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Abstract

This paper complements the application of augmented Tellegen theorem developed by
Bandler and El-Kady to nonreciprocal two-port elements. The short-circuit admittance
description of the two-port elements is utilized in the adjoint network formulation. A
consistent modelling of phase-shifting transformer is provided, and sensitivities of a general
network function w.r.t. transformer impedance and complex turns ratio are derived in an
elegant manner. The transformations necessary for obtaining sensitivities in both
rectangular and polar modes are appended. The theoretical results are verified numerically

by investigating a simple illustrative example.
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I. INTRODUCTION

The augmented Tellegen theorem [1]-[4] has facilitated exact a.c. load flow modelling
and sensitivity evaluation in power networks. The generalized version of the theorem has
been successfully applied to power networks comprising reciprocal transmission elements.
Nevertheless, the approach is quite promising and is extended to nonreciprocal two-port
elements in this paper.

The two-port elements are characterized by two independent relationships involving
four variables, viz. port voltages and port currents [5]. We investigate the short-circuit
admittance description of these elements and express the port currents in terms of the
independent port voltages. A general network function is considered and an adjoint two-port
network is formulated. The sensitivity matrix df/dy is obtained using matrix manipulations
[6]. The control variables of phase-shifting transformers are considered in complex mode.
The sensitivity matrix is exploited with the aid of conjugate notation, and sensitivities w.r.t.
transformer impedance and turns ratio are derived explicitly. The transformations necessary
for sensitivities in real modes are also provided. A two-bus sample power system shown in
Fig. 1, is exploited to verify the theoretical results listed in Table I. We have considered the
load bus voltage magnitude as the function of interest. The adjoint transmission network

model of the system is displayed in Fig. 2.

II. APPLICATION OF AUGMENTED TELLEGEN THEOREM
TO GENERAL TWO-PORT ELEMENTS
We consider a general two-port network inserted between nodes p and ¢q, and describe
it by its short-circuit admittance parameters. The current-voltage relationships for this

network are expressed, in matrix form, as
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or in more compact notation, we write
I=yV. (2)
The vectors I and V are current and voltage two-component vectors, respectively, and y is the
short-circuit admittance matrix associated with the two-port network considered. The
perturbed form of (2) is expressed as
8l =y8V + 6y V, 3)
which relates the first-order variation of current vector I to the first-order changes of voltage
vector V and the short-circuit admittance matrix y.
The augmented Tellegen sum developed by Bandler and El-Kady [1]-[4] is considered
next. The terms associated with branches p and q are
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p p p p p P p P
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This portion of the Tellegen sum can be expressed in matrix form as
sV + DTove — VT — V*Ts1*, (5)
where 1 and \’; are the adjoint current and voltage vectors, respectively. We use (3) and its
conjugate in (5). The expression is written as
AT - VT y)v — Vlsy v
+ @T =V Ty v — V' Tsy" V' (6)
The first-order change of a general real function f is given by
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The terms associated with branches p and q in (7) are written in compact form, as
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Using (3) and its conjugate, we rewrite (8) as
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We define an adjoint system associated with the branches p and q so that
~ A of of
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Now the first-order change of f reduces to

T
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Sf=(V+ 51- yV+ |V + — | 8y V + otherterms,
al
or from matrix theory [6], we write
df A of
— = (v+ —> vl (12)
dy ol
and
df A sk af
— = (V+ —*) v'T. (13)
dy al

Note that (12) and (13) represent sensitivities of function f w.r.t. short-circuit

admittance matrix y and its conjugate, respectively, and are basically 2x2 matrices.

[II. SENSITIVITY EVALUATION OF NONRECIPROCAL
POWER NETWORK ELEMENTS
A two-port element is said to be nonreciprocal when ypq # yqp. In power networks,
the phase shifting transformers with complex turns ratio [7] are categorized as nonreciprocal

elements. The y-matrix pertaining to these elements is expressed as

Z aa Z a (14)

The first-order variation of'y in terms of first-order changes in Z,, Z*t, a and a*, is expressed as
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The complex conjugate §y* from (15) is then written as
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We substitute (15) and (16) in (11), and rewrite it as
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Hence, the derivatives of a real function f w.r.t. Z¢ and a are
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The expressions in (18) and (19) provide sensitivities in complex mode, however,

sensitivities w.r.t. Ry, X4, a1 and ag are obtained in the following manner
df

df .
=2 Re[ ———} , (20)
th

dZt



df df

—:—ZIm[—} , (21)
dXt dZt

df df

o 4] o
da1 da

and

df df

—:—Zlm{——-} . (23)
da2 da

The sensitivities w.r.t. |a| and ¢, the magnitude and phase angle of complex turns ratio of

phase-shifting transformer, are of practical interest [7]. These sensitivities are
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In order to deduce the sensitivity relations for tap-changing-under-load transformers,

we observe the turns ratio as a real quantity. We write (19) as
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Note that these transformers have only one practical control variable associated with their
turns ratio. These elements are classified as reciprocal two-port elements because their short-
circuit admittance matrix is symmetrical.

The transmission lines are symmetrical two-port elements with unity turns ratio.
Their contribution to power network sensitivities is through line and/or shunt conductance
and susceptance. The sensitivity relations for this type of element is readily deduced from

(18) by substitutinga = a* = 1.0, that is
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We express (27) in a convenient form [1], [3]
df .
—_=v, v, (28)
dy t ot
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The sensitivity formulas derived in this paper are listed in Table I, where we have

used the following notation
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We present a small size system to illustrate the theoretical results developed in this paper.

IV. AN ILLUSTRATIVE EXAMPLE
A 2-bus sample power system is shown in Fig. 1. The phase-shifting transformer

turns ratio is taken as 0.8+ j 0.6. The nodal admittance matrix of the system is
6—j18 7.2+ j19.6
Y=
—16.84+ j12.4 6—j17 ’

and the load-flow solution for specified S, and V,, is
V, = 046573 -j 0.60442
and
S, = 5.67052 + j 1.07059 .
We consider the load bus voltage magnitude as a function of interest. The adjoint

transmission branches are shown in Fig. 2. The adjoint system of equations [1],[3] is simply
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The solution of this system is
¥, = 0.01817-0.04945 .

We use Table I and observe V, = 0, which reduces the sensitivity expression in (19) to

df 1 =&
da .2 1
a Zt
or numerically, we get
df

= —0.88025+ j0.66023 .

da
The sensitivity result corresponding to the example considered is -0.8815+ j 0.6607 by small
perturbations. Another independent check is made on the sensitivities in polar mode. We
use (22)-(23) to obtain sensitivities in rectangular mode and substitute these results in (24) to

get the sensitivities of [V,| w.r.t a| and . These sensitivities are -2.20067 and 0.00007,

indicating that the function under consideration is independent of ¢.

V. CONCLUSIONS
The augmented Tellegen theorem has beén applied to general two-port elements
frequently encountered in power transmission networks. The short-circuit admittance
description has been utilized to derive sensitivities of a general network function with respect
to practical control variables of transmission elements. These sensitivity formulas have been

verified numerically, and a simple illustrative example has been included.
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TABLE I

SENSITIVITIES OF A REAL FUNCTION

Control
Variable

Description

Derivative

Zy

a1

az

lal

transformer
impedance

transformer
resistance

transformer
reactance

transformer
complex turns
ratio

real component
of complex turns
ratio

imaginary com-
ponent of
complex turn
ratio

magnitude of
complex turns
ratio

phase angle of
complex turns
ratio

A

- ILIt

df
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Fig. 1. A 2-bussample power system.

bus 2
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Fig.2 Representation of adjoint transmission branches associated with [V].



