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Abstract

This paper reviews the practical implementa-
tion of recent optimization techniques and their
application .in the area of electrical circuit
design. The discussion is focussed on four non=-
linear programming codes including unconstrained
minimax optimization, 1linearly constrained
minimax optimization and optimization with
general constraints. A brief introduction to the
optimization methods used in these codes is
presented. Practical examples illustrate the
formulation of design problems in terms of
mathematical programming problems as well as the
performance of the optimization codes presented.
The discussion includes a comparison of features
of the packages from the user-designer point of
view. :

1. Introduction

This paper reviews the practical implemen-
tation of recent optimization techniques and
their application in the area of electrical
circuit design. The discussion is focussed on
four nonlinear programming codes.

The MMUM package [1] solves unconstrained
minimax optimization problems and is based on the
method desecribed by Hald and Madsen [2]. It is
an extension and modification of the MINISW
package due to Madsen [3]. The MMLC package [4]
solves linearly constrained minimax optimization
problems and is based on the method described by
Hald and Madsen [2]. It is an extension and
modification of the MMLA1Q package due to Hald
[5]. 1In both packages first derivatives of all
functions with respect to all variables are
assumed to be known. The solution is found by an
iteration that uses either linear programming
applied in connection with first-order
derivatives or a quasi-Newton method applied in
connection with first-order and approximate
second-order derivatives.

MFNC [6] is a package for minimization of a
nonlinear objective function subject to nonlinear
constraints. It is an extension and modification
of a set of subroutines from the Harwell Subrou-
tine Library [T7]. The method implemented was
presented by Han [8] and Powell [9]. First
derivatives of all functions with respect to all
variables are assumed to be available. The
solution is found by an iteration that minimizes
a quadratic approximation of the objective
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function subject to linearized constraints.

The MINOS/AUGMENTED system [10] is a general
purpose programming system to solve large-scale
optimization problems involving sparse linear and
nonlinear constraints. Any nonlinear functions
appearing in the objective or the constraints
must be continuous and smooth. MINOS/AUGMENTED
employs a projected augmented Lagrangian algor-
ithm to solve problems with nonlinear constraints
presented by Murtagh and Saunders [11]. This
involves a sequence of sparse, linearly
constrained subproblems, which are solved by a
reduced-gradient algorithm.

A wide variety of test problems for the
comparison of different nonlinear programming
algorithms and their practical implementation
exist in the literature. Generally, they fall
into two categories. One category consists of
nonlinear programming problems where the object-
ive function and constraints are given explicitly
in the form of a mathematical formulation, e.g.,
the Colville series of problems [12], the Wang
family of problems [13], the Rosen-Suzuki problem
[14] and the Rosenbrock problem [15]. Usually
they are designed to test the performance of
algorithms under difficult conditions such as
narrow valleys, numerical singularities, ete. As
a representative for this category the Colville
test problem 2 has been chosen.

The second category of test problems
includes practical engineering design problems
where the formulation of the problem is not
explicitly given in terms of the objective
function and constraints, and different formula-
tions may exist which adequately represent the
engineering design problem. A three-section 100
percent relative-bandwidth 10:1 transmission-line
transformer is an example. It is a special case
of an N-section transmission-line transformer.
Originally studied by Bandler and developed into
a family of test problems by Bandler and
Macdonald [16,17] this type of test problem is
now widely considered [18-22]. Another example
of the second category is the optimal design of a
LC low-pass filter -embodying centering,
tolerancing and tuning developed by Bandler, Liu
and Tromp [23-241].

2. Nonlinear Programming Problem and Minimax
Problem

The nonlinear programming problem can be
stated as follows

minimize U(x) (1)
subject to
g,(x 20 , i=1,2,..,m, (2)

where U is the generally nonlinear objective
function of n variables x, where



ne>

X ’ (3)

W
I

and g (x), g.(X)y «uuy g (x) are, in general,
nonlinear funcétions of th& variables. We will
assume that all the functions are continuous with
continuous partial derivatives, and that the
inequality constraints g (x) > 0, i=1,2,...,m,
are such that a Kuhn—Tuckér solution exists [25].

The equivalent minimax problem can be formu-
lated using the Bandler and Charalambous approach
[261]. Consider the problem of minimizing the
unconstrained function

F(z,g) = max £, (%) (4)
1Ki<m+1

where

£,(0) =U®) -, 85 (), i=1,...m, (5)

f (x) = U(x) , (6)
m+1 ~
A T
e = [(x1 Oy ees O.m] R 7)
a, >0, i21,2y 000 9m o (8)

Bandler and Charalambous [26] proved that for
sufficiently large o, the optimum of the minimax
function coincides with that of the nonlinear
programming problem.

The general minimax optimization problem can
be stated as

minimize {F(x) = max f  (x)} , (9)
X 1<icm
subject to
gj(},) 20, Jeml,..e0f (10)

where X is a vector of optimization variables
defined as in (3), f (x), £(x)y oo, f‘m(x) are,
in general, nonlinear “functions with respect to
variables x Xor eeey X and g (x) are, in
general, non 1near constraints.

‘ The minimax problem is equivalent to the
following nonlinear programming problem [27]

) = x an

minimize F(x, x
~ n+1

n+1
X oX

n+1

subject to the constraints of the form

gi(gs.xn”) >0, izl eeemymil eyl 5 (12)
where
g; (Xox ) £ Xpor - 5P 20, i=27,2,.00,m. (13)

Now the nonlinear programming problem can be
solved by any nonlinear programming algorithm,
thus obtaining the optimum minimax solution.

3. Unconstrainhed Minimax Optimization
(the MMUM Package [1])

Given a set of nonlinear differentiable
residual functions f, (x), iz1,2y44.,my, of n

variables x = [x.I 2 e X ] it is the purpose

of the package to find a local minimum of the
minimax objective function

F(x) = max |If (x)] . (1)
1<iem 1

The objective is, in general, a non-differ-
entiable function and normally the minimum is
situated at a point where two or more residual
functions are equal. If there is no smooth
valley through the solution and the minimum is
numerically well-defined then the minimum is
characterized by only first derivatives of the .
residual functions which determine it. For such
cases it 1is possible to construct algorithms
based on first derivative information only with
fast final convergence. It has been proved
[2,28] that if the so-called Haar condition
(which ensures that no smooth valley passes
through the solution) is satisfied then quadratic
final rate of convergence can be obtained. If
there is, however, a smooth valley through the
solution, the first-order derivations may be
insufficient and some second-order information
may be needed to obtain a fast final convergence.
For such cases the quasi-Newton iteration has
been proposed [2] in which the second-order
derivatives are approximated by the Powell
method.

The minimax algorithm is a two-stage one
[2]. MNormally, Stage 1 is used [29], and at each
point the nonlinear residual -functions are
approximated by linear functions using the first
derivative information. However, if a smooth.
valley through the solution is detected, a switch
to Stage 2 is made and the quasi-Newton iteration
is wused. If it turns out that the Stage 2
iteration is unsuccessful (for instance, if the
set of active functions has been wrongly chosen)
then a switch is made back to Stage 1. The
algorithm may switch several times between Stage
1 and Stage 2 but normally only a few switches
will take place and the iteration will terminate
either in Stage 1 with quadratic rate of
convergence or in Stage 2 with superlinear rate
of convergence [2].

Y4, Linearly Constrained Minimax Optimization
(the MMLC Package [4])

Given a set of nonlinear differentiable
residual functions f.(;),Ti=1,2,...,m, of n
variables x = [x .se X 17, it is the purpose
of the package %o zfind a"local minimum of the
minimax objective function

F(x) = max f. (%) (15)
1<i<m

subject to linear constraints

el x4b =0, izlyeee,l (16)
~i R i eq

T )

Si X+ bi >0, 1=leq+1,...,2, 17

where Si and bi’ i=1,...,%4, are constants.



The algorithm employed is substantially
similar to that described in Section 3. The
algorithm is a feasible point algorithm which
means that the residual functions are only
evaluated at points satisfying the 1linear
constraints. 1Initially a feasible point is
determined by the package, and from that point
feasibility is retained.

5. Han-Powell Algorithm (the MFNC Package [61)

The purpose of the package is to minimize

.the objective function F(X) of n variables, X =

[x1 X, »+. X 17, subject to general equality and
inequality constraints

j=1,,.,,£eq ’ (18)

Fix) 20, FE etk (9)

where the objective and the constraint functions

are differentiable and their first-order
derivatives are available.

£.(x) =0,
J

The algorithm used in the package is
Powell's [9,30] variable metric method for
constrained optimization, which is based on the
results of Han [8]. In each kth iteration the

k .
search direction Jy is determined as the solution
of the linearly constrained quadratic minimiza-
tion subproblem

T

minimize E(xk-1, nk) = F(;k—1) + hk E (zk'1)
hk
+ 0.5 ka gk nk (20)
subject to the constraints
P e N N
3 3 = y J=1yeeey eq'
(21)
nkT f;' N LK Ky s 0 =l +1 2
j® J e 20 JFhg ™
(22)
0< o¥ <1, 23)

1 1
where FE (x) and gj(g). j=1,¢e.,%, are the
gradient vectors of the objective and constraint

functions, respectively, Bk is a positive
definite square matrix of dimension n containing
second-order derivative information, which is
updated in consecutive iterations according to
the BFGS formula (initially the matrix is set to
the unit matrix, EP = 1), and o is an additional
variable introduced in order to allow infeasi-

k
bility in linearized constraints, while Gj:
j:zeq+1,...,2, are defined as

1, if ~fj(;5k-1) >0,

k .

(24)
o, if fj(§3-1) <0.

(S~

Usually the solution of the quadratic subproblem
If the only feasible solution

corresponds to ak=0 and h? = 0, the algorithm
terminates and it is assumed that the constraints
are inconsistent.

k
results in @ =1,

6. Augmented Lagrangian (the MINOS /AUGMENTED
System [101)

The problem to be solved must be expressed
in the following standard form [10]

minimize fo(g) + 5T§ + gTz (25)
subject to
20 + Ax = b (26)
X
L N R (28)
X
where
.0
£(x) = | .
£ (x)
m

and the functions £ (x) are smooth and have known
gradients. The coﬁponents of x are called the
nonlinear variables, and they must be the first
set of unknowns. Similarly, constraints (26) are
called the nonlinear constraints and they must
appear before the linear constraints (27).

A1 types of inequality are allowed in the
general constraints. Thus, the "=" sign in (26)
and (27) may mean ™" or ™" or "free" for
individual rows.

Upper and lower bounds (28) may be specified
for all variables, and similar bounds (ranges)
may be defined for the general constraints.

The solution process [31], [32] consists of
a sequence of "major iterations". At the start
of each major iteration, the nonlinear
constraints are linearized at the current point
X . ‘This just means that f(x) in equation (26)
IE replaced by the approximation

£xox) = £0x) + 2x) (x=x) » (29)
which can be written as
f = - .
f gk + gk (x 5k) (30)

Here, J(x) is the Jacobian matrix whose ij-th
element is afi(g)/axj.

The objective function is also modified,

giving the following subproblem:
minimize f(X) + 2?5 + gTy - % -

~ ~g o~

« 0.5 p (&=HT (- a1



subject to
£+£1y’=g1 R (32)
Ax + Ax =R, , 33)
%
LS Lu- (34)
X

The objective function (31) is called an
augmented Lagrangian. The vector l is an
estimate of the Lagrange multipliers for the
nonlinear constraints, are the term involving P
is a modified quadratic penalty function.

Using (30), we can see that the 1linear
constraints (32) and (33) take the form

J A X b, +J, x = f
~ 1 - 1 ~ ~& ~k . (35)
ﬁg 53 X 22

Since MINOS takes advantage of sparsity within

the constraint matrix, it is clear that a sparse
Jacobian matrix Qk can be handled efficiently.

7. Test Problems

7.1 Test Problem 1

This is the design of a 3-section 100-per-
cent relative bandwidth 10:1 transmission-line
transformer [16]. The problem is to minimize the
maximum reflection coefficient of this matching
network. A detailed discussion on the
formulation of direct minimax response objectives
is presented in [33]. Formally, the problem is

to reach
min F(x) = min { max Ie(x, W1}, (36)
X X [0.5, 1.5]
where
T
= [
x=1[ 1/2q Z1 22/£q Z2 23/£q 23] .

The error functions represent the modulus of the

reflection coefficient sampled at the 11

normalized frequencies V¥ (w.r.t. 1 GHz) {0.5,

0.6, 0.7, 0.77, 0.9, 1.0, 1.1, 1.23, 1.3, 1.4,

g.S}. The known quarter-wave solution is given
y

L, = = =
PRy st

Z_ = 1.63471,

o~
"

3.16228 ,

~N
]

6.11729 ,
where Zq is the quarter wavelength at the center
frequency, namely,

£q = T.49481 em for 1 GHz .

The corresponding maximum reflection coefficient
is 0.19729. The starting point is

© - 0.8 1.5 1.2 3.0 0.8 6.0 .

Gradient vectors with respect to section lengths
and characteristic impedances are obtained using
the adjoint network method.

7.2. Test Problem 2

This is the Colville test problem 2 [12] in
the form used in [34]. It is to minimize the
objective function

F(x) = - b, x5  * z b e XX,
1<icto t 2t i 1y Y

+2 I 4. % (37)

135 J

subject to the constraints

X, 20, =1, ..., 15, (38)
e, - I a,, Xx_ . +2 I c,. X,
ij 5+i i

J 0 1<ic10 1<i<s

2 .
+3d, %20, =l GO

where a, , b,, ¢, ., d_, ej are given in Table I.

ij i ij
The solution is F(x*) = 32,34868. The feasible

starting point used is xg = 0,0001, i # 12, and

X12 = 60.0.

7.3 Test Problem 3

This is the design of a LC low-pass filter
[23-24]. The problem is the optimal worst case
design embodying centering, tolerancing and
tuning at the design stage. A detailed
discussion on the formulation is presented in
[23]. If the designer has no prior knowledge of
the choice of the tuning components we consider
an objective function of the form

c 3;; | 4’2 b1 | (
= — + C, R 40)
i=1 ei 1 gg

where ¢9, e, and t_, represent nominal values,
tolerances a%d tuniﬁ% parameters of components,
respectively. The performance constraints may be
written in the form

g = w(S-F) , (41)

where w is +1 if S is an upper specification or
-1 if S is a lower specification. F is the
circuit response function evaluated at sample
frequency V. Table II summarizes the specifi=-
cations, The critical vertices used can be
obtained from published vertex selection schemes
[o41. Table III summarizes the data for the
filter. There are 21 variables including nominal
values, tolerances and tuning parameters as well
as slack variables p which represent the settings
of tuning componentg and 43 constraints including



TABLE I
DATA FOR TEST PROBLEM 2
(COLVILLE'S)
J
. 1 2
ij 3 4 5 b,
1 16 2 0 1 0 -40
2 0 -2 0 0.4 2 -2
3 -3.5 0 2 0 0 -.25
y 0 -2 0 -y -1 -l
5 0 -9 -2 1 2.8 -4
i 6 2 0 -l 0 0 -1
T -1 -1 -1 -1 -1 -40
8 -1 -2 -3 -2 -1 -60
9 1 2 3 y 5 5
10 1 1 1 1 1
J

e 1 2 3 y 5

1 30 -20 =10 32 =10

2 =20 39 -6 -31 32
i 3 =10 -6 10 -6 -10

E 32 31 -6 39 =20

5 =10 32 =10 -20 30

dj y 8 10 6 2

e, -15 27 -36 -18 =12

TABLE II
SPECIFICATIONS FOR LC LOW-PASS FILTER

TABLE III
DATA FOR LOW-PASS FILTER

r 6 6 6 8 1 3 3 3 3 3
+1 +1 +1 +1 =1 =1 . -1 -1 -1 =1

-1 -1 -1 +1 =1 +1 +1 +1 +1 +1
+1 +1 +1 +1 =1 =1 -1 -1 -1 -1
y 0.45 0.50 0.55 1.0 2.5 0.45 0.50 0,55 1.0 2.5

1.5 1.5 1.5 1.5 25 1.5 1.5 1.5 1.5 25
W 1 1 1 1 -1 1 1 1 1 -1

m

Frequency Sample Insertion Loss Type Weight
Range Points Specification W
(rad/s) (rad/s) (dB)
0-1 0.45, 0.50, 1.5 upper  +1
0.55, 1.0
2.5 2.5 25 lower =1
performance constraints and additional

constraints on variables. The starting point is
the solution for ci=10 given in [231].

8. Discussion of Results

To evaluate different nonlinear programming
techniques one should examine first the question
of what criteria to use in the evaluation.
?pecifieally, the following criteria can be used

351:

1) time required in a series of tests
(execution time and/or number of functional
evaluations);

2) size (dimensionality, number of inequality
constraints, number of equality constraints)
of the problem;

3) accuracy of the solution with respect to the
optimal vector x¥* and/or with respect to the
objective function or constraints;

4) simplicity of wuse (time required to
introduce data and functions into the
computer program);

5) simplicity of computer program to execute
the algorithm.

These criteria are global rather than local in
the sense that they relate to the overall
performance of the optimization from start to end
rather than to the performance at a single stage.

The most common criteria used to evaluate
the relative effectiveness of programming codes
have been

(1) the number of function evaluations required
to obtain the optimal solution of a given
test problem to a given degree of precision
and/or

(2) the computation time required to reach the
solution of the given test problem.

The number of function evaluations is a 1less
meaningful criterion for large constrained
problems of several variables because the time
required by the algorithm to determine the point
at which to evaluate the functions can often be
several times greater than that required for the
evaluation of functions. Thus, computation time
is the most commonly used criterion for comparing
the effectiveness of different programming



algorithms.

The first and most important consideration
in comparing the effectiveness of the various
algorithms is the success or failure of a given
code to solve a given test problem, This
criterion is chosen because the ability of an
algorithm to solve a wide variety of problems is
the most valuable feature to the user of a
programming code. All four packages succeeded in
solving the test problems. Results of an
optimization of a three-section microwave
transformer are summarized in Table IV, Both
minimax packages seem to be more effective since
this is originally a minimax problem, however the
MFNC package requires the least number of
function evaluations. Table V' shows
1081 [ max (lp,| - F*)] versus the number of

<i<m 1

function evaluations. This kind of comparison is
useful when the user is interested in the
solution with the accuracy acceptable from the
practical point of view and the question is after
how many function evaluations this accuracy can
be obtained. It should be noted, however, that
the comparison shown in Table V does not take
time into account. Another important aspect in
comparing optimization codes is by how much the
constraints are violated. Usually, the packages
find the solution satisfying the constraints with
a certain accuracy, which in most cases is
acceptable for practical purposes.

Table VI shows the results for the Colville
test problem 2, In all cases the problem has
been programmed to take advantage of all the
features of the package. For this problem in two
cases, namely, MMLC and MINOS, the 1linear
constraints can be treated explicitly, either by
means of the coefficients matrix (MMLC) or MPS
file and the BOUNDS section (MINOS). In MINOS,
moreover, the linear part of the objective
function can be accommodated by means of the MPS
file., In the case of the MMUM and MMLC packages
the equivalent minimax formulation of the problem

has been used with & = 103 and @ = 10, respec-
tively. Moreover, for MMUM, another technique
has been used to avoid the undesired effects of
transformed constraints on the minimax
optimization, due to the absolute value operator
in the objective function. The residual func-
tions are forced to be non-negative by adding a
constant ¢ to the original objective function of

the problem (c = 105 was used). Table VII shows
log, [ max (f, = F¥)] versus the number of
1<im

function evaluations. A minimax kind of measure
was used for the originally non-minimax problem
to take into account violated constraints in
evaluation of the performance of the packages.
Since the problem contains a substantial linear
part, packages which can distinguish linear
constraints are more efficient than those which
assume only nonlinear functions.

Tables VIII and IX summarize the results for
the LC low-pass filter problem. For this problem
the choice of cost coefficient c; in (40) for
tuning is very important. The most appropriate
choice is the one for which both terms in the
objective function (40) have the same order of
magnitude. The advantage gained in the
formulation used is that the optimization will
automatically choose +the most appropriate

TABLE IV
OPTIMIZATION OF A 3-SECTION 10:1 TRANSFORMER
OVER A 100 PERCENT BANDWIDTH

F F

Variable MMUM MMLC MFNC MINOS
1 1.00000 1.00000 1.00000 1.00000
2 1.63471  1.63471 1.63471 1.63471
3 1.00000 1.00000 1,00000 1.00000
y 3.16228 3.16228 3.16228 3.16228
5 1.00000 1.00000 1,00000 1.00000
6 6.11730 6.11730 6.11731 6.11731
7 0.19729 0.1972¢

Minimax

Function a a b a

Value

Number of 18 22 13 179

Funection [GR'D) (18) (12) (176)

Evaluations

Tine(s) ¥ 0.8 0.8 3.6 6.8

4

In both cases the equivalent formulation of
the minimax problem was used, so the number
iy of variables is increased by one.
In brackets is shown the number of function
++4 €valuations to reach 0.19729.
Execution time (seconds) on CYBER 170/730.

& 0.1972906269

® 0. 1972906258

TABLE V
COMPARISON OF OPTIMIZATION CODES FOR

TEST PROBLEM 1

*

Function log10 [max (lpil - F )]

Evaluation i

Number o

MMUM MMLC MFNC MINOS

1 -0.7 -0.7 -0.7 -1.3
2 -1.2 -0.9 -1.5 -1.3
3 -1.1 -1.5 -2.0 -1.3
4 -2.3 -1.2 -2.9 -1.3
5 -1.1 -2.7 =-3.1 -1.3
6 -1.4 -1.5 -3.4 -1.3
7 -1.9 -2.6 -3.5 -1.7
8 2.4 =3.0 -3.6 -1.5
9 -2.3 -3.1 -4,2 -1.6
10 -3.1 -3.1 .6 -1.6
11 -3.2 -3.0 ~5.6 -1.7
12 -3.5 -3.3 -6.5 -1.9
13 -3.8 -3.4 -8.4 -1.9
14 -5.9 =3.7 -3.0
15 -6.9 -3.5 -3.0
16 -9.5 -3.7 -3.8
17 -10.6 -4,7 -5.2
18 -10.6 5.7 -8.5
19 -6.9
20 -8.9
21 -10.5
22 -10.6

T For MINOS the number of function evaluations
should be multiplied by 10, hence 1 corresponds
to the 10th evaluation.




TABLE VI
RESULTS FOR COLVILLE'S TEST PROBLEM 2

TABLE VII
COMPARISON OF OPTIMIZATION CODES FOR
COLVILLE'S TEST PROBLEM 2

Function log1 [max (f, - F¥)]
Evaluation 0 i l
Number &
MMUM MMLC MFNC
1 3.4 3.4 3.4
2 3.3 3.4 3.4
3 3.3 3.4 2.9
y 3.3 3.4 2.6
5 3.3 3.4 1.8
6 3.1 3.4 1.3
7 3.0 3.3 1.0
8 2.9 3.3 0.3
9 2.7 3.1 0.2
10 2.4 2.9 -0.3
1 0.6 2.0 -0.4
12 -1.4 2.7 -1.5
13 -1.8 1.8 -2.0
14 =2.1 1.6 -3.8
15 -2.3 0.6 .5
16 -2.5 2.6 =5.1
17 -2.7 0.7
18 -2.8 0.4
19 -3.0 0.3
20 -3.0 0.0
21 -0.2
22 -0.2
23 -1.0
24 -1.9
25 -2.4
26 -3.5
27 =5.1
28 -T7.3
29 =9.1
30 ~10.7

Variable  MMUM MMLC MFNC MINOS
1 0.30738 0.30000 0.29999  0.30000
2 0. 33090 0.33347 0.33346  0.33347
3 0.41243 0.40000 0.39999  0.40000
y 0. 42087 0.42831 0.42831  0.42831
5 0.22328 0.22396 0.22397 0.22396
6 —4.1x10713  g.0 9.1x1o"16 0.00000
7 —2.1x10713 0.0 11510~ 0.00000
8 5.05312 5.17404 5,17413 5, 17404
9 -1.6x107° 0.0 0.0 0.00000
10 3.07959 3.06111 3.067111  3.06111
11 11.59737  11.83955 11.83972 11.83955
12 -2.5x1073  g.0 0.0 0.00000
13 . -1.8x107" 0.0 0.0 0.00000
14 0.05312 0.10390 0,10393 0. 10390
15 —2.6x107° 0.0 9.7x10" > 0.00000

Objective

Function 32,35284 a b a

Value

Number of 150 30 16 207 (obj.)

Function

Evaluations (28) (16) 216 (con.)

Time(s) 41,5 3.1 13.2 3.2

E

The optimization process has been stopped by
imposing the limit on function evaluations.

¥
In brackets is shown the number of function

evaluations to reach 32.34868.

FkF . .
Execution time (seconds) on CYBER 170/730.

a

32.3486789657 32, 3u86790660

component for tuning, which is the capacitor

here. The observed discrepancies in values of
slack variables P, and p_ are insignificant since

they correspond t1o setténgs of tuning parameters
for which tuning is zero.

9. Conclusions

The packages presented can be used for
solving a wide range of practical engineering
design problems, however, a proper choice of the
package for the particular problem is important
and can result in major savings of time required
to solve the problem. They can handle
efficiently big problems (especially MINOS with

*
For MMUM the number of function evaluations
should be multiplied by 10, hence 1 corresponds
to the 10th evaluation.

the option of taking sparsity of the problem into
account). The factor of human error in supplying
analytical derivatives is eliminated by the
gradient check option, which all of them have.
The computer programs to execute the algorithms
are simple and easy to write. The data
preparation for the codes by the user is easy,
with the exception of MINOS for which creating
data files may be time consuming when a
commercial matrix generator is not available. We
feel that the optimization techniques presented
and their implementation are powerful tools for
solving difficult electrical circuit design
problems.
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