The remaining two vertices are not corners simply because
canplete subgraphs that contain all edges incoming to these nodes do not
exist. Vertex x in Fig. U4c is not a corner, although the complete
subgraph containing all the edges incoming to x exists, but it does not
contain another edge of weight a.

In practice, if a vertex is not a corner it follows that we do not
have to provide independent excitations at this node to solve for
elements of a reduced cut-set at that node. This arises from the
following theorem.

Theorem 2 All the corners must be injection nodes.

Proof Assume that a corner is not an injection node. If we identify
an edge within the subnetwork incident with the corner, then every
reduced cut-set containing the edge must contain all the nodes of the
complete subgraph, After deleting all the edges outgoing from the nodes
of this reduced cut-set, the corner will be an isolated node, and if it
is not an injection node, we obtain an isolated node in the set D. n C.

J J
and a contradiction to Corollary 2.
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Thus, the number of corners influences the minimal cardinality of

A. In order to estimate the cardinality of A, the following remarks may
be helpful.

Remark 1 card A > order of the maximal complete subgraph.

Remark 2 card A > minimal incoming degree in the remaining subgraph

after deleting all edges incident with corners.

The incoming degree of a vertex is the number of edges incoming to this
vertex,

Location of Injection Nodes

An optimal selection of injection nodes could be done in a combina-
torial way, where different sets of reduced cut-sets are considered and
then different combinations of injection nodes are checked. However,
for large networks, it may be quite tedious to check the conditions of
Theorem 1, even if reduced cut-sets and a set A are known.

An efficient heuristic algorithm, which can be adopted to find
injection nodes was presented in [9]. It allows us to find a nearly
minimal set of injection nodes in a time which depends linearly on the
subnetwork size. Since the conditions stated in Theorem 1 must be
satisfied, the algorithm localizes injection nodes in such a way tﬁat
there exists a set of separate paths from injection nodes to the nodes
of each reduced cut-set, as illustrated in Fig. 5.

In particular cases, when the number of injection nodes is too
large because of the subnetwork bopolbgy we can reduce them by adding
some known elements to the subnetwork under consideration., The same
argument holds when we have too many corners in the subnetwork (Fig. 6).
These remarks concern the case when we identify elements of a given

network using voltage measurements at all nodes [9] as well as
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evaluation of faulty elements within remote, inaccessible subnetworks.
In the latter case, adding the known elements may be equivalent to
considering an augmented subnetwork which will contain faulty nodes as
well as some nonfaulty ones.

The following examples explain how to use the results obtained from

the test finding algorithm to identify all network elements.

Example 1
The subnetwork, whose parameters we want to design, and its Coates

graph are shown in Fig. 7 (node 0 is chosen as the reference node). Let
us assume for simplicity that the independent current excitation i = 1.
This can be easily achieved when elements are identified through direct
voltage measurements., There are 3 corners in this network - nodes 1, 6
and 7. We find that they constitute a sufficient set of injection nodes
for this network. Table I illustrates the reduced cut-sets considered
and elements associated with thenm. For identification of network
elemeﬁts, we apply excitations at nodes 1, 6 and 7. The nodal voltages
measured with unit excitations at different nodes are shown in Table II.
We formulate equations (18) for successive reduced cut-sets and compute
element values. The first equation is as follows:

V11 V12 Y1 + Y, _ 1 o 0.77641 0.32925 Y _
1 Vgo - Y, 0 -0.38775 =1.1633 -Y
and we obtain Y1 = 1, Y2 = 0.5.

The second equation

r - ~ ‘j — =
Vi Va2 Va3 Vg - Y 0
Vo1 Voo V3 Veu| |Yp + Y3 +¥, +¥ | = |0
Voy Voo Voo U -y 0

Y71 Y72 V73 Vg 5 | 0]
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can be transformed, because Y2 is now known, to

~ - - — -

Vig Vi Vqy| Y3+ Yy + Y5 Vg = V) ¥,

Voo Vo3 Ve - Y5 = | (gy = Vg Yy

Voo Voo v -y Vou = Vo) Y

Y72 V73 V) v (V71 = V2) Yo

or

0.32925  -0.0066477 0.142647[Y5 + ¥, + Y, 0.22358
~1.1633  -4.6575  =1.4699 -1 =| 0.38778
0.048524  0.17534  0.076466 - Y, ~0.016175

and we obtain Y3 = 0.333, Yu = 0.25, Y. = 0.2.

5

Continuing the procedure we design all the other network elements

as
Y, = 0.167, Y, = 0. 143, Yg = 0.125, Yy = 0.111, Y,5 = 0.1,
T,4 = 0.0909, Y,, = 0.0833, Y13 = 0.0769, Yoy = 0.0714,
Y15 = 0.0667, Yi6 = 0.0625, Y17 = 0.0588, g, = 8.5.
Example 2

We apply the algorithm proposed to the passive grid circuit shown
in Fig. 8. In such circuits, the number of nodes n = k2 and number of
passive elements e = 2k2 - 2k, where k = 2, 3, ... We assume that the
voltage at each node is known. We find that no matter what the size of

the grids three tests at a single frequency are sufficient for

determining all the element values.

IV, ELEMENT EVALUATION USING EXTERNAL EXCITATION NODES
Let us assume that we have distinct, remote, inaccessible faulty
subnetworks S1, ceey Sf spanned over faulty nodes within the subnetwork
under investigation (see Fig., 9). According to Result 2, the number of

external nodes, where both voltages and external currents are known,
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have to satisfy the relation

f
card a > I n, , (31)
1=

;b
where n, is the number of nodes in the subnetwork si‘ We can apply the
approach discussed in Section III to each subnetwork 81, ceey Sf
separately to identify sets of injection nodes A1, ooy Af at which
independent current excitations could be forced. To be able to evaluate
all elements within S1, ceey Sf, independent excitations must appear at
injection nodes.

Let T be a subset of the external nodes of the subnetwork S, which
is defined by (2). Let G denote the Coates signal-flow graph of S. Let
us assume that we have evaluated faulty currents and designed nodal
voltages as discussed in Section II. Let ki = card Ai.

Lemma 1 To evaluate all the elements of Si there must exist ki
simultaneous and separate paths in G from T to Ai not incident with
other Si nodes,

Proof is based on the recognhition of each cut-set in Si as a
reduced cut-set in S.

Corollary 3 To evaluate all faulty elements in S Lemma 1 must be
satisfied for all Ai. Then T can be chosen as a set of test nodes where
independent current excitations are applied.

We are interested to have the cardinality of T as small as
possible, to minimize the number of tests and designs of nodal voltages,

Corollary 4 card T > max k. (32)
The main goal of the approach presented is to find ki as small as
possible, so the technique described guarantees the identification of

faulty elements effectively. For most practical cases, card T is
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between 2 and 5.

Remark For the identification of faulty elements within remote
inaccessible subnetworks we design currents flowing into these
subnetworks from the surrounding network using the designed voltages and
noninal element values first, and then proceed with element evaluation
within each of them, as discussed.

Example 3
Assume that the nominal element values for the network from Fig. 7

are as follows:

Y1 =1, Y2 = 0.5, Y3 = 0.3, Y4 = 0.32,

YS = 0.2, Y6 = 0.167, Y7 = 0.143,

Y8 = 0.125, Yg = 0.1, Y, =0.2 Y, = 0.1,

Y12 = 0.0833, Y13 = 0.0769, Y1u = 0.0714,

Y15 = 0.0667, Y6 = 0. 0625, Y17 = 0.0588, 8n = 8.5.

Four external points are available for voltage measurements and current
excitations at the nodes 1, 3, 4 and 7. Assume for simplicity that all
external nodes are of the a type. Using the approach discussed in
Section II we have found three faulty nodes, namely, 2, 4, 6 and
evaluated currents in, n= {2, 4 6}. The subnetwork spanned over the
faulty nodes is a simple ladder network. With the help of the method
discussed in Section III we can locate nodes 2 and 6 as injection nodes
sufficient for evaluation of the ladder elements. According to Lemma 1
external current excitations for element evaluation can be made at nodes
1 and 7.

Now we simulate the nominal network with independent (unit)

excitations at nodes 1 and 7 separately and evaluate currents Ln from

equation (5). With those currents and independent current excitations
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we excite the nominal network to obtain the current voltages as in rows
1 and 3 of the Table II. Elements Y2, Y5, Y7 and Y8 are nominal as they
are not spanned over the faulty nodes. Using the voltages from Table II
we calculate external currents for the ladder subnetwork spanned over

faulty nodes as equal to

I12 = (V11 - V12) Y2 + (V13 - V12) Y5 = 0.1564,
I14 = (V13 - V14) Y7 = -0.02135,
Similarly, we can get
I72 = 0.009188, I7u = 0.01414, I76 = 0.01049,
Equation (18) for the first reduced cut-set has the form
~ —
Yig V| Y3+ Y| [Ip2
U2 Uy Ly L2
Therefore,
’— —
0.32925 0. 14264 Y3 + Yu 0. 1564
0.048524 0.076466 —Yu B 0.009188

and we get Y3 = 0.333 and Y4 = 0.25. In the next two reduced cut-sets
elements Yg, Y11 and Y10 are evaluated, respectively, with the help of a

voltage measurement as well as evaluated and nominal elements.

V. CONCLUSIONS
The method presented helps us find, on the basis of network
topology, a reasonably small number of excitation nodes for the
identification of all faulty parameter values of linear analog
subnetworks., This can be achieved by searching for a "good" sequence of
reduced cut-sets within the subnetworks spanned over faulty nodes, whose

elements are consecutively determined from (18). The element evaluation
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approach, as presented in Sections III and IV, is easy to program and
gives a linear dependence of computational effort on the size of the
network. The notion of corner is particularly important, since it
influences the number of necessary injection nodes independently of a
sequence of cut-sets. The number of excitations can be reduced by
adding external elements or some nomihal ones in the case of

inaccessible subnetworks.
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TABLE I

REDUCED CUT-SETS

Elements in the reduced cut-set

Step i Nodes in reduced cut-set to be found
1 1,2 T,Y,
2 2,3,4 Y3,Y,4,Y5
3 3,4,6 Y7,Y9,Y11
4 ' 3,6 YoiYq
5 3,5 Ye
0 57,8 Ti20 Y30 Yy
7 7,8 Y15,Y17
8 6,8 Yi618m
TABLE II

NODAL VOLTAGES FOR EXAMPLE 1

Voltage at node no.

Excitation
at 1 2 3 4 5 6 T 8
node no,
1 LTT641 232925 -=.006647T7 .14264 -,57149 .038418 -.91631 =2.0943

6 -.38775 =1.1633 -4,6575 -1.4699 -15,751 .89959 -22.757 50,343
7 .016174 ,048524 17534 076466 .47525 .091385 4.5309 -2.126
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FIGURE CAPTIONS

Illustration of remote, inaccessible faulty subnetworks
(shaded) spanned over faulty nodes.

Illustrations of equation (18) and Result 4.
Example of required 3-connections.
Examples of corners. Corners are denoted by v.

Illustration of the paths required from injection nodes to a
reduced cut-set.

External path from an injection node to a corner.

(a) Faulty network with faulty subnetwork spanned over faulty
nodes, (b) the corresponding Coates graph.

Grid circuit example.

Inaccessible faulty subnetworks (shaded) spanned over faulty
nodes.
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Fig. 3
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(b)
(a)

(c)

Fig. 4
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