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Abstract

This paper deals with the postproduction tuning problem in microwave circuits using
the functional approach. The main aspects of the problem are addressed. In particular, we
consider the choice of the critical samples of the response, the choice of the most effective
tunable parameters, and the description of two functional tuning algorithms. Least-one and
minimax optimizations are utilized in the formulation of the considered problems. Minimax
optimization is used to identify the tuning frequencies, and least-one optimization is
employed to minimize the number of tunable parameters. Worst-case analysis is utilized to
reduce the size of the problem. The proposed techniques are applied, using recent, well

documented and highly efficient optimization packages, in tuning a microwave amplifier.
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I. INTRODUCTION

Postproduction tuning is often essential in the manufacturing of electrical circuits.
Tolerances on the circuit components, parasitic effects and uncertainties in the circuit model
cause deviations in the manufactured circuit performance and violation of the design
specifications may result. Therefore, postproduction tuning is included in the final stages of
the production process to readjust the network performance in an effort to meet the
specifications.

Tuning has formally been considered as an integral part of the design process [1], the
objective being to relax the tolerances and compensate for the uncertainties in the model
parameters. We give here a unified and integrated approach to the postproduction tuning
problem. Minimax optimization is used in the nominal design stage to provide us with the
critical active functions. As such, the tuning frequencies are identified. The least-one
optimization is used to minimize the number of tunable parameters needed to tune all
possible outcomes of a manufactured circuit. Worst-case analysis is employed to reduce the
size of the problem. Finally, two functional tuning algorithms are presented. Both
algorithms are based on measuring the response of the circuit at a number of critical
frequencies and formulating the postproduction tuning as an optimization problem, which is
solved on-line for the required changes in the tunable parameter values.

A microwave amplifier example is included to illustrate the application of the

approach to real examples.

[I. FUNDAMENTAL CONCEPTS AND DEFINITIONS

The actual values of the p circuit parameters can be expressed as
¢£¢°+En, (1a)

where
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and
I¢é{1,2,...,p}. (le)

¢ is the nominal vector and ¢; is the tolerance associated with the ith element ¢, [1,2].
The designer has no control over p and this leads to the concept of tolerance region R,
defined by
R,2{do,=¢ +en,-1=p<sLi€l} (2)
which is a convex regular polytype of p dimensions with sides of length 2¢,, i € I >
The extreme points of R_ are defined by setting p; = +1. Thus, the set of vertices may
be defined by
R, 2{@l0, =) +e b.p€{-L1h €L} ®
The number of points in R, is 2P Let each of these points be indexed by i € [, where
[ &{1,2,.,2%, (4)
and the vertex number is given by the formula
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pié{—l,l},161¢. (5b)
and the rth vertex is referred to by ¢".

A subset of design parameters is often used for tuning the manufactured circuits to

the design specifications. In the tuning parameter selection problem, of the tuning parameter

set It C [, it is required to find the subset It* of minimum cardinality, say k, such that all

o
possible outcomes of R region are tunable to satisfy the design specifications.
The circuit parameters (1) with tuning taken into consideration are given by
) *
o, + Be , 1€ It

0
o 21 | o i€T, (6a)
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where

~1=<p =1, i€l , (6b)
for two-way tuning. Or, more compactly,

d=¢"+Ep+Tp, (6c)
where

T 2diag{t,, by voes 8} (6d)

and t, is the tuning amount associated with the ith element, t; = 0ifi ¢ It*.

The objective of the postproduction tuning assignment problem is to find the changes

in the tunable parameters such that the manufactured circuit is tuned to satisfy the design
specifications.

In a typical tuning assignment problem, the output response of a circuit F(¢, yp) is
required to meet upper specification S () and lower specification S,(y) at a number of
discrete frequency points y;. Without loss of generality, we consider the following error

functions [3].

A _ .
eui (@) —eu(q)’lpi) = Wi (Fi (@) — Sui)’ 1€ Iu ’ (7a)
A _ § .
ey (@) 2e, @, w)=w, F @) —S,),i€l,, (7b)
where
F. (@) AF (o, ) (7c)
and w ;, w,, are positive weighting functions. I and I, are index sets, not necessarily disjoint.
Let
A eu] , JE€ Iu
fi = 1€ Ic , (8a)
e k€ Ie
where
[ £{1,2,..,m}. (8b)
The m functions
£=(f £ .f |7 (8c)



characterize the circuit performance, which is monitored during the tuning process.

Accordingly, the feasible region is defined as
R 2{o|f (®)=0, i€l }.

Fig. 1illustrates a tolerance region R, inscribed in the constraint region R .

III. SELECTION OF TUNING FREQUENCIES

(8d)

It is required to find a subset Ic* C I, of critical error functions, which are used in

selecting the tunable parameters and could be the only monitored functions during the tuning

assignment process.

The effect of including a particular frequency point is to greatly reduce the error f; at

that frequency. Since the response gradients for two closely spaced frequencies will be almost

collinear, the frequencies should be reasonably spaced and placed in areas where tight control

over the response is desired [4].

The nominal network design problem can be formulated as a minimax optimization

problem as follows.
Minimize M, @9
where
M, (%) & max £, (¢9),
i€l
[
which is converted to a regular nonlinear programming problem as follows.

Minimize z
$°,z
subject to
0 .
L@ )=z, i€ I,

where z is an independent additional variable.

(9a)

(9b)

(10a)

(10b)

The solution of the optimization problem (10) provides us with theoretically justifiable

*®

critical (or active) functions fj(q)), jel,

where Ic* C Ic is the index set of these active



functions. The active functions are those approximately equal to z at the solution, i.e., the
functions that reach the maximum value at the minimax solution.

Normally, each critical function corresponds to a sample frequency, consequently we
determine using (10) the frequencies to be monitored during tuning. It is to be noted that the
use of a minimax criterion in the nominal design process implies the identification of an
active set of frequencies Ic*, namely, the frequencies where the response typically reaches

maxima and minima (equiripple response).

IV. SELECTION OF TUNABLE ELEMENTS

It is required to find the minimum number of tunable parameters to tune all possible
manufactured outcomes of the circuit. A manufactured outcome of the circuit would be a
point of the region R_ (2). Worst-case analysis is carried out to identify the critical points of
this region [5]. A worst-case point is assumed to occur at a vertex (5) of R,. A worst-case
algorithm that utilizes first-order sensitivities is employed. The algorithm is similar to the
one proposed by Brayton et al. [5].

For every critical function fi(q)), 1€ Ic*, one or more vertices are selected. Let I vi € I,
be the index set of worst-case vertices corresponding to the function f,(¢), i € Ic*, and let

I"V‘—ﬁ-LiJIW., iEI:, (11)

define the index set of critical vertices, IV* cl.

Let I, be the index set of tunable parameter candidates I, C I > The tunable

parameters are obtained by solving the following optimization problem.

Minimize » t, (12a)
i€ It

(12b)

—1<pf <1 , i€l rel*v‘ (12¢)



dER", (12d)
Cc
where
q{ AL
. = i€l (12e)
bl e e ¢
and
R 2{o|f (@) =<0,i€l }. (12f)

The objective function in (12a) is a least-one objective function. In data fitting, the
least-one criterion has been extensively applied to eliminate the faulty data. It is utilized
here to force as many parameters as possible to have a zero value of t.. This consequently
reduces the number of tunable parameters required to tune all worst-case vertices. At the

solution we obtain It* C I, where

I 2(i| t =0, i€L}. (13)

V. FUNCTIONAL TUNING ALGORITHMS

After manufacturing and assembling, the circuit performance specifications are
checked. If tuning is necessary, a sequence of tunable parameter adjustments is carried out
until the specifications are met. Tuning algorithms are devised to automate the tuning
assignment problem.

In practice, one of two classes of methods for postproduction tuning is employed,
namely, the functional tuning approach and the deterministic tuning approach [6]. In the
deterministic tuning approach, all of the parameters of the manufactured circuit and the
possible parasitic effects are measured. Then, a matching procedure is carried out, where it is
required to match the performance functions at specified frequency points by varying the
tunable parameter values. In the functional tuning approach, the actual network element
values are generally assumed unknown. For example, it may be difficult to measure or

identify the actual circuit element values.



In this section, two functional tuning algorithms are presented. Both algorithms are
based on measuring the response of the circuit at a number of critical frequencies and

formulating the postproduction tuning problem as an optimization problem.

A. A Linear Approximation Technique for Functional Tuning

The tuning assignment problem could be formulated in a similar way to the design
problem, but with the tunable parameters p taken as the only variables [7].
Similarly to (10), the tuning assignment problem can be formulated as a minimax

problem as follows.

Minimize z (14a)
P,z
subject to
f[@°+Ep*+Tp)=<z , i€l , (14b)
pf<ps=p” (14¢)

The superscript a in (14b) refers to the actual values of a certain manufactured outcome to be
tuned. ¢°, E and T are all known. p? is unknown and no control could be exerted on it. The
optimization is carried out by varying p. pe and p" represent limits on the tuning amounts.
In the case of irreversible tuning, where, for example, the elements are allowed to increase,
the limits are non-negative.

Since we restrict tuning amounts by (14¢), a differentiable approximation can be used
to estimate the changes in the functions and the minimax optimization problem, namely (14),

can be approximated as follows.

Minimize z (15a)
Ap,z

subject to



of .
0 a _t i
£.@°+Ep’+Tp)+ Z* o M=z Bl (15b)
jeL )
¢ u st (15¢)
ijAijpj ,JGIt.

Initially, p in (15Db) is equal to 0; after each solution of the optimization problem it is updated
by Ap. (15) is solved by a linear programming routine. The functions f; in (15b) are measured
directly. The sensitivities afi/apj should be evaluated at the actual parameter values, which
are unknown. As such, we utilize a suitable approximate model ¢* for simulating these
sensitivities (a good initial value could be the nominal parameter values or the parameter
values that are predicted using a least-squares estimator). It is to be noted that from (6a) we

have

i i N (16)

The network sensitivities could be updated using the Broyden rank-one updating
formula [8] after every solution (iteration) of (15). Let B be the sensitivity matrix whose (i,j)
element is given by (16). Using the Broyden formula, B is updated as follows

gitl_ g, (f(p'+ ApH) — £(p") — B Ap") (Ap")T a7
(apH' (apH

where superscript i refers to the ith iteration of the algorithm.

’

The use of the Broyden formula exploits the measurements in improving the initial
network model ¢*. A better approximation is obtained after each iteration. Application of

this technique is reported in [7].

B. Modelling Technique for Functional Tuning

Let F(d, s) represent the response function that is monitored during the tuning
process. The independent variable s is the complex frequency. We assume that the actual

network response is given by [9]
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F2 (3% 9 2F°(@° 9 + Fl($% 9) , (18)

where the superscript a refers to the actual values, superscript 0 refers to the nominal values
and F¢ gives the deviational effect due to the changes in the circuit parameters, including
parasitic effects, from nominal.

We model the deviational effect by a rational transfer functionins. Let

N N-1
aNs +aN_Is

2+ b D“+...+b0

+ ... +a0

Fie) = (19)

pD-1°

where the degree of the numerator and that of the denominator, namely, N and D, are
determined according to the characteristics of the original function F(¢, s), together with the
different known parasitic effects that affect the performance of the network. Some of the
coefficients of (19) are set to zero as appropriate (e.g., if Fi(s) is a pure real or a pure imaginary
function).

The coefficients of (19) are obtained from (18) since the nominal response FO(¢°, s;)) at
a certain frequency s; is simulated, and the actual response F2(¢?, s,) is measured directly.
Measuring the response at € different frequencies such that 2¢ > N+D+1, we get an
overdetermined linear real system of equations in the coefficients a,k=20,1,..,Nand bj, J

=0,1,..., D-1in the form
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1 TR -slN Fd(sl) led(sl) le'le(SIT raoﬂ r--leli“jl(sl-)j
-1 -Sg —s2N Fd(s2) std(sz) SZD'1 Fd(sz) a, -szDFd(s2)
= >

aN

bO
-1 s, s,V Fls) s Flsp) s,”'Fs,) | | b, ;SeDFd(Seﬂ

iOD-l

.
(20a)

where

Fis) =F*@%s) - F'@°s). (20b)

The number of real equations in (20a) is greater than the number of unknowns, as

such the linear least-squares method is used to provide the solution. Let (20a) be represented

by
a
C . =W 21)
and
A A Re(C) ] , (22)
Im(C)
then the solution of (21) is given by
a Re(W)
=[ataial ] (23)
b Im(W)

Recalling (7), the error functions are defined by

g (P Ew (F(p)+Fis)-8 ), i€l , (24a)

&, (p) éwei (F.(p) + Fd(si) -8,) ,i€l,, (24b)

where F,(p) is the response function evaluated at

0

&, el
$. = Jel (25)

] 0 : ¢
C+pt LjEI
<1>J p” el
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ands,. Consequently, we define

euj s ]EIu

e

f. iel .
! ~Bpy kel ¢ (26)

Similarly to (10), the tuning assignment problem is formulated as

subject to

Minimize z (27a)
P,z
z = _1 , i€l (27b)
4 . *
p,<p,<p/, i€l (27¢)

The solution of the optimization problem (27) provides us with p. The tunable

network parameters are adjusted by the amount indicated and the process is repeated until

the circuit meets its specifications.

C. Tuning Algorithm

The two proposed tuning techniques could be applied on-line for the tuning of a

microwave circuit as follows.

Step 1

Step 2

Step 3

Step 4

Measure the network response. Check whether the design specifications are
satisfied. If they are satisfied, stop.

Utilize the performed measurements in constructing the error functions as well as
their derivatives as required by the optimization problems (15) or (27).

Solve the optimization problems (15) or (27) for the changes in the tunable
parameters (p or Ap). The upper and lower limits in the optimization problems
are defined to ensure the validity of the approximation employed and the type of
tuning.

If the absolute value of a tunable element is less than the minimum amount of

tuning which can be carried out in practice, we assume that it is zero. If all the
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absolute values of the tunable amounts are less than their corresponding
minimum allowable values, stop.

Step 5 Adjust the parameters to the extent possible by the amounts obtained from the
optimization problem. If the maximum number of iterations has not been

exceeded, returnto 1.

VI. CONVERGENCE PROPERTIES OF THE ALGORITHMS
The algorithm proposed in (15) usually has a fast rate of convergence. This can be

interpreted as follows [5]. The solution of (15) is usually at a point where

f o=f =..=f =z i€l . (28)
i i i e

e e

Usually € = k + 1, where k is equal to the number of tunable parameters. For £ = k + 1 (15)
corresponds to a Newton iteration for solving a system of nonlinear equations, namely (28).
The Newton algorithm is known to have a quadratic rate of convergence under reasonable
assumptions. The type of problem where € = k + 1 is referred to under certain conditions, as
a regular type of problem [10]. In the tuning assignment problem, the number of functions
considered in (15), m, is larger than the number of the tunable parameters, k. As such, we
expect a problem of regular type.

Since the derivatives used in (15) are not the exact derivatives, it has been proved that
if the iterative procedure (15) produces a converging sequence, then the rate of convergence is
superlinear provided that every k x k submatrix of the sensitivity matrix B is nonsingular.
This is usually referred to as the Haar condition [11].

When £ < k + 1, we will have a problem of the singular type [10]. In this case,
constraints (15¢) will control the step size and we will have a steepest descent type algorithm.
A linear rate of convergence is to be expected. The bounds in (15¢) could be updated after
every iteration to ensure that the difference between the error functions and linear

approximations is small. This will ensure a faster rate of convergence and no overshooting of

the optimum point. The scheme proposed in[11] could be adopted for this situation.
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The optimization problem (27) is solved using a recent algorithm by Hald and Madsen
[12]. The optimization algorithm has two stages and always starts in Stage 1. In Stage 1, the
error functions fj, j €I, are approximated by linear functions using the first-order derivatives.
The Stage 2 iteration is introduced in order to speed up the final rate of convergence for
problems which are singular at the solution. The Stage 2 algorithm is a modified quasi-
Newton method, i.e., approximate second-order information is utilized. The convergence is
usually fast since a quadratic rate of convergence is expected for this type of algorithm [12].

The modelling utilized in (18) and (19) is reminiscent of the system identification
techniques, where the F® function is identified from input-output measurements. Fd s
expressed as a function in the independent variable s only. This is an approximation since the
coefficients of the rational function F9 depend on the network parameters and they should
vary with the variation in the tunable parameters. Under the assumption that the variation
in the tunable parameters as constrained by (27¢) is small, F9 could be assumed constant
during the solution of (27). Then, Fd is updated after every iteration. Thus, (27¢) has an
important role in justifying the approximation taken in (19) and guaranteeing convergence

by continuous adjustment of these bounds as in the linear approximation algorithm.

VII. TUNING OF A MICROWAVE MATCHING AMPLIFIER
As an example, we consider a broadband amplifier with a complex antenna load as
shown in Fig. 2. The object is to match the antenna load over the frequency band 150 MHz to

300 MHz. The power given at a certain frequency is given by
2
v,

4R.G, —, (29)
A

S
where RS is the source resistance, G is the real part of the admittance of the load, |VL| is the
absolute value of the voltage across the load, and |VS| is the absolute value of the input

voltage which we assumed to be unity. The response was assumed to be measured at sixteen

uniformly distributed frequencies over the given frequency band. At each frequency, an error
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function was defined as the absolute difference between the measured response and the 10 dB
specified power gain value. The source resistance was assumed to be 50 ohms. The transistor
scattering parameter values and the antenna impedances at the sixteen frequencies were
obtained from [13].

First, we applied optimization problem (10) to get the nominal design parameters
using a minimax design criterion. The nominal parameters given in [13] were used as the
initial design parameters for (10). We utilized the optimization package MMLC [14] for
linearly constrained minimax optimization, as described in [12]. The MMLC package is an
adaptation of the MMLA1Q package [15]. In the optimization, an upper practical bound of
200 ohms was assumed for the characteristic impedances. The reoptimized nominal response
is superior to that obtained in [13]. This is partly because we relaxed the bounds on the design
parameters. The new and previous nominal design parameters are given in Table I. The
nominal response at the sixteen chosen frequencies is listed in Table II. The response
alternated between maxima and minima at the critical frequency points. These frequencies,
namely, 150, 160, 170, 220, 250, 280 and 300 MHz are identified by an asterisk in Table II.
This set of frequencies constitutes the required IC*.

Then, worst-case analysis is performed using + 5% tolerances and no parasitics are
assumed. The number of vertices is equal to 28 = 256. We assume that the design
specifications tolerate + 1 dB deviation from a specified value of 10 dB. At every critical
frequency, i € Ic*, the worst-case vertices are obtained, as well as the corresponding worst-
case responses. Four worst- case responses violate the design specifications, as is shown in
Table II. Consequently, the set Iv* consists of vertices {123, 134, 153}, as indicated in Table II.

Third, we performed the optimization problem (12), using the three critical vertices to
determine the tunable parameters. The results of this optimization problem are given in
Table I. It is clear that Z; and €, are the tunable parameters. The optimization package

MFNC [16], which implements the Han-Powell algorithm described in [17], is utilized in
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solving this problem. The MFNC package is an adaptation of the VF02AD subroutine of the
Harwell Subroutine Library [18].
Finally, we applied the modelling tuning algorithm to illustrate its utilization in

tuning any possible outcome. We assumed that the actual power gain is given by

F3(s) = FOs) + Fd(s) , (302)
where
Fd(s) _ ast+ a252 +a, (30b)
st + bzs2 +b,

The lower and upper bounds in (27¢c) are taken to be + 1. The results of tuning for the
critical vertices IV* are given in Table III. The lower and upper bounds of (27¢) were not active
at the solution and only one iteration is needed to satisfy the specifications. The responses
before and after tuning are shown in Figs. 3, 4 and 5. The solution of optimization problem

(27) is obtained by the optimization package MMLC [14].

VIII. CONCLUSIONS

We have presented a unified integrated approach to the postproduction tuning
problem. The approach optimally utilizes the information obtained at the design stage in
specifying both the tunable parameters and the essential tuning frequencies.

Two new functional tuning techniques are presented. The techniques optimally use
available response measurements and eliminate completely the experimental trial-and-error
and one-at-a-time approach. They are quite general and can be applied to any network for
both reversible and irreversible tuning.

The linear approximation technique will perform quite reasonably as long as the
linear approximation is valid. Carrying out the tuning procedure in stages and updating the
sensitivity matrix by the Broyden formula will ensure the validity of the linear

approximation.
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The modelling technique usually needs fewer response measurements than the linear
approximation technique, but requires much more on-line computational capabilities. For
reasonably small deviations of the network elements from nominal, the technique converges
in one or two iterations.

The different techniques have been implemented using well-documented computer

optimization packages.
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TABLE 1

NOMINAL ELEMENT VALUES AND TUNABLE AMOUNTS

Original Nominal New Nominal Relative Tunable
Element Values Values Amounts

4, 2.012 1.741 0.0

Z, 86.76 68.778 0.0088

¢, 0.976 1.534 0.0

Z, 97.57 200.0 0.0

4y 0.833 1.140 0.0

Zg 125. 181.252 0.0

¢ 0.925 1.280 0.079

Z 132. 105.105 0.0

A~

¢ is the normalized length. The actual length equals €A,/2n, where A, is the wavelength at
230 MHz. Zis the characteristic impedance in ohms.
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TABLE II

THE OPTIMAL NOMINAL RESPONSE AND WORST-CASE RESPONSE
FOR * 5% TOLERANCE

Frequency Power Gain Worst-Case Worst-Case
(MHz) (dB) Vertex Response (dB)
150 10.058 * 123 11.318
160 9.926 * 134 8.559
170 10.072 * 123 11.274
180 10.043 107 11.155
190 10.053 107 11.189
200 10.006 107 11.095
210 10.028 104 11.053
220 9.926 * 153 8.794
230 10.031 104 10.894
240 10.028 112 10.765
250 10.072 * 30 10.726
260 10.031 80 10.640
270 9.965 189 9.313
280 9.926 * 189 9.302
290 9.983 61 9.392
300 10.072 * 212 10.657

* jdentifies critical frequencies
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TABLE III
RESULTS OF TUNING
Case 1 Case 2 Case 3
Vertex No. 123 134 153
No. of Iterations
of Functional
Tuning Algorithm 1 1 1
Tunable Element = 66.66 Z, = 70.616 Z1 = 66.66
Values =1.209 €, =1.331 ¢, =1.154

4
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Fig. 1 A tolerance region Reinscribed in the feasible region RC.
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Fig. 3 The results of tuning an outcome corresponding to
vertex number 123,
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Fig. 4 The results of tuning an outcome corresponding to
vertex number 134,
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Fig. 5 The results of tuning an outcome corresponding to
vertex number 153,



