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ABSTRACT

This thesis complements the recently developed adjoint network approaches to
sensitivity evaluation and optimization of electrical power systems. The nonreciprocal power
network elements comprising phase-shifting transformers are handled by two different
approaches, namely, the Tellegen theorem and the Lagrange multiplier approaches. The
method based on the Tellegen theorem incorporates the exact a.c. load flow model and
provides compact sensitivity expressions for network controls frequently encountered in
relevant power system studies. The complex Lagrangian method accommodates general
complex variables, including turns ratio and the internal impedance of phase-shifting
transformers. The theoretical results are both exact and computationally practical, and have
been verified numerically by investigating different power systems. A minimum-loss
problem for the IEEE 118-bus system has been formulated and solved using the computer

package MINOS/AUGMENTED.
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CHAPTER 1

INTRODUCTION

Sensitivity calculations play an important role in steady-state computer-aided
power system analysis and planning. These sensitivities are very valuable in estimating the
effects of transmission system contingencies, generator outages, and other defects expected in
power system operations. In the optimal power flow problems, the sensitivities of the cost
function with respect to adjustable control parameters directly contribute in gradient
computations required by most optimization techniques.

The basic requirements for an efficient technique for sensitivity calculations are
simplicity of derivation and formulation, flexibility in modelling different components of the
power system and efficiency in computations. The methods based on Tellegen’s theorem and
the Lagrangian approach are commonly applied in power network sensitivity analysis,
however, the choice of a suitable method depends on various factors such as the kind of
application considered, the types of elements defined in the power system and the available
storage and facilities for computations.

In power system operations and planning, a wide variety of problems are
encountered which are frequently formulated as constrained optimization problems. One
class of such problems is called the optimal power flow problem, in which a feasible power flow
solution is obtained to minimize some cost criteria by adjusting voltage levels, power output of
generators, transformer tap settings, phase-shifting transformer angle positions and
switchable shunt control elements. The minimum-loss problem falls into this class and is
characterized by a cost function which reflects the total active power transmission losses in a

given system.



This thesis incorporates a simple notation to describe and develop gradients of real
functions subject to equality constraints representing the power flow equations, which are
retained in their complex mode. The term sensitivity calculations is used to represent both
first-order changes and gradient evaluation. The load flow problem is formulated in Chapter
2 and the methods for sensitivity evaluation are outlined, using a recently developed complex
notation. The phase-shifting transformers are described as nonreciprocal two-port networks
and their n-equivalent circuit is presented using a voltage-current relationship via short-
circuit admittance parameters.

In Chapter 3, the Tellegen theorem is explained and its augmented form is
exploited by two different approaches based on the basic and element variable description,
and the short-circuit admittance matrix description. A simple derivation of sensitivity
expressions is presented which can accommodate general complex branch models of a given
system. The sensitivities with respect to adjustable parameters of phase-shifting trans-
formers are obtained in a straightforward manner and presented in a compact tabular form.

The material described in Chapter 4 elaborates on the recently developed complex
Lagrangian approach to power systems. The power network is assumed to contain
nonreciprocal transmission elements and, therefore, the bus admittance matrix is considered
unsymmetrical throughout the analysis. The generalized sensitivity expressions are derived
exploiting the complex conjugate notation and these results are extended to establish useful
information regarding phase-shifting transformers. Some numerical examples are included
to display sensitivities with respect to several network control variables, which have been
verified by small perturbations about the nominal point. A minimum-loss problem has been
formulated and solved for the IEEE 118-bus system using the optimization package

MINOS/AUGMENTED.



CHAPTER 2

COMPLEX POWER FLOW AND SENSITIVITY EVALUATION

2.1 INTRODUCTION

The mathematical formulation of the load flow problem results in a system of
nonlinear algebraic equations, called the power flow equations (Van Ness and Griffin 1961).
These equations can be established in a bus or loop frame of reference. The bus frame of
reference employs the nodal admittance matrix (Gross 1979, Guile 1977, Stagg and El-Abiad
1968) and requires minimal computer storage. This approach also motivates the exploitation
of network sparsity by ordered elimination and skillful programming (Duff 1977, Tinney and
Walker 1967).

The power flow equations are basically expressed in the complex form and the
variables of these equations are generally functions of the network states and control
parameters of the system under consideration. These equations are usually separated into
real and imaginary parts (Stott 1974), however, the compact complex notation developed by
Bandler and El-Kady (1979a) facilitates the formulation in complex mode. Another notation,
called complex conjugate notation (Bandler and El-Kady 1982), is also very useful and allows
direct handling of the complex functions and constraints. These notations are described in the

following sections.

2.2 NOTATION
The power flow equations involve various variables and it is important to adopt and

describe a suitable notation at the beginning of the analysis. This facilitates the derivation of



theoretical expressions and contributes towards a better understanding of the relevant
material.

In general, an n-node power system is considered. The principal notation used in
this thesis is described in Table 2.1, however, other notations may be used wherever it is felt

necessary.

2.3 COMPLEX SOLUTION OF POWER FLOW EQUATIONS
The power network performance equations are expressed, using the bus frame of
reference in the admittance form
Y. Vi =1y (2.1)
where Y is the complex bus admittance matrix of the network, V, is a column vector of the
complex bus voltages and I, is the corresponding column vector of the complex injected bus
currents.

The bus loading equations are expressed in the matrix form

* *
EM IM = sM, (2.2)
where
E, 2diagV,,, (2.3)
Sy APy +iQy (2.4)

and * denotes the complex conjugate. Substituting (2.1) in (2.2), the system of complex
nonlinear equations
E, Y, V, =S, (2.5)
is obtained, which represents the typical load flow problem.
The load flow equations (2.5) are perturbed using the conjugate notation and the

resulting linearized equations are solved by Newton-Raphson method in complex mode (El-

Kady 1980, Bandler and E1-Kady 1982, Bandler, El-Kady, Grewal and Gupta 1982). In



TABLE 2.1

NOTATION FOR THE VARIOUS QUANTITIES

Notation Description
=a, +ja, Complex turns ratio of the phase-shifting transformer
= Jal 20
d Right-hand-side vector of the perturbed load flow equations
f A general scalar function
g The index of a generator bus
Iy The bus current vector
K, K, K5 KS The matrices of cofficients used in defining the perturbed
form of the load flow equations
k o k g Vectors corresponding to the gth generator bus
¢ The index of a load bus
M M ) I M, b The matrices of coefficients used in the Tellegen’s theorem

11’ 12’ 21

approach

Total number of buses, also the index of slack bus
Total number of load buses

Total number of generator buses

Real power at the ith node

Reactive power at the ith node

Complex power at the ith node

Vector of complex powers

Special complex notation for the gth generator bus

Transformation matrix for the polar formulation




TABLE 2.1 (continued)

NOTATION FOR THE VARIOUS QUANTITIES

Notation Description

u Vector of control variables

Complex voltage at the ith node

Vu Vector of complex voltages

X Vector of network states

Yio Shunt admittance at the ith node

Yy Line admittance between the nodes i and j

Yii Short-circuit driving-point admittance at the ith node of a

two-port network

i Short-circuit transfer admittance for a two-port network
between the nodesiandj

y Short-circuit admittance matrix of a two-port network

Yo The nodal admittance matrix of the power system

Y, The ith diagonal element of nodal admittance matrix

Yij The off-diagonal element of Y in the ith row and jth column

Z, The internal impedance of a phase-shifting transformer

Oy, Ty Ky The coefficient matrices used in general complex branch
modelling

® Column unit vector with ith unity element and zero other
elements

8 First-order change

* Distinguishes the complex conjugate

A Distinguishes the adjoint network variables




order to obtain network sensitivities, we describe two adjoint network approaches, namely,

the Tellegen theorem-based method and the method of Lagrange multipliers.

2.4 APPLICATION OF ADJOINT NETWORK APPROACH TO POWER NETWORK
SENSITIVITY ANALYSIS
The adjoint network approach, based on Tellegen’s theorem (Penfield, Spence and
Duinker 1970) is a promising technique for calculating the network sensitivities. It was
initially applied to electronic circuits (Director and Rohrer 1969, Bandler and Seviora 1970,
Calahan 1968) and has been successfully introduced to power system analysis and design
problems. Recently, a generalized version, utilizing a suitable augmented form of Tellegen’s
theorem has been developed (Bandler and El-Kady 1979b) which allows the sensitivity
evaluation on the basis of an exact a.c. load flow model. This has facilitated generalized
complex branch modelling and has led to a simple derivation and elegant formulation of exact
sensitivity formulas in real and/or complex modes.
In general, the augmented form of Tellegen’s theorem is expressed as
> 4,8V, + 18V -V, 8L - Visl)=0, (2.6)
b
where [, and Vy, are the current and voltage associated with branch b of a network,
respectively, and the * distinguishes the variables associated with the topologically similar
adjoint network. The sum expressed in (2.6) is in terms of variations in Vy, Vy*, I, and ¥,
which are designated as the basic variables of branch b. Another set of variables, called the
element variables are defined, depending upon the type of branch model. These sets of

variables are denoted by



Vb
V*
w. b
W = [ bvia 2.7)
b I
Whi fj
="
and
X
7, = bl (2.8)
ub

where x}, and uy, are 2-component real and/or complex vectors. The variations of the element
variables zy, and the basic variables wy, are related and are expressed as

8z, = Jy, Swy, , (2.9)
where Jy, = (02, T/dwy,)T is a transformation matrix containing the conventional and/or formal
derivatives of zy, w.r.t. wy. The inverse transpose of Jy, is of major interest in the following

derivations and in partitioned form, it is denoted by

b b

G-I = My Mp (2.10)
I P Y
21 22

where the submatrices My1b, My9b, Mg1b, and Mgob are 2x2 Jacobian matrices.

Using (2.7), the augmented Tellegen sum (2.6) is given by

AT _
z f dw, =0, (2.11)
b

where fi, is a complex vector the elements of which are, in general, linear functions of the

adjoint current and voltage variables and their complex conjugate, and is defined as

R £
PR (2.12)
bl
bv
We define a set of transformed adjoint variables ﬁbx and ﬁbu, given by
U b o 2.13
Ny, = My, £, + M £, (2.13)

and

A A A

- MP 2.14
Ny, = My £, + My f, . 214



The elements of ﬁbx and flbu are also linear functions of the adjoint current and voltage
variables and their complex conjugate. Using (2.7 - 2.14), the augmented Tellegen sum (2.6)
is expressed as
> @ 8% + 0, Su)=0. (2.15)
b
The first-order change of a general function f of all the state vectors xy, and the control

vectors uy, is given by

of \T of \T
o= > (—) 6xb+<—> Su, (2.16)
b axb aub
Assuming a possible consistent moedelling of the adjoint system, we define
A of
n, = ; , (2.17)
b
which reduces (2.16), using (2.15), to
f \T  ap
_ 2 ) (2.18)
5= > (au > n,, | 8u, .
b b
Hence, the reduced gradients of fare given by
dar _ ot y, (2.19)
dub qu,

It is interesting to observe that (2.19) provides an exact sensitivity expression and
accommodates real and/or complex control variables. The general concepts in network
modelling are discussed in more detail in the next chapter.

Another powerful method for efficient sensitivity evaluation is the complex
Lagrangian approach, which utilizes a compact complex notation and exploits the Jacobian
available at the load flow solution (Peschon, Piercy, Tinney and Tveit 1968).

We write the perturbed form of (2.5) in the form

K°8V, + K6V, =d°, (2.20)
where

s _ * * ) 1
=88, -E 8Y .V . (2.21)



10

In order to incorporate equations corresponding to slack and generator buses in (2.21),

we write for slack bus
T —T * _ *
kn SVM + kn 8VM = {SVn .

where k  is a null vector and En is given by

=
Il

For generator buses, a complex quantity is defined
S AP +j|v |,
g g g
and its first-order change is expressed as
§S_ =8P + 8|V |.
g g g
Since
2P =V I +V.I,
g g'e ge

the perturbed expression associated with (2.26) is given by

2P =V 8 +1°.6V + V' 61 +1 8V .
g g g g g g g g g

Now the current I g injected at the gth node is given, using I;; = Y, Vy, by

_.T
Ig—ygVM,

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

where y gT represents the corresponding row of the bus admittance matrix Y. In perturbed

form, (2.28) is given by
I T
SIg =Y, 8VM + VM Byg.
The imaginary part in (2.24) is given by
_ *\1/2
V| =W, V)",

and in perturbed form, we write (2.30) in the form

* *
8|Vg| = (VgSVg + VgSVg)/(ZIVgl)‘
Using (2.27)-(2.31) in (2.25), the conjugate equation is given by

~ % _ T =T * * T *T *
SSg = kg 8VM + kg SVM.+ Vg VM Syg/z + Vg VM 8yg/2,

(2.29)

(2.30)

(2.31)

(2.32)
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where
A * *T . * (233)
k S(V/2)y, + Ly, Vy/2 =iV /@IV Din,,
and
kK 2 * T —j (2.34)
kg_ (Vg/2)yg +[ Vg V. /2 ng/(2| Vgl)] B,
Defining
A58 v VT - Ty (2.35)
dg_ESSg VgVM 8yg/2 VgVM 8yg/2 ,
the equation (2.32) reduces to
T %Tev® — (2.36)
kg 8V + kg SVM dg.
We write (2.20), including (2.22) and (2.36), in the form
K8V, + KESVM =d. (2.37)
The complex conjugate of (2.37) is given by
—k * * *
K SVM + K SVM =d , (2.38)
and in compact form (2.37) and (2.38) are written as
K K 8V d
[ M= (2.39)
-k * * %
K K 8VM d
For a general function f, the first-order change is expressed as
af \T af \T .
_ (2 2 2.40)
6f—<av )BVM+< *)SVM+8fP, (

M BVM

where Sfp denotes the first-order change in f due to changes in other variables in terms of

which f may be explicitly expressed. We let 1 be given by

L (2.41)
aVM
and, in general, for a real function, use (El-Kady 1980) to write
of :<£> . (2.42)
v A"
d M M
Hence, substituting (2.41) and (2.42) in (2.40), we write
. . 8V,
SE=[RTR 1| L |+8f, (2.43)

SVM
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and from (2.39), (2.43) is expressed in the form

K j1-174d
AT A*T 2.44
st=[pTp | L . B (2.44)
K K d p
or
aqaxr, [ 9 (2.45)
SE=[VIV ] ] +8f :
d P
where
T = A A
K K \' B B (2.46)
or, simply,
_ v
[KT K*T] L= fl (2.47)

The first-order change of a real function f and its corresponding gradients can be
readily evaluated by solving the adjoint system defined in (2.46). We disucss this approach in
more detail in Chapter 4, where some compact sensitivities expressions have been developed
in a straightforward manner. Various control variables have been described, including the

adjustable parameters of phase-shifting transformers.

2.5 NONRECIPROCAL POWER NETWORK ELEMENTS

Phase-shifting transformers are categorized as nonreciprocal power transmission
elements owing to their complex turns ratio (Gross 1979, Stagg and El-Abiad 1968). These
transformers are capable of changing the complex voltage and current at a particular node to
a prescribed value; and therefore, help in delaying the need for future transmission
reinforcement (Lyman 1930, Lyman and North 1938, Han 1982).

The short-circuit admittance matrix of a phase-shifting transformer installed

between nodes p and q as shown in Fig. 2.1, is given by



13

1
Z.aa*  Z.a*
[ £ ta] (2.48)
1 1 ’

Zta Zt

<
Il

where a and Z, are the complex turns ratio and internal impedance of the transformer,
respectively. It can be observed that the off-diagonal elements in (2.48) are unequal when a is
complex. One possible way of representing this element is shown in Fig. 2.2, where a voltage-
controlled current source is indicated at node q.
The phase-shifting transformers are installed in transmission lines as shown in Fig.
2.3, and the voltage at the output terminals of the transformers can be controlled by two
independent adjustments. These adjustments are usually carried out in steps and their
practical values are
0.90 < |a| = 1.10 with Ala] = 0.025 (p.u.)
—10°= ¢ = + 10°with Ap = 2.5°.
The control actions may be manual or automatic (Han 1982), complete with output sensors
and feedback methods, and the device may be used to control real and reactive power flow in a
power transmission network.
The sensitivities with respect to turns ratio and transformer impedance are of prime
importance and are derived in the following chapters. The knowledge of these sensitivities
finds practical utility in power system planning and operations, and helps in providing

possible relief in overloaded transmission facilities.
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bus p a:1 Z, bus q

—()— |

W/

Fig. 2.1 Representation of a phase-shifting transformer

+ - q
Ip Iq
= ~Ypq —-
+ +
Yor™ Ypq Yaq" Ypa §
ap~Ypq) %

i

Fig. 2.2 A n-equivalent of phase-shifting transformer
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Fig. 2.3 Three-phase phase-shifting transformer (Gross 1979)



CHAPTER 3

TELLEGEN THEOREM APPROACH TO NONRECIPROCAL POWER NETWORKS

31 INTRODUCTION

The Tellegen’s theorem has been exploited by several algorithms as a powerful tool for
calculating the required gradient, using one additional linear network analysis (Bandler and
El-Kady 1979, Director 1975, Penfield, Spence and Duinker 1970). The generalized version of
the theorem utilizes a suitable augmentation and facilitates sensitivity evaluation on the
basis of an exact a.c. load flow model.

The augmented form of the Tellegen’s theorem has been successfully applied to the
generalized complex branch models of power networks (El-Kady 1980) and has led to a simple
derivation and elegant formulation of exact sensitivity formulas in real and/or complex
modes. The concept of generalized perturbed complex branch modelling is extended to
general two-port networks by implementing a pertinent adjoint technique. The two-port
networks may comprise transmission lines, tap-changing-under-load transformers and phase-
shifting transformers. These elements can be distinguished by variable a, which signifies the
complex turns ratio. Its value is unity, a real quantity and a complex quantity, for the
respective elements.

It is interesting to observe that (2.19) provides an exact sensitivity expression and
accommodates real and/or complex control variables. The general concepts in network
modelling and analysis applicable to systems of general complex branch models are discussed

further in the following sections.

16



17

3.2 GRADIENT CALCULATIONS CONSIDERING BASIC AND ELEMENT

VARIABLES
Consider a general form of perturbed equation relating the basic variables wy, and
element variables z, of bth branch, given by
0,81, +35, 8 =1 8V, + 7T, 8V, + x bu, + K, bu, . (3.1)

Using the conjugate of (3.1) and expressing the general equation in matrix form, we write

g G 81 T, T 8V K K 8u
b b b b b b b b b
[* *]{ *]:[* * *+[* *}[ * (3.2)
Eb o 8 I Eb T 8 vy l—{b Ky 8 u,
In order to handle (3.2) in a convenient way, the matrices of coefficients are denoted by
o a.
b b
o = (3.3
b ¥ * ’
% %
T, T
b b
o = [ ] (3.4
b K *® ’
% b
and
K X
b b
Kb = [ % * ] ) (35)
b
and we use (2.7) and (2.8) to express (3.2) in the form
_ (3.6)
o, wai =T, wav +t K Sub .
For a general branch, we define element variables as
s
RS (3.7
z = ’
by,
o,

and this leads to a convenient form of the corresponding Jacobian matrix. It is

straightforward to express Jy, of (2.9) in a partitioned form, given by

0 1
= (3.8)
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and the inverse of this matrix can be written by using matrix manipulations, in the form

-1 _
5=

The transpose of the matrix given in (3.9) is

-1 -1
% % “b] (3.9)
1 0 '

T -1T 1

J_l'r_ o & ) (3.10)
b - Te~LT o |
%%
and, using (2.10), we get the submatrices
b _ T, -LT
My, =0, (8.11)
b _
M,=1, (3.12)
b T, -1,T 1
M, = -x (tb ) (3.13)
and
b _
My, =0 . (3.14)
The transformed adjoint variables defined in (2.13) and (2.14) are given by
A _ b A A 1
Ny = My Wy = Wy, (3.15)
and
A _ b A
Ny, = Mgy Wy - (3.16)

Note that \grbi and wyy are basic variables of an adjoint system, and from (2.6), (2.11) and

(2.12), it is obvious that

" e b (3.17)
wbi:fbi:[i*] '
b
and
. v
wo=_f =|0° (3.18)
bv bv .k
b

The first-order change of a general function stated in (2.16) can be used and an adjoint

system can be defined as in (2.17) to yield the required gradients expressed in (2.19) by using
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/7SS

* ok a *
[ —a'l = vV, — A
A A * A *
Zta Zta
I T ! (1 1>V 2 (1 1>v*
—a = « \ -~ T x T
B zZa' ‘2 B Zia \a B

I.+al _1<1 l)V a(l 1>V"‘
ale=7"\ 2~ -\

c C Zt a c Zt a c
Fig. 3.1 Modelling of phase-shifting transformers.

(3.15) and (3.16). Table 3.1 displays the coefficient matrices associated with various power

system elements.

3.2.1 Gradient Calculations of Phase-Shifting Transformers

The phase-shifting transformers having complex turns ratio can be modelled by using
general branch models (El-Kady 1980) and one possible construction is represented in Fig.
3.1. The various coefficient matrices are summarized in Table 3.2a-f, considering two sets of

control variables, namely, associated with internal admittance Z, and complex turns ratio a.
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TABLE 3.1

COEFFICIENT MATRICES USING GENERALIZED BASIC AND ELEMENT VARIABLES

Coefficient Load Generator Slack Transmission
matrix branch branch generator line
*T *T *.T *T
u, [S ¢ S e] [Sg Sg] [Vn Vn] [y . Yt]
*
0 \% \" \% 0 0 1 0
¢ g 8
V€ 0 VvV V 0 0 0 1
g 8
I* 0 (I* V* I \"% 1 0
- —( +jV) = +iV) - Y, 0
4 g g g g t
le 0 I I* V* I \% 0 1 0 Y*
- —I =iV) =0 —j -
e Ug=3Vyg g Ve t
1 0 1 0 1 0 Vt 0
0 1 0 1 0 1 0 Vt
*
0 — -‘i{ * *9Q L 0
I _1 vV v 0o o Y
Mb 14 + g g g t
11 \'A 2 1
¢ 2A —jV —jvv ) 0 L
—I—, 0 g g Y*
e .
1 _
-~ 0 * ® _V_
* A —jV) (I —jV) 10 = 0
b L -1 g g g g t
M T —
21 1 4A : L *
0 — I +jV. —d +j V) 0 1 -V
I g g g g t
¢ 0 "
Y
t
PA=T, V=1,V
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TABLE 3.2a

MATRICES u,, 6, v, , ¥, FOR PHASE-SHIFTING TRANSFORMERS

Matrix Branch A
1 * T
Uy [z, Z,]
2 * T
u [a a]
*
[ - ]
o
b —a 1
1 —a*
*® *
. Zta Zta
b a1
* *
Zta Zta
ks
——VA a VA
* *
Z a Z 2a
1 t
Kb %
aVA ~VA
* *
Zza Z 2a
t
* ok *
a VA [* VA VA
9 Zta Zta Zta
Kb .
I VA VA aVA
A Za 2 *9
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TABLE 3.2b

MATRICES u;, 6,, v, , ks, FOR PHASE-SHIFTING TRANSFORMERS

Matrix Branch B
1 *T
Uy [z, 2]
2 * T
u, [a a]
£
l 7 ]
g
b —a 1
l1-a l—a*
* - *
. [ Ztaa Z a I
*
b l1—-a l1-a
- * *
Zta Z, aa
* *
—VB(I—a) VB(l—a )
2 * *2
1 Ztaa Zt a
Kb * *
VB(I-—a) —VB(I—a )
2 * *2 L3
Zta Zt aa
*  *
-VB (l—a)VB * (l—a)VB \"
9 * + 2 IB - *9 + I
9 Z aa Z a Ztaa Z a
Kp .
I (1—a )VB VB (l—a)VB VB
B~ * 9 % * * - *9
Z aa Z.a Z.a Z, aa
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TABLE 3.2¢

MATRICES u,, 0, v, , K, FOR PHASE-SHIFTING TRANSFORMERS

Matrix Branch C
1 * T
u, Z, 7,1
2 *T
u [a a]
[ 1 a
o * ]
b a 1
*
a-1 a(a —1)
* ok
[ Za Z.a ]
]: * *
b a(a—1) a —1
Z a * ok
t Zta
1 *
1-a a(l—a ) =
Z2 VC Z*2 * C
1 t? v ?
Kb *
a(l—-a) 1—-a #
2 C ¥ x C
Zta Zt a

VC * (1—a*) *
_2_ - IC * % C * *Q
9 a Zt a Zt Zt
Kb * 3
a VC VC L
2 *2 *
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3.3 GRADIENT CALCULATIONS CONSIDERING SHORT-CIRCUIT ADMITTANCE
MATRIX
Consider a general two-port netowrk inserted between nodes p and q and let the short-
circuit admittance parameters be represented by ypp, ¥pg, Yqp and yqq, respectively. Without
loss of generality, we assume that y,q Zyqp and the current-voltage relationships for the

network are given, in matrix form (Desoer and Kuh 1969), by

[Ip} _ [ypp %oa| [Vo (3.22)
Iq yqp yqq Vq
In compact notation, (3.22) can be written as
I=yV, (3.23)

where I and V are current and voltage two-component vectors, respectively, associated with a
two-port network.
The form expressed in (3.23) can be perturbed and is given by
8l =y6V +8yV, (3.24)
which relates the first-order variation of current vector I to first-order changes of voltage
vector V and short-circuit admittance matrix y .

We write the augmented terms in (2.6) associated with branches p and q, given by

16V +1°6V =V 61 —V sl
p p p p p p p P

+1 8V +1°6V —V 81 — VoI (3.25)
9 9 a9 q q q q q
This portion of the Tellegen sum can be expressed in matrix form, given by
"5V + I'Tov" — vIs1 — v'TeI, (3.26)

where the adjoint current and voltage vectors denote

(3.27)
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. [V
v=|7"F (3.28)
v
q
From (3.24) and its conjugate for 81", we write (3.26) as
(1T = VTy)sv — VTsy v
+@T -V Ty eVt - ViTay" V' (3.29)
The first-order change of a general real function fis given by
of o _ « of of *
8f= > (— 8L + — 8, + — 8V, + — 8V}, (3.30)
b BIb aIb aVb aVb

and the corresponding terms associated with branches p and q are obtained by putting b = p
and q, which can be written in compact form, given by

ot \T f\T o (o \T d\T .
(—) 51+<—> 81 +(—> 8V + (—) 8V" . (3.3D)
a al oV oV

Again, using (3.24) and its conjugate in (3.31), we write it as

(5) o+ () fov(5) 5+ () Jov
al aVv al av
+(—> 8y V+(——> 8y V. (3.32)
ol ol
We define an adjoint system associated with branches p and q so that
A A of of
I:yT<V+——>+—— , (3.33)
al av

and using (3.29) and (3.34) in (3.30), it is straightforward to express

A af T A af T « R
of = (V+ 5i> By V+ (V + —*> 8y" V' + other terms. (3.34)
\ oI

From (3.34), we write
(3 T
———_(V+-—>V , (3.35)
\ ol

and
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df A 8f *
—*:(v +_*>VT‘ (3.36)
dy ~ ol

Note that (3.35) and (3.36) represent sensitivities of function f w.r.t. short-circuit

admittance matrix y and its conjugate, respectively, and basically are 2x2 matrices.

3.3.1 Gradient Calculations of Phase-Shifting Transformers
The short-circuit admittance matrix of a two-port network comprising phase-shifting
transformer is given by (2.48) and the first-order variation of y can be expressed in terms of

first-order changes in Z, Z;*, a and a*. We write

-1 a

8y = - |, . | 82 + 087
Zzaa a —aa t ¢
t
1 -1 0 1 -1 a %
+ pardl I da + > da , (3.37)
Zta a a 0 Ztaa 0 0

and using complex conjugate notation, we express 8y* from (3.37), given by

*

* ——1 a *
Sy :OfSZt + PP [ . ] ESZt
Zt aa a —aa
1 -1 a 1 -1 0 . (3.38)
+ ¥ Sa + — " da
Z a2a 0 0 Z aa 2 a 0
t t
Substituting (3.37) and (3.38) into (3.34), we obtain
A af T 1 -1 a 1 -1 0
Sf:(V+—) - . *]SZt+ 5 s . ba
ar/ A Ztaa a —aa Zta a a 0
1 -1 a *\
+ p ba ) \"
Ztaa 0 0
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A g af T 1 -1 a* * 1 -1 a*
+(V+—*>(*2 " o |82, + I 8a
al Z‘ aa a -—aa Ztaza 0 0
1 -1 0 . *
t e { 8a )V + otherterms. (3.39)
Z aa'? a 0
t
Hence, the derivatives of fw.r.t. Z;, Z; ,a and a" are given, using (3.39), by
A T —1 a
d—f-= 1* (V+a—f> . *‘ vV, (3.40)
dz, Zfaa ol a  —aa
df L (o N 7E 2] (3.41)
— = g * V + T * VvV ,
dZ Z “aa ol a —aa
t t
df 1 ~ of\T -1 0
— = V+ = . vV
da Za%a ol a 0
t
1 A g af T "1 a . (342)
t—S= \V+= \%
Za'a ol 0 0
and
df 1 - of \T [ -1 a
* = *9 V + - V
da Zaa "~ al 0 0
A T —1 0
N (V*+ i) ]V*. (3.43)
Z, aa 2 al a 0

The expressions (3.40)-(3.43) can be used to obtain sensitivities w.r.t. practical control
variables of phase-shifting transformer, namely, Ry, X;, a; and as in a straightforward

manner. We have used the following notations to display simplified expressions in Table 3.3

of

v =v += (3.44)
P p ol
p
and
S . of
VvV =V + —. (3.45)
q q al
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TABLE 3.3
SENSITIVITIES OF A REAL FUNCTION
Control Description Derivative
Variable
Zy transformer ( \1/. _ E > < 5 v >
impedance a Gt a q
2
Zt
R transformer df
resistance 2 Re {—}
dZ
t
Xt transformer df
reactance -2 Im { e ]
dZ
t
a transformer Vp Y Vp’ pf . * Vp
complex turns 7 Vq— A E Vq —
ratio t a t a
2
a
ap real component
of complex turns df
ratio 2 Re da
a9 imaginary com-
ponent of df
complex turn —9 Im { —_ }
ratio da
|a] magnitude of 1 df df
complex turns —la, T ta, —)
ratio |a| da, da,
) phase angle of df daf
—a, — +a, —
2 da 1 da2

complex turns
ratio
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3.4 CONCLUSIONS

The Tellegen’s theorem has been applied to a.c. power flow models in general, and
exact network sensitivity formulas have been derived for various network branches. A
special treatment of phase-shifting transformers has been empasized to provide sensitivities
with respect to their adjustable parameters, namely, internal resistance and reactance, and
turns ratio in rectangular and polar modes. We have considered basic/element variable
approach and short-circuit admittance description of general two-port network and applied to

nonreciprocal power networks.



CHAPTER 4
COMPLEX LAGRANGIAN APPROACH TO

NONRECIPROCAL POWER NETWORKS

4.1 INTRODUCTION

The recently developed complex Lagrangian approach (Bandler and El-Kady 1982)
has been successfully applied to power system analysis and design. The complex Lagrange
multipliers are obtained by solving a set of adjoint equations in complex mode, exploiting the
Jacobian matrix of the load flow problem. A compact complex notation (Bandler and El-Kady
1980) is employed to handle complex functions and constraints directly. The approach is
extended to power networks comprising phase-shifting and tap-changing-under-load
transformers. The sensitivity expressions are derived and presented in a compact complex
mode, and in order to obtain sensitivites in rectangular or polar modes, suitable

transformations have been derived.

4.2 GRADIENT EVALUATION IN COMPLEX MODE

The first-order change 8f can be calculated from (2.45) in complex mode and
throughout the analysis, the nodal admittance matrix Y, shall be assumed unsymmetrical.
This assumption facilitates direct handling of phase-shifting transformers and the
sensitivites with respect to complex turns ratio and transformer impedance can be obtained in

a straightforward manner.

30
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4.2.1 General Derivation

We consider an n-node power system comprising n; loads, n; generators and one
slack generator. The buses are ordered such that subscripté €¢=1, 2, ..., n; identify load buses,
g=n; +1,...,n; +n; identify generator buses and n identifies the slack bus.

The vector d of (2.45) can be partitioned into subvectors associated with the sets of

load, generator and slack buses of dimensions n;, ng and 1, respectively, in the form
d=| dg|. (4.1)

where d; constitutes elements d ¢ given, from (2.21), by

_ * * T (42)
de = SSe -V, Vy,%,,

d has elements dg given by (2.35) and d_ is simply 8Vn* by (2.22). The adjoint vector V of

(2.45) can also be partitioned in a similar way and is expressed as

L

v=|V, (4.3)

<> <> <>

n

The first-order change of a real function f, expressed in (2.45) can be written in the

form
st=vid + V! v d of Ta
=Vpdp+Vgdg+ Vod + p

ARk Ak Aw % af T * 4.4
+V, dL+VGdG+Vndn+<—> 5p . (4.4)

. Jap
The first term of (4.4) is written in expanded form, using (4.2), as

oy,
AT . A
VLdL - ez Vede
=1
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n

nL L n

- ' * 5 ot 4.5

=S Gas- S Y GV, 8Y,), >
€=1 €=1 m=1

where Y, is an element of Y located in the fth row and mth column, and in general
isnotequalto Y ,.
The second term of (4.4) is corresponding to generator buses and using (2.35) can be

expressed in the form

n-1
AT _ a
Vedg = 2> V. d
g=nL+1
n—l. . .
= 2 (v, 85)
g=nL+l
n—-1 n .
- DIV, (VIV 8Y 4V V.Y, 2] (4.6)
g=nL+1 m=1

and ng is an element of Y, associated with the gth row and mth column. For an
unsymmetrical Y, we have Y gm = Ymg. The third term of (4.4) is corresponding to slack bus

and can be written, using (2.22), as
4.7

Vd=Vsv.
n n n n
The fourth term of (4.4) is simply the first-order change of f due to variations in other
|

variables p in terms of which the function f may be explicitly expressed.
The equations derived above provide useful information for gradient evaluation since
they are directly related to changes in the control variables, e.g., bus quantities and
transmission network quantities. The derivatives of the function f with respect to both types

of control variables are derived in the following sections, and temporarily the function has

been assumed to be independent of p.



33

4,22 Derivatives of a Real Function w.r.t. Bus Type Variables
The derivatives of function f w.r.t. the demand S, and its conjugate Se*, associated

with the €th load bus are given, using (4.5), by

df %
— -V (4.8)
dS ¢ €
and the complex conjugate of (4.8) is expressed as
df 8
- =V e (4.9)
dSs ¢

For a generator bus, we use (4.6) and its conjugate equation to provide the derivatives, given

by
af v (4.10)
ds g
g
and
f ~
d.,, =V, (4.11)
ds, g

where ég is a special notation (El-Kady 1980) used to incorporate the generator buses in the
generalized formulation of load flow problem and sensitivity evaluation.
The derivatives of f w.r.t. slack bus voltage V_ and its conjugate V _* are obtained

from (4.7), given by

— =V, (4.12)
dv n
n
and
v (4.13)
av. "

However, in practice the phase angle of the slack bus voltage is referred to be zero, which

leads to
(4.14)
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and \A/'n of the adjoint system turns out to be real. This indicates that there is only one

practical control variable associated with the slack bus.

4.2.3 Derivatives of a Real Function w.r.t. Short-Circuit Admittance Parameters

The transmission network of a power system comprises lines, power transformers,
tap-changing-under-load transformers and phase-shifting transformers. For a general
analysis, we assume these elements to be nonreciprocal two-port networks, however, by
appropriate selection of turns ratio, the formulas derived can be applied to any particular
element.

Consider a transmission element connected between nodes m (= ¢, gor n) and m' (=
¢, g or n), where m = m'. The diagonal and off-diagonal elements of the nodal admittance

matrix are given, in terms of short-circuit admittance parameters, by

n
_ m’' (4.15)
Ymm - Z ymm ’
m'=1

m

where y " represents the short-circuit driving-point admittance at node m, of a two-port

network inserted between nodes m and m', and

Y (4.16)

mm’ — Ymm’’

respectively, where y . represents the short-circuit transfer admittance. Note that for an
unsymmetrical Y., weconsider Y . =Y . .

The derivatives of a real function f for an element connected between a load bus and

any other bus are expressed in a compact form, using (4.4), (4.5), (4.15) and (4.16), given by

df " x
— = -V,V,V_, (4.17)
dyfm
and
df x
=_V.V,V, (4.18)
* ¢ ¢ m

dy{’m
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where m stands for any node of the power network under consideration,i.e., m=1, ..., n.
The derivatives associated with a generator bus can be obtained by considering (4.6)
and its conjugate equation. It is interesting to note that 5ng appears in VGT dgaswellasin

A

VG"‘T d* and it is convenient to write the expressions in a combined manner, given by

n-1 n
= > SV AVHVIV Y+ V. VY e, (4.19)
g g g m gm g m gm
g=n,+1 m=1
L
or
n-1 n
. * * *
- > D>V VIV 8Y_ +V V Y ), (4.20)
gl g m gm g m gm
g=nL+1 m=1

where V gl represents the real part of Vg.
Using (4.15), (4.16) and (4.20), the derivatives of f for an element connected between a

generator bus and any other bus are given by

df ~ *
— =-V V V | 4.21)
dy gl g m
gm
and
df A *
— =-V _V V . (4.22)
gl g m
dy
gm

For a special case when m=g, (4.21) and (4.22) become identical suggesting that a function is
independent of the shunt susceptance at a generator node. Therefore, generator buses have

only one practical real shunt control variable.

4.2.4 Derivatives of a Real Function w.r.t. Line Variables

In general, we have four variables Vi Vi Yio and Yi0 associated with an element
inserted between nodes i and j. These variables are called line control variables and for an
unsymmetrical Y., we consider Yij Z in in our analysis.

The term associated with i= ¢ is expressed in (4.5), which can be expressed as
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n n

L L n
‘T _ s * — ~ *
vpd, = 2 (V,8S,) + > Z VeVe V=V by,
e=1 £=1 m=1
m={
nL .
* (4.23)
-2 (V,V,V, 8y,).
e=1
Using (4.4), (4.5) and (4.23), we write
df -
—_— =_ V.V (V,=V) (4.24)
dy ¢ ¢ 4 m
fm
and
df (4.25)

=V Ve (Ve =V,
dyem

which also incorporate y,, and y eo*, respectively, and for these variables V_ stands for ground

voltage, and is equal to zero.

The derivatives associated with i=g can be obtained in a similar manner by using

(4.6). We express VGT d;and V(;T d;" together, appearing in (4.4), in the form

n-1 n
T L _ . * * * *
Vedg+Vgdg= > XV IVIV, —V)8y  +V (V] —VIy_ ]
g=nL+1 m=1
m*g
n-1 X n-1
- 2 VLV By tby) + 3 (V85 4V, 85) (4.26)
g=nL+1 g=HL+1
and from (4.26), we write
df ~ *
— =_V _V (V-V) (4.27)
dy gl g g m
gm
and
df - * * .
— ==V _ V (V-V). (4.28)
dy gl g g m
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It is interesting to note that (4.27) and (4.28) are valid for y 20 and ng* where we have to set
V, = 0 and the expressions turn out to be identical, which indicates that function f is
independent of shunt susceptance at a generator node.

The sensitivity expressions derived for a real function f are summarized in Table 4.1
and it can be observed that the results for y and y variables are related via a simple
transformation (Appendix). In order to deduce these expressions for reciprocal networks, the
algebraic sum of the derivatives associated with Y3 and Yiir and Yy and Yiir respectively, leads
to the results derived in the related previous work (El-Kady 1980).

Another simplification can be achieved by defning a vector VR given by

A VL
VR = (4.29)

Var

A A

where V| is a vector of length n; associated with load buses (4.3), and V4, is a vector of real
quantities given by
Vi = Re{V). (4.30)

The sensitivity expressions (4.17), (4.18), (4.21) and (4.22) are given by

df A "
= _vRvy'v (4.31)
dymm’ m m m
and
i _ Ry v (4.32)
* m m m
dymm'

wherem = ¢,gandm’ = £,gorn.
The expressions derived for line variables (4.24), (4.25), (4.27) and (4.28), can also be

expressed, using (4.29) in the form

df
dy

= _VBV'wv —v ) (4.33)
m m m m

mm’
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TABLE 4.1

SENSITIVITIES OF A REAL FUNCTION IN COMPLEX MODE

Variable Description Sensitivity formula
S, demand power \% e*
S g generator complex quantity \}g*
(Re{Sg} = Pg and Im{Sg} = |Vg| )
' slack bus voltage \}n*
Yom short-circuit admittance parameter Y eV e* A\
associated with a load and any other bus
Yem short-circuit admittance parameter - Vgl Vg* Vo
associated with a generator and any
other bus
T Yem line variable associated with a load - Ve Ve* (V,=V.)
and any other bus
T Yam line variable associated with a - Vgl Vg (Vg— v.)

generator and any other bus

T m=0 for shunt variablesand V_ = 0, the ground potential.
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and

df o * * *
= ViV (v V), (4.34)
m m m m

wherem = £,gandm’ = £,g,nor 0.

4.2.5 Derivatives of a Real Function w.r.t Phase-shifting Transformer Control Variables
The controllable parameters of a phase-shifting transformer in complex mode are its
complex turns ratio and impedance. Using the conjugate notation, we express the control

vector u for this element in the form

" u ]m a (4.35)
u2 Zt ’
th

where u! and u? represent the first and second sets of variables in complex mode. The
derivatives of short-circuit admittance parameters and line variables w.r.t. control variables
specified in (4.35) are summarized in Tables 4.2 and 4.3, respectively.

The first-order change of function f can be expressed, using conjugate notation, in the

form

5= g L s Loy +-1s
3 ypp+8y ypq+ yqp Yy
pp Pq ap qq

* *
8 . 4.36
Yoo + v 8y aq (4.36)
Y
pp pq qp a9
In general, the first-order variation of a short-circuit parameter Yip where i,j = p,q, is given

* *
+ Sy, +— 6y +
ypq yqp

*

ady

* *

by

Sy. = — da+— sa + 711 62, + y sz: . (4.37)

Y da da d t 7 ¢
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TABLE 4.2

VARIABLES OF A PHASE-SHIFTING TRANSFORMER

Parameter Expression Derivative Derivagive Derivative Derivativt*e
w.rt.a w.r.t a w.r.t.Z, w.r.t. Z,
1 -1 -1 -1 0
Y *
PP Ztaa* Ztaza Z, aa’ Zfaa*
-1 0 1 1 0
y i
pq * *2 2 *
Z K:! Zt a Z !
-1 1
Yop _Z—_ 0 —_— 0
ta Zt az Zt a
. 0 0 —1 0
y . 7
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TABLE 4.3

LINE VARIABLES AND CONTROL VARIABLES OF

A PHASE-SHIFTING TRANSFORMER

Line

Expression Derivative Derivaiiive Derivative Derivativg
Variable w.r.t.a w.r.t.a w.r.t. Z, w.r.t.Z,
1 ( 1 1) -1 -1 ( 1 -1 ( 1 1) 0
y - — - - —
po * *® *2 2 *
Za ‘@ 7 a’a Z.a a Z;a ‘@
1 0 -1 -1 0
y * *
pq * 2 2
Zta Zt a Zt a
1 -1 0 -1 0
y P -
ap Za 7 a2 72a
t t
1 (1 1 ) 1 0 -1 (1 1 ) 0
y — (1= B
q0 2
Z, a 7 a2 Z, a
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Using (4.37) and its conjugate, and Table 4.2, we write (4.36) in the form

-1l 1/1 of 1 o 1 o 1 o
8f="—2— - Z__+_* — |- Z__+_* " ba
a” la ‘4 oy, A W, t Yep Z, Y
1 |1/1 of 1 of 1 of 1 of *
~m|a\g g T )\ )| %

a latd o, A % oo Ly W Z, Yoo

1 1 of 1 of 1 o of

i Gt T b e £ 21
Z " aa R T Yaq

1 1 of 1 of 1 of of *

_*2<________ — = — + — >azt. (4.38)

a
Z, aa Wy 2 Vg Vg

The derivatives of f w.r.t. control variables of phase-shifting transformers can be written,
directly from (4.38). Using Table 4.2, we summarize the sensitivity formulas in complex
mode, in a compact, practical form as presented in Table 4.4a. Note that we have defined a
vector \AIR (4.29) in order to display a more general formula which takes care of the adjoint
voltages associated with a generator node.

A similar treatment can be carried on with sensitivity expressions derived for line

variables and the results can be summarized as shown in Table 4.4b.

4.3 GRADIENT EVALUATION IN RECTANGULAR AND POLAR MODES

For a general real function f, which may be function of complex vector { and its
conjugate C’, the sensitivities in complex mode are given by df/d{ and df/d{". However, the
practical variables are given in Table 4.5 and we derive a transformation which can be used to

give sensitivities in the rectangular mode.
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TABLE 4.4a

SENSITIVITES OF A REAL FUNCTION W.R.T. PHASE-SHIFTING

TRANSFORMER CONTROL VARIABLES

Control Sensitivity
Variable Expression
1 1 /1 of 1 o 1 of 1 o
a S|\ T )T\t .
a a t aypp Zt aypp Tt ayqp Zt 6ypq
* 1 1/1 of 1 o 1 of 1 of
a = |-z Z_ — +t = + 2‘ — +=
a BN Wy 2 Wp t Yo 2, Yo
1 of af 1 o 1 of
Zt = |- " 6_ 6_ t\ 5 — +- —
Z aa Y Vg a Wy 2 Dy
* l ( 1 of of > <1 of 1 of )]
Z e + e +—
*2 * * L a * * *
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TABLE 4.4b
SENSITIVITES OF AREAL FUNCTION W.R.T. PHASE-SHIFTING

TRANSFORMER CONTROL VARIABLES

Control Sensitivity
Variable Expression
1 1 /1 of 1 of 1 1 of of
a I R U Y R -1+
a Z\a Vo % 40 Z, a Wy
* 1 1 1 of of 1 /1 of of of
a _*2 - Z_ —=1)— + -\ * + ® *
a t a ayp() aypq Zt a aypo ayqp yqo
1 1/1 of 1 o 1 of 1 of
Zt —~2 - "——1)———-—;——‘———' —_— —{1-- 5—'—
Zt a ‘@ ay p0 4 ay pq 2 ay . a’s %y
Z* 1 1 ( 1 ) of 1 of 1 of (1 1 ) of ’
t *2 - a - *® - a *® - * *® - - * *
Zt a aypo aypq a 6yqp a ayqo




TABLE 4.5

PRACTICAL CONTROL VARIABLES OF A POWER NETWORK

Variable Description
P, demand real power
Q, demand reactive power
Pg generator real power
|V gl generator bus voltage magnitude
Vi real component of the slack bus voltage
G, line conductance of a transmission line
Bt line susceptance of a transmission line
Gy, shunt conductance of a transmission line
B, shunt susceptance of a transmission line
a, real component of the complex turns ratio
aq imaginary component of the complex turns ratio
|a] magnitude of the complex turns ratio
o) phase angle of the complex turns ratio
R, resistance of a phase-shifting transformer
X reactance of a phase-shifting transformer
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We have

¢=¢ +1i¢,, (4.39)
where ¢, and (, are vectors of real quantities, and a complex quantity ¢, and its conjugate, are

given by
0y =y + 38, (4.40)

and

4" =0 =i, (4.41)
respectively. Then the first-order changes of {; and CI can be compactly expressed in the form,

using (4.40) and (4.41)

8¢ 1 8¢
SR
8¢ 1 1 —j 8(12
or
8¢ 1 1778
11]___1_[ [ 1. (4.43)
80,0 2 L1-5 jlleg
Therefore, the transformation for sensitivity in rectangular mode is given by
o4 &
d, (1 L1\-T| & (4.44)
o |\ 9 . . df ’
E— -] J _—
12 a, |
or
a4 [ o
1 1 d
“11 - [ ] ‘1 (4.45)
df . . af |-
—_— io=i —
&g a

A direct way of obtaining (4.45) from (4.42) is to simply transpose the matrix of
coefficient in (4.42) as the perturbed equations are linear. As we have considered only real

functions in this thesis, we use df/dCl* = (df/dél)*, and (4.45) yields a simple relation

af ZRe{ if_} (4.46)
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and

L S, l if_] . (4.47)
dgl? dcl

These relations can be used to obtain sensitivities w.r.t. real control variables listed in Table
4.5.

The practical control variables associated with the complex turns ratio of a phase-
shifting transformer are |a|] and ¢, described in section 2.5 and we derive another
transformation of practical interest. The rectangular mode of complex turns ratio can be
expressed in the form

a, = |alcos d (4.48)
and
a, = la|sin¢, (4.49)
and their first-order variations are given, using (4.48) and (4.49), by
8a, = cosp8la| — |a|sind 8¢ (4.50)
and
8a, = sin¢p 8lal + a|cos 8¢ . (4.51)
In matrix form, we write (4.50) and (4.51) as

[ Sa1
8a2

representing a linear relation between 8a., 8a, and 8ja |, 8¢, respectively. Taking the
1 2

cos —|a| sin 5lal
[ b hlsine [”], (4.52)

8¢

sind |alcos ¢

transpose of inverse of the coefficient matrix in (4.52), we obtain a transformation matrix TP,
which relates the sensitivities of a given real function in two different real modes, namely,

polar mode and rectangular mode. The required transformation for polar mode is given by
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df
i cos ¢ sin ¢ E
dal | _ 1 (4.53)
df af |’
_dg . —lalsind  |alcos & E-a;
or
[ af 3 )[4
T vl ol da
dal [ _ | la  Ia 1 (4.54)
& &
do % f) | da,

The sensitivity expressions derived in this chapter are verified numerically by
considering a 6-bus sample power system, a 26-bus system, and the IEEE 118-bus system

(Bandler, El-Kady, Grewal and Wojciechowski 1983).

4.4 NUMERICAL EXAMPLES
4.4.1 6-Bus Sample System

The 6-bus power system (El-Kady 1980) has been augmented by inserting a phase-
shifting transformer with a large phase angle (p = 36.8°) between nodes 1 and 4, as indicated
in the single-line diagram shown in Fig. 4.1. The nodal admittance matrix of the system and
the a.c. load flow solution in rectangular and polar modes are displayed in Tables 4.6a and b.
The Jacobian available at the solution is utilized to determine sensitivities of the voltage
magnitude at load bus (£ =1). The right-hand-side vector of the adjoint system constitutes the
partial derivatives of f = |Vy| w.r.t. complex bus voltages and their complex conjugates. The

nonzero elements of this vector are

4 1 (4.55)
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_— N

5 6
5 6!1 K s—1,
Fig. 4.1 6-bus sample system

and

—_ = . (4.56)

The adjoint solution vector is used in Tables 4.1-4.5 and the sensitivities are tabulated as

shown in Table 4.7.

442 26-Bus Power System

We consider a network function of the system shown in Fig. 4.2, given by

iV = Voo I (4.57)

f=6, =tan~
20 *
VZO + V20
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TABLE 4.6a

NODAL ADMITTANCE MATRIX YT

The sequence in each row is: Column Index, Real(YT), Imag(YT)

Bus No. 1
1: 3.529412 —14.117647 4: —3.764706 3.058824
5. —2.352941 9.411765
Bus No. 2
2: 5.490196 —21.960784 3: —.588235 2.352941
4: —.588235 2.352941 5. —1.176471 4.705882
6: —3.137255 12.549020
Bus No. 3
3: 2.549020 —10.196078 2: —.588235 2.352941
4: —.392157 1.568627 6: —1.568627 6.274510
Bus No. 4
4: 2.156863 —8.627451 1: 1.882353 4.470588
2: —.588235 2.352941 3: —.392157 1.568627
Bus No. 5
5: 3.529412 —14.117647 1: —2.352941 9.411765
2: —1.176471 4.705882
Bus No. 6
6: 4705882 —18.823529 2:  —3.137255 12.549020

3: —1.568627 6.274510
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TABLE 4.6b

LOAD FLOW SOLUTION OF THE 6-BUS SAMPLE SYSTEM

Bus Index Rectangular Coordinates Polar Coordinates
1 .88812 —j.40719 97702 —.42989
2 191190 —j.27668 .95295 —.29459
3 .82475 —j.29829 .87703 —.34704
4 .69671 —j.74498 1.02000 —.81887
5 .98821 —j.32411 1.04000 —.31693
6 1.04000 —j0 1.04000 0
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TABLE 4.7

SENSITIVITIES OF |V,| OF THE 6-BUS SYSTEM

Load Bus Quantities -- Total Derivatives

Bus Real Reactive Shunt Shunt
Power Power Conductance Susceptance
1 .030383 .070579 —.029003 067373
2 .000012 —.000317 —.000011 —.000288
3 —.000889 —.000647 .000684 —.000497
Generator Bus Quantities -- Total Derivatives
Bus Real Voltage Shunt Shunt
Power Magnitude Conductance Susceptance
4 —.004743 .370314 .004935 0.000000
5 .002579 713495 —.002790 0.000000
Line Quantities -- Total Derivatives
Line Element Line Line
Index Conductance Susceptance
2 1,5 —.006597 —.007071
3 2,3 —.000045 .000059
4 2,4 .000789 .002293
5 2,5 —.000240 —.000031
6 2,6 .000092 .000009
Phase Shifter Quantities -- Total Derivatives
Element Turns Ratio Turns Ratio Internal Internal
Magnitude Phase Angle Resistance Reactance
1,4 .332271 —.011565 —.459281 —.008697
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Fig. 4.2 26-bus power system
and the partial derivatives of this function with respect to complex voltages have a nonzero

element, expressed as

df -j0.5

= (4.58)
dv,, \

20
The sensitivities of the function defined in (4.57) are tabulated in Table 4.8.
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TABLE 4.8

SENSITIVITIES OF 8, OF THE 26-BUS SYSTEM

Load Bus Quantities -- Total Derivatives

Bus Real Reactive Shunt Shunt
Power Power Conductance Susceptance
1 267581 —.007722 —.286998 —.008283
2 .008245 .001363 —.009414 .001557
3 267275 —.006188 —.291205 —.006742
4 .290383 —.002045 —.285035 —.002007
5 .296479 .000000 —.301324 .000000
6 .080168 —.000773 —.085701 —.000826
7 .216789 —.004509 —.222613 —.004630
8 .269938 —.009039 —.241050 —.008071
9 .056949 —.002912 —.053309 —.002726
10 .009824 .002211 —.010611 .002388
11 .222100 —.005921 —.181376 —.004835
12 .025652 .000475 —.024130 .000447
13 .001374 .000267 —.001504 .000292
14 .133023 —.004979 —.118771 —.004446
15 276482 —.005600 —.243064 —.004868
16 0.000000 0.000000 0.000000 0.000000
17 272539 —.003772 —.236823 —.003278

Generator Bus Quantities -- Total Derivatives

Bus Real Voltage Shunt Shunt
Power Magnitude Conductance Susceptance

18 .007581 .025614 —.008680 0.000000
19 .080415 —.039806 —.088657 0.000000
20 .307280 —.354038 —.307280 0.000000
21 .296479 —.219182 —.308457 0.000000
22 .255422 —.053318 —.202320 0.000000
23 0.000000 0.000000 0.000000 0.000000
24 267232 —.045456 —.267232 0.000000

25 .296479 .000000 —.296479 0.000000
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TABLE 4.8 (continued)

SENSITIVITIES OF 8, OF THE 26-BUS SYSTEM

Line Quantities -- Total Derivatives

Line Element Line Line
Index Conductance Susceptance

3 16,23 0.000000 0.000000

4 23,26 0.000000 0.000000

6 9,10 .003064 —.008097

7 9,12 .000136 —.001057

8 12,26 .000889 —.001936

9 9,14 .001597 —.000024
10 11,14 .003088 .000301
11 19,26 —.003739 .007844
12 6,26 —.002147 .004467
13 6,19 —.000122 .000023
14 7,19 .004441 —.010615
15 6,7 .002757 —.005050
16 11,22 .000393 .000206
17 8,11 —.007535 .005931
18 17,22 —.005194 .001658
19 8,21 —.011203 .005182
20 17,21 —.014022 .004697
21 1,4 .000448 .000296
22 4,21 —.005019 .000829
25 2,13 —.000102 .000594
26 1,7 —.002295 .002933
27 15,20 .007868 .004280
28 2,18 —.000436 —.000098

TCUL Transformer Quantities -- Total Derivatives

Element Turns Internal Internal
Ratio Resistance Reactance

13,26 .022095 —.025511 .133014
26,16 0.000000 0.000000 0.000000
2,10 —.061836 —.122407 —.153065
15,1 186552 —1.571927 1.408706
1,3 —.049465 —.149478 —.011940
24,3 .046384 —.009770 —.007182
5,21 .000000 —.011448 .000000

5,25 .000000 - —.126153 —.000000
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443 The IEEE 118-Bus System

This system is a standard average size test network shown in Fig. 4.3 and has been
extensively used in a variety of steady-state analysis and planning studies (Burchett and
Happ 1983, Burchett, Happ and Wirgau 1982). The load flow solution of this system has been
investigated by implementing different algorithms (Bandler, El-Kady, Grewal and Gupta
1982, Bandler, El-Kady and Wojciechowski 1982, Bandler, El-Kady, Kellermann and
Zuberek 1983, Bandler, El1-Kady and Grewal 1983).

We consider a network state associated with the slack bus, namely, the real power

and express it in the form

n
_p — * vt (4.59)
f=P_=Re {Vn > Y.V, }
i=1
The nonzero elements of df/dV are given by
df . c
— = 0.5<Y Vs, > Y*.Vf“)
dv nk n kn nj j
k j=1
where
0 for k#n
5 = { | (4.60)
kn 1 for k=n

The sensitivities of the function considered are shown in Table 4.9 and have been verified by
small perturbation about the nominal point.
We formulate a minimum-loss problem (Dommel and Tinney 1968, Sasson 1969)

for the IEEE 118-bus system and express the cost function in the form,

=S e (4.61)
i=1
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Fig. 4.3 The IEEE 118-bus system
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TABLE 4.9

SENSITIVITIES OF P, OF THE 118-BUS SYSTEM

Load Bus Quantities -- Total Derivatives

Bus Real Reactive Shunt Shunt

Power Power Conductance Susceptance
2 —1.039480 —.001776 1.222015 —.002087
5 —.995079 —.007493 1.152184 —.008676
9 —.977067 .000778 1.172358 .000933
17 —1.005144 .002108 .968617 .002032
20 —1.033789 —.004819 .903283 —.004211
21 —1.028398 —.008006 .872155 —.006790
22 —1.014626 —.007771 .850805 —.006516
23 —.983963 —.001731 .832173 —.001464
38 —1.004240 —.002092 1.088326 —.002267
39 —1.061038 —.005893 .981905 —.005454
41 —1.090438 —.001984 1.084327 —.001973
52 —1.031752 —.008662 .939432 —.007887
53 —1.025027 —.007288 .909682 —.006468
57 —1.020321 —.000690 .954047 —.000645
78 —.982543 —.007871 .982164 —.007868
79 —.975549 —.007183 .987800 —.007273
81 —.952472 .001083 .960059 .001093
82 —.947823 —.005311 .928035 —.005200
83 —.927885 —.004839 1900134 —.004694
84 —.885244 —.005147 .854794 —.004970
86 —.863121 —.001071 .844713 —.001048
106 —.977820 —.003407 .904207 —.003150
108 —.982431 —.000472 917336 —.000441
117 —1.037589 —.003583 1.116755 —.003856

Phase Shifter Quantities -- Total Derivatives
Element Turns Ratio Turns Ratio Internal Internal
Magnitude Phase Angle Resistance Reactance
63,59 .039796 .239011 1.860750 312149
64,61 .029692 —.142203 .000229 —.009722
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TABLE 4.9 (continued)

SENSITIVITIES OF P,, OF THE 118-BUS SYSTEM

Generator Bus Quantities -- Total Derivatives

Bus Real Voltage Shunt Shunt
Power Magnitude Conductance Susceptance

1 —1.050857 .882783 1.389758 0.000000
4 —1.032740 7126316 1.249615 0.000000
19 —1.030086 —.162855 .949328 0.000000
24 —.995664 —.377848 .824509 0.000000
25 —.940147 .297842 .884584 0.000000
34 —1.033093 —.198182 950116 0.000000
36 —-1.031219 —.001704 956321 0.000000
40 —1.077351 —.769418 1.013680 0.000000
42 —1.092801 1.205544 1.322289 0.000000
59 —.987729 .229232 .968073 0.000000
61 —.965655 —.071162 .965655 0.000000
62 —.976510 —.071795 976510 0.000000
65 —.959474 —.587420 .959474 0.000000
76 —1.018810 —.456361 .909822 0.000000
7 —.975753 —.110255 .995366 0.000000
80 —.945021 .463286 1.022135 0.000000
85 —.858860 —.313478 .841768 0.000000
87 —.856185 .013011 .873394 0.000000
99 —.935353 —.084126 .954153 0.000000
100 —.919584 .230646 .956735 0.000000
103 —.945492 .251899 .964496 0.000000
113 —-1.012186 .595070 .992044 0.000000
116 —.989912 —.101326 .989912 0.000000

TCUL Transformer Quantities -- Total Derivatives

Element Turns Internal Internal
Ratio Resistance Reactance

8,5 316354 11.930163 —.084332

26,25 —.004820 529850 —.131223

30,17 —.058476 5.266261 .337658

38,37 .094365 5.157105 443463

66,65 —.000316 9.261379 —.008021

81,80 .037468 371101 .078608
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TABLE 4.10

RESULTS OF THE MINIMUM-LOSS PROBLEM

Iteration Objective Iteration Objective
Function Function

1 1.874029 31 1.113729
2 1.791540 32 1.106405
3 1.788261 33 1.099119
4 1.742582 34 1.098632
5 1.728534 35 1.097584
6 1.675286 36 1.077108
7 1.650821 37 1.069434
8 1.646664 38 1.058328
9 1.602012 39 1.057547
10 1.532712 40 1.039549
11 1.474493 41 1.026739
12 1.438996 42 1.012004
13 1.430586 43 1.001770
14 1.426693 44 0.998249
15 1.417182 45 0.993113
16 1.392310 46 0.991415
17 1.354504 47 0.990480
18 1.339082 48 0.984823
19 1.321483 49 0.971396
20 1.305068 50 0.969115
21 1.265463 51 0.962826
22 1.265322 52 0.941750
23 1.257992 53 0.935488
24 1.253278 54 0.931943
25 1.252076 55 0.927768
26 1.249091 56 0.922292
27 1.199212 57 0.914366
28 1.163750 58 0.910232
29 1.156131 59 0.902772

30 1.134962 60 0.898881
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where Pj is the net real power injected at the ith node (El-Hawary and Christensen 1979) and
n is the total number of buses in the system. We consider the generator bus-type cor;trol
variables and minimize the function given by (4.61), subject to load flow equations and
allowable range of the control variables given by
0 < Py < Ppax
0.95 < |V, = 1.05
where Ppay = 1.30 Py (nominal). An optimization package, called MINOS Version 4 or
MINOS/AUGMENTED (Murtagh and Saunders 1980) is used to solve the problem and to
verify the gradients of the objective function. A summary of the results from the package is

displayed in Table 4.10.

4.5 CONCLUSIONS

A unified study for the complex Lagrangian method as applied to power system
sensitivity analysis has been presented. Generalized sensitivity expressions have been
derived in a simple, straightforward manner, and tabulated in compact form, using the
recently developed special complex notation. The transformations required for sensitivities
in rectangular and polar modes have been obtained. The adjustable control parameters of
phase-shifting transformers have been described and investigated with the help of line
control variables and short-circuit admittance description. The theoretical results have been

verified numerically for some practical power systems.



CHAPTER5

CONCLUSIONS

The material presented in this thesis is based on the recently developed
methodology for adjoint network approaches to sensitivity evaluation and optimization of
electrical power systems. The methodology exploits the complex conjugate notation and
facilitates the exact power system steady-state component modelling. The notation allows
compact computation and easier handling of complex variables involved in power flow
problems.

The load flow equations of power system comprising nonreciprocal two-port
elements are established in the standard compact complex form using a bus frame of
reference. The nodal admittance matrix has been assumed to have unequal off-diagonal
elements associated with nodes where phase-shifting transformers are installed. The complex
turns ratio and impedance of these transformers have been considered as control variables
and some useful sensitivity relations have been derived and described in a simple, elegant
manner.

The phase-shifting transformers have been described with the help of their short-
circuit admittance matrix description in Chapter 2. The practical control variables of these
elements are the magnitude and phase angle of the complex turns ratio, however, the
resistance and reactance may also contribute in controlling the network functions. Basically,
these transformers are employed to control power flow in transmission network and can be
used to delay the future expansion plans.

We have considered an augmented form of Tellegen’s theorem in Chapter 3 and

have presented generalized basic and element variables for various types of network
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branches. The concept has been extended to nonreciprocal two-port elements and the short-
circuit admittance matrix description has been used to develop exact and compact sensitivity
expressions for a general network function.

The complex Lagrangian method has been employed to handle complex dependent
variables defined in a particular problem in Chapter 4. The unsymmetrical nodal admittance
matrix has been exploited and general sensitivity expressions common to all relevant power
system studies have been derived and tabulated. Some numerical examples have been
provided to illustrate and verify the sensitivity relations. An optimization problem for the
IEEE 118-bus system has been formulated and solved by MINOS/AUGMENTED.

The work presented in this thesis provides promising research directions in the
area of modelling and analysis of nonreciprocal power network elements. The difficulties
previously encountered in handling phase-shifting transformers have been overcome and
exact sensitivities can be utilized effectively in transmission planning and power system
operation. The methodology affords a very convenient way of treating exact element models

in power networks and can be appied to large scale power systems.



APPENDIX

DERIVATION OF TRANSFORMATION MATRIX RELATING
SHORT-CIRCUIT ADMITTANCE PARAMETER AND

LINE VARIABLE SENSITIVITIES

Consider a general two-port network connected between nodes p and q. Its short-

circuit admittance parameters are ypp, Ypg, Yqp @nd Yqq- The line variables for the same

netwrok can be represented by yp0, Ypq, Yqp @and yq0, and we assume, in general, the network to

be nonreciprocal i.e., ypq # yqp and also ypq # yqp- We can express short-circuit admittance

parameters in terms of line variables, in matrix form, given by

Ypp 1 1 0 0
Ypq 0 -1 0 0
Yap ) 0 0 -1 0
Yaq 0 0 1 1|

and from elementary matrix manipulations, we write

df ]

d—"' 1 0 0 0
ypp
df

a*—— 1 -1 0 0
ypq
df -

d_ 0 0 -1 1
yqp
df

d_-— 0 0 0 1
yqq
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Yp0

Yqp

Yq0

, (A.1)

(A.2)
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