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Abstract
An elegant and simple proof of an important result in sensitivity analysis of lossless

two-ports stated by Orchard, Temes and Cataltepe is presented using Tellegen’s theorem.
Our derivation is extended to the computation of group delay.

A general formula for sensitivities of lossless two-ports, requiring only one analysis of
the original circuit, has been presented by Orchard, Temes and Cataltepe!. It can be extended
to yield results of significant value. The proof of the key formula, their eqn. (4), was indicated
by the authors to be involved and lengthy. Different, elegant approaches to simple proofs of
the theory, however, have been found. One of them, based on Tellegen’s Theorem? is
presented here. An extension of the formula to the computation of group delay of a general

-lossless two-port is included here.

By Tellegen’s Theorem, for the two-port shown in Fig. 1, we have
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where s denotes the complex frequency, ¢ is an arbitrary variable in the two-port and the

summation is taken over all the internal branches. For the input port, we have
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and, for constant E and R,
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Therefore, for the first two terms of (1)
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where the input reflection coefficient is defined as
o 4 Z,(5)- R _ 2R, ~ 2R 1, (s)
VT L@ R, L&+ R, E

For the output port, we have
V)= — R,1.(s)

so, for constant R,
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Hence, for the third and fourth terms of (1)
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Now consider an internal branch for which
Vk(s): Zk(s)lk(s) ,
and, invoking the lossless property Z,(-s) = -Z,(s),
Vk(—— s)= Zk(— s) Ik('— s) = — Zk(S) Ik(— s).
It follows for the kth branch of (1) that
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Substituting eqns. (4), (8) and (11) into (1), the Tellegen sum is reduced to
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Taking ¢ = Z,(s) and using the formula from Bandler®
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the key formula of Orchard et al.! is proved to be
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where 0 is the transducer coefficient.

It is well-known? that derivatives w.r.t. nonexistent elements can be computed, hence
the usefulness of (14) in the prediction of the effects of small losses and parasitics by a first-
order Taylor expansion evaluated at the nominal (lossless, ideal) design.

The dual to (14), namely eqn. (9) of Reference 1 is easily derived in a similar manner.

Here, we extend the formula to group delay computation as follows. Taking s = jw and

¢ = win (12), and using an extension of (13) from Reference 3 as

E—l-:—z—kl2 _ (15)

the group delay T;(®) is given by
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where P, is the power in R, and * stands for the complex conjugate. The dual formula can be
readily derived as

1 # ® aYk amn
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We have checked the results obtained from (17) with those using the standard adjoint
network approach®? for the filter used by Orchard et al.! as an example. The results agree
exactly. In the range 0 < w < 1, for example, we have, in seconds, 30.1941, 9.7952, 6.1723,
5.1344, 4.9551, 5.2210, 5.8766, 7.2968, 10.5619, 25.0132, corresponding to frequencies

uniformly spaced 0.1 rad/s apart from 0.1 to 1.0 rad/s.
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Fig. 1 Doubly terminated lossless two-port.




