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ABSTRACT

This thesis complements the recently developed adjoint network approaches to
sensitivity evaluation and optimization of electrical power systems. The nonreciprocal power
network elements comprising phase-shifting transformers are handled by two different
approaches, namely, the Tellegen theorem and the Lagrange multiplier approaches. The
method based on the Tellegen theorem incorporates the exact a.c. load flow model and
provides compact sensitivity expressions for network controls frequently encountered in
relevant power system studies. The complex Lagrangian method accommodates general
complex variables, including turns ratio and the internal impedance of phase-shifting
transformers. The theoretical results are both exact and computationally practical, and have
been verified numerically by investigating different power systems. A minimum-loss
problem for the IEEE 118-bus system has been formulated and solved using the computer

package MINOS/AUGMENTED.
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CHAPTER 1

INTRODUCTION

Sensitivity calculations play an important role in steady-state computer-aided
power system analysis and planning. These sensitivities are very valuable in estimating the
effects of transmission system contingencies, generator outages, and other defects expected in
power system operations. In the optimal power flow problems, the sensitivities of the cost
function with respect to adjustable control parameters directly contribute in gradient
computations required by most optimization techniques.

The basic requirements for an efficient technique for sensitivity calculations are
simplicity of derivation and formulation, flexibility in modelling different components of the
power system and efficiency in computations. The methods based on Tellegen’s theorem and
the Lagrangian approach are commonly applied in power network sensitivity analysis,
however, the choice of a suitable method depends on various factors such as the kind of
application considered, the types of elements defined in the power system and the available
storage and facilities for computations.

In power system operations and planning, a wide variety of problems are
encountered which are frequently formulated as constrained optimization problems. One
class of such problems is called the optimal power flow problem, in which a feasible power flow
solution is obtained to minimize some cost criteria by adjusting voltage levels, power output of
generators, transformer tap settings, phase-shifting transformer angle positions and
switchable shunt control elements. The minimum-loss problem falls into this class and is
characterized by a cost function which reflects the total active power transmission losses in a

given system.



This thesis incorporates a simple notation to describe and develop gradients of real
functions subject to equality constraints representing the power flow equations, which are
retained in their complex mode. The term sensitivity calculations is used to represent both
first-order changes and gradient evaluation. The load flow problem is formulated in Chapter
2 and the methods for sensitivity evaluation are outlined, using a recently developed complex
notation. The phase-shifting transformers are described as nonreciprocal two-port networks
and their n-equivalent circuit is presented using a voltage-current relationship via short-
circuit admittance parameters.

In Chapter 3, the Tellegen theorem is explained and its augmented form is
exploited by two different approaches based on the basic and element variable description,
and the short-circuit admittance matrix description. A simple derivation of sensitivity
expressions is presented which can accommodate general complex branch models of a given
system. The sensitivities with respect to adjustable parameters of phase-shifting trans-
formers are obtained in a straightforward manner and presented in a compact tabular form.

The material described in Chapter 4 elaborates on the recently developed complex
Lagrangian approach to power systems. The power network is assumed to contain
nonreciprocal transmission elements and, therefore, the bus admittance matrix is considered
unsymmetrical throughout the analysis. The generalized sensitivity expressions are derived
exploiting the complex conjugate notation and these results are extended to establish useful
information regarding phase-shifting transformers. Some numerical examples are included
to display sensitivities with respect to several network control variables, which have been
verified by small perturbations about the nominal point. A minimum-loss problem has been
formulated and solved for the IEEE 118-bus system using the optimization package

MINOS/AUGMENTED.



CHAPTER 2

COMPLEX POWER FLOW AND SENSITIVITY EVALUATION

2.1 INTRODUCTION

The mathematical formulation of the load flow problem results in a system of
nonlinear algebraic equations, called the power flow equations (Van Ness and Griffin 1961).
These equations can be established in a bus or loop frame of reference. The bus frame of
reference employs the nodal admittance matrix (Gross 1979, Guile 1977, Stagg and El-Abiad
1968) and requires minimal computer storage. This approach also motivates the exploitation
of network sparsity by ordered elimination and skillful programming (Duff 1977, Tinney and
Walker 1967).

The power flow equations are basically expressed in the complex form and the
variables of these equations are generally functions of the network states and control
parameters of the system under consideration. These equations are usually separated into
real and imaginary parts (Stott 1974), however, the compact complex notation developed by
Bandler and El-Kady (1979a) facilitates the formulation in complex mode. Another notation,
called complex conjugate notation (Bandler and El-Kady 1982), is also very useful and allows
direct handling of the complex functions and constraints. These notations are described in the

following sections.

2.2 NOTATION
The power flow equations involve various variables and it is important to adopt and

describe a suitable notation at the beginning of the analysis. This facilitates the derivation of



theoretical expressions and contributes towards a better understanding of the relevant
material.

In general, an n-node power system is considered. The principal notation used in
this thesis is described in Table 2.1, however, other notations may be used wherever it is felt

necessary.

2.3 COMPLEX SOLUTION OF POWER FLOW EQUATIONS
The power network performance equations are expressed, using the bus frame of
reference in the admittance form
Y. Vi =1y (2.1)
where Y is the complex bus admittance matrix of the network, V, is a column vector of the
complex bus voltages and I, is the corresponding column vector of the complex injected bus
currents.

The bus loading equations are expressed in the matrix form

* *
EM IM = sM, (2.2)
where
E, 2diagV,,, (2.3)
Sy APy +iQy (2.4)

and * denotes the complex conjugate. Substituting (2.1) in (2.2), the system of complex
nonlinear equations
E, Y, V, =S, (2.5)
is obtained, which represents the typical load flow problem.
The load flow equations (2.5) are perturbed using the conjugate notation and the

resulting linearized equations are solved by Newton-Raphson method in complex mode (El-

Kady 1980, Bandler and E1-Kady 1982, Bandler, El-Kady, Grewal and Gupta 1982). In



TABLE 2.1

NOTATION FOR THE VARIOUS QUANTITIES

Notation Description
=a, +ja, Complex turns ratio of the phase-shifting transformer
= Jal 20
d Right-hand-side vector of the perturbed load flow equations
f A general scalar function
g The index of a generator bus
Iy The bus current vector
K, K, K5 KS The matrices of cofficients used in defining the perturbed
form of the load flow equations
k o k g Vectors corresponding to the gth generator bus
¢ The index of a load bus
M M ) I M, b The matrices of coefficients used in the Tellegen’s theorem

11’ 12’ 21

approach

Total number of buses, also the index of slack bus
Total number of load buses

Total number of generator buses

Real power at the ith node

Reactive power at the ith node

Complex power at the ith node

Vector of complex powers

Special complex notation for the gth generator bus

Transformation matrix for the polar formulation




TABLE 2.1 (continued)

NOTATION FOR THE VARIOUS QUANTITIES

Notation Description

u Vector of control variables

Complex voltage at the ith node

Vu Vector of complex voltages

X Vector of network states

Yio Shunt admittance at the ith node

Yy Line admittance between the nodes i and j

Yii Short-circuit driving-point admittance at the ith node of a

two-port network

i Short-circuit transfer admittance for a two-port network
between the nodesiandj

y Short-circuit admittance matrix of a two-port network

Yo The nodal admittance matrix of the power system

Y, The ith diagonal element of nodal admittance matrix

Yij The off-diagonal element of Y in the ith row and jth column

Z, The internal impedance of a phase-shifting transformer

Oy, Ty Ky The coefficient matrices used in general complex branch
modelling

® Column unit vector with ith unity element and zero other
elements

8 First-order change

* Distinguishes the complex conjugate

A Distinguishes the adjoint network variables




order to obtain network sensitivities, we describe two adjoint network approaches, namely,

the Tellegen theorem-based method and the method of Lagrange multipliers.

2.4 APPLICATION OF ADJOINT NETWORK APPROACH TO POWER NETWORK
SENSITIVITY ANALYSIS
The adjoint network approach, based on Tellegen’s theorem (Penfield, Spence and
Duinker 1970) is a promising technique for calculating the network sensitivities. It was
initially applied to electronic circuits (Director and Rohrer 1969, Bandler and Seviora 1970,
Calahan 1968) and has been successfully introduced to power system analysis and design
problems. Recently, a generalized version, utilizing a suitable augmented form of Tellegen’s
theorem has been developed (Bandler and El-Kady 1979b) which allows the sensitivity
evaluation on the basis of an exact a.c. load flow model. This has facilitated generalized
complex branch modelling and has led to a simple derivation and elegant formulation of exact
sensitivity formulas in real and/or complex modes.
In general, the augmented form of Tellegen’s theorem is expressed as
> 4,8V, + 18V -V, 8L - Visl)=0, (2.6)
b
where [, and Vy, are the current and voltage associated with branch b of a network,
respectively, and the * distinguishes the variables associated with the topologically similar
adjoint network. The sum expressed in (2.6) is in terms of variations in Vy, Vy*, I, and ¥,
which are designated as the basic variables of branch b. Another set of variables, called the
element variables are defined, depending upon the type of branch model. These sets of

variables are denoted by



Vb
V*
w. b
W = [ bvia 2.7)
b I
Whi fj
="
and
X
7, = bl (2.8)
ub

where x}, and uy, are 2-component real and/or complex vectors. The variations of the element
variables zy, and the basic variables wy, are related and are expressed as

8z, = Jy, Swy, , (2.9)
where Jy, = (02, T/dwy,)T is a transformation matrix containing the conventional and/or formal
derivatives of zy, w.r.t. wy. The inverse transpose of Jy, is of major interest in the following

derivations and in partitioned form, it is denoted by

b b

G-I = My Mp (2.10)
I P Y
21 22

where the submatrices My1b, My9b, Mg1b, and Mgob are 2x2 Jacobian matrices.

Using (2.7), the augmented Tellegen sum (2.6) is given by

AT _
z f dw, =0, (2.11)
b

where fi, is a complex vector the elements of which are, in general, linear functions of the

adjoint current and voltage variables and their complex conjugate, and is defined as

R £
PR (2.12)
bl
bv
We define a set of transformed adjoint variables ﬁbx and ﬁbu, given by
U b o 2.13
Ny, = My, £, + M £, (2.13)

and

A A A

- MP 2.14
Ny, = My £, + My f, . 214



The elements of ﬁbx and flbu are also linear functions of the adjoint current and voltage
variables and their complex conjugate. Using (2.7 - 2.14), the augmented Tellegen sum (2.6)
is expressed as
> @ 8% + 0, Su)=0. (2.15)
b
The first-order change of a general function f of all the state vectors xy, and the control

vectors uy, is given by

of \T of \T
o= > (—) 6xb+<—> Su, (2.16)
b axb aub
Assuming a possible consistent moedelling of the adjoint system, we define
A of
n, = ; , (2.17)
b
which reduces (2.16), using (2.15), to
f \T  ap
_ 2 ) (2.18)
5= > (au > n,, | 8u, .
b b
Hence, the reduced gradients of fare given by
dar _ ot y, (2.19)
dub qu,

It is interesting to observe that (2.19) provides an exact sensitivity expression and
accommodates real and/or complex control variables. The general concepts in network
modelling are discussed in more detail in the next chapter.

Another powerful method for efficient sensitivity evaluation is the complex
Lagrangian approach, which utilizes a compact complex notation and exploits the Jacobian
available at the load flow solution (Peschon, Piercy, Tinney and Tveit 1968).

We write the perturbed form of (2.5) in the form

K°8V, + K6V, =d°, (2.20)
where

s _ * * ) 1
=88, -E 8Y .V . (2.21)
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In order to incorporate equations corresponding to slack and generator buses in (2.21),

we write for slack bus
T —T * _ *
kn SVM + kn 8VM = {SVn .

where k  is a null vector and En is given by

=
Il

For generator buses, a complex quantity is defined
S AP +j|v |,
g g g
and its first-order change is expressed as
§S_ =8P + 8|V |.
g g g
Since
2P =V I +V.I,
g g'e ge

the perturbed expression associated with (2.26) is given by

2P =V 8 +1°.6V + V' 61 +1 8V .
g g g g g g g g g

Now the current I g injected at the gth node is given, using I;; = Y, Vy, by

_.T
Ig—ygVM,

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

where y gT represents the corresponding row of the bus admittance matrix Y. In perturbed

form, (2.28) is given by
I T
SIg =Y, 8VM + VM Byg.
The imaginary part in (2.24) is given by
_ *\1/2
V| =W, V)",

and in perturbed form, we write (2.30) in the form

* *
8|Vg| = (VgSVg + VgSVg)/(ZIVgl)‘
Using (2.27)-(2.31) in (2.25), the conjugate equation is given by

~ % _ T =T * * T *T *
SSg = kg 8VM + kg SVM.+ Vg VM Syg/z + Vg VM 8yg/2,

(2.29)

(2.30)

(2.31)

(2.32)
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where
A * *T . * (233)
k S(V/2)y, + Ly, Vy/2 =iV /@IV Din,,
and
kK 2 * T —j (2.34)
kg_ (Vg/2)yg +[ Vg V. /2 ng/(2| Vgl)] B,
Defining
A58 v VT - Ty (2.35)
dg_ESSg VgVM 8yg/2 VgVM 8yg/2 ,
the equation (2.32) reduces to
T %Tev® — (2.36)
kg 8V + kg SVM dg.
We write (2.20), including (2.22) and (2.36), in the form
K8V, + KESVM =d. (2.37)
The complex conjugate of (2.37) is given by
—k * * *
K SVM + K SVM =d , (2.38)
and in compact form (2.37) and (2.38) are written as
K K 8V d
[ M= (2.39)
-k * * %
K K 8VM d
For a general function f, the first-order change is expressed as
af \T af \T .
_ (2 2 2.40)
6f—<av )BVM+< *)SVM+8fP, (

M BVM

where Sfp denotes the first-order change in f due to changes in other variables in terms of

which f may be explicitly expressed. We let 1 be given by

L (2.41)
aVM
and, in general, for a real function, use (El-Kady 1980) to write
of :<£> . (2.42)
v A"
d M M
Hence, substituting (2.41) and (2.42) in (2.40), we write
. . 8V,
SE=[RTR 1| L |+8f, (2.43)

SVM
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and from (2.39), (2.43) is expressed in the form

K j1-174d
AT A*T 2.44
st=[pTp | L . B (2.44)
K K d p
or
aqaxr, [ 9 (2.45)
SE=[VIV ] ] +8f :
d P
where
T = A A
K K \' B B (2.46)
or, simply,
_ v
[KT K*T] L= fl (2.47)

The first-order change of a real function f and its corresponding gradients can be
readily evaluated by solving the adjoint system defined in (2.46). We disucss this approach in
more detail in Chapter 4, where some compact sensitivities expressions have been developed
in a straightforward manner. Various control variables have been described, including the

adjustable parameters of phase-shifting transformers.

2.5 NONRECIPROCAL POWER NETWORK ELEMENTS

Phase-shifting transformers are categorized as nonreciprocal power transmission
elements owing to their complex turns ratio (Gross 1979, Stagg and El-Abiad 1968). These
transformers are capable of changing the complex voltage and current at a particular node to
a prescribed value; and therefore, help in delaying the need for future transmission
reinforcement (Lyman 1930, Lyman and North 1938, Han 1982).

The short-circuit admittance matrix of a phase-shifting transformer installed

between nodes p and q as shown in Fig. 2.1, is given by






