FMCGA - AFORTRAN PACKAGE FOR
UNCONSTRAINED MINIMIZATION
BY CONJUGATE GRADIENTS

J.W.Bandler and M.A. El-Gamal
SOS-84-7-U
June 1984

© J.W.Bandler and M.A. ElI-Gamal 1984

No part of this document, computer program, source code, compiled code, related documentation and
user manuals, magnetic tape, constituent subprograms, test programs, data and data files may be
acquired, copied, reproduced, duplicated, executed, lent, disclosed, circulated, translated, transcribed
or entered in any form into any machine without written permission. Address enquiries in this
regard to Dr. J.W. Bandler. Neither the authors nor any other person, company, agency or institution
make any warranty, express or implied, or assume any legal responsibility for the accuracy,
completeness or usefulness of the material presented herein, or represent that its use would not
infringe upon privately owned rights. This title page and original cover may not be separated from
the contents of this document.

FMCGA - AFORTRAN PACKAGE FOR UNCONSTRAINED

MINIMIZATION BY CONJUGATE GRADIENTS

J.W. Bandler and M.A. El-Gamal

Abstract

FMCGA is a package of six subroutines for minimization of an unconstrained function
by the new three term conjugate gradient method. The package implements Nazareth’s
conjugate gradient formula for generating conjugate search directions even with inexact line
search. It also incorporates Dixon’s gradient prediction method to retain the finite
termination property when applied to quadratic functions. The peformance results for this
combination outperforms a wide subset of current conjugate gradient codes. The package has
been tested succesfully on problems involving both a small and a large number of variables,
on problems with varying degrees of non-linearity, and on problems evolving from practical
applications such as the solution of sets of non-linear equations. The package and user-
oriented documentation have been developed for the CDC 170/815 system with the NOS 2.1

level 558 operating system and the Fortran Extended (FTN) version 4.8 compiler.

This work was supported by the Natural Sciences and Engineering Reseach Council of
Canada under Grant A7239.

The authors are with the Simulation Optimization Systems Research Laboratory and
the Department of Electrical and Computer Engineering, McMaster University, Hamilton,

Canada L&S 4L7.

I. INTRODUCTION
This report gives a user-oriented description of the package FMCGA of six Fortran
subroutines to minimize an unconstrained function by conjugate gradients with inexact line
search. The package and documentation have been prepared for the CDC 170/815 system with
the NOS 2.1 level 558 operating system and the Fortran Extended (FTN) version 4.8
compiler.
The purpose of producing this package is to provide a simple user-oriented program of

unconstrained function minimization. The user has to supply the following

a) the main segment that prepares arguments and calls the main subroutine of the
package,

b) two subroutines which evaluate the objective function and its gradients w.r.t. the
variables.

The minimization algorithm which is implemented by the package generates
conjugate search directions that remain conjugate even with approximate line searches and
maintains finite termination when applied to quadratic functions.

In this report we will first review the properties of conjugate gradient algorithms. We
will then present the algorithm implemented by the package [1-3] illustrating its advantages
over existing algorithms.

Information on the structure of the FMCGA package and how to access it on the CDC
170/815 system at McMaster University is given.

Different examples to familiarize the user with the package are presented.

II. GENERAL DESCRIPTION
Introduction
Conjugate gradient methods minimize a function F(x) of n variables starting from an

initial point x!, by searching in a sequence along directions p!, p? ..., pi, ... and obtaining

successive approximations x2, x5, ..., xJ,... to the minimum. They are described by the
relations

p'=-¢, (1a)

p'=—g+ppl (1b)

xItl = xl 4+ alpl ol =0, (1e)

where gl is the gradient of F(x) at xJ, I [2] is a scalar most commonly given by
(g)' g’ (2a)
(gj— 1)ng— 1

and o/ # 0 is a scalar chosen so that x) 7! minimizes F(x) along pJ, i.e.,

p=

@) VFEIth =o. (2b)
Among the properties of such methods when applied to a quadratic function
Fx)=c+bTx+05xTAx, (3)

where A is an n x n positive-definite symmetric matrix, are the following

a) generation of conjugate directions, i.e., directions satisfying the relation

EYTAp =0, Vi=j (4)
b) orthogonality of gradients at different iterates,
c) finite termination in at most n steps.

However, in order for these properties to hold, it is necessary that relation (2b) be satisfied at
each step, i.e., that a/ be chosen so that the line search is exact.
Many variants of the basic method have been proposed. The Polak-Ribierre [4]
suggestion is
i &g (5a)
g -1y g j—1
where

yi-l = gl _ gi! (5b)

It follows from the above properties a) and b) that, for quadratic functions and exact line
searches, the alternative choices for pi are equivalent, but for nonquadratic functions or
inexact line searches, each choice leads to a distinct algorithm. There is little conclusive
numerical evidence on which of the laternative fomulas for B is preferable but in [4] Powell
recommends the Polak-Ribierre form (5a). He shows that if the orthogonality property (gi)T
gi~! = 0 has already been lost, then the Polak-Ribierre form bounds the angle between pJ and

gl and can produce a much more downhill direction.

The New Conjugate Gradient Method

The FMCGA package implements the new conjugate gradient algorithm in [2]. This
algorithm is based on Nazareth’s formula for generating conjugate search directions. This
formula has the property that it maintains mutual conjugacy of all search directions over a
quadratic function even when the line search is not exact. The recurrence relations for

developing successive search directions are given by

pl=—g! (6a)
and
- LT
pitl= _ it (yj.) yj. pl+ v Yot (6b)
(y) p! (' pit

However, in order to be able to retain the finite termination property when line searches are
not exact, the algorithm incorporates the gradient prediction method [2,5]. In this method
two additional vectors are stored. The basis of the method is to generate the same set of
conjugate directions that would have resulted from the use of perfect line searches and to
store a correction vector.

Suppose that a step d/ is taken along the direction pl to a new point xi* !, where the
new gradient is gl * ! but that, if a perfect step had been taken, the step would have been @h”.

Then from the properties of a quadratic function, the following ratios are equal

oo 1V @Vl @)
lall @by

This enables us to predict both the point that would have been reached with a perfect line

search and the gradient at that point. Also, due to the conjugancy of the directions generated
these corrections are independent and we can define (x)*1)* and (g3*)", the point and the

gradient that would have been reached after j perfect line searches, as

@+ = gitl _ witl (82)

and
(xI+1)* = g+l _ g4I+l (8b)

where

witl=wi_@i-1nylw =0, 9)
Ztl=Z2 @ -1nd,z =0 (10)

and
. @Vet (11)

)"y’

For a quadratic function if (g))" = 0, it indicates that with perfect line searches, (x9)°
would be the solution and a step 2’ is necessary to obtain the solution.

For nonquadratic functions the algorithm is iterative rather than n step. The
directions p! that are generated are those corresponding to the current local quadratic

approximation to the function.

Restarting Procedures

In the early algorithms the restarting strategy was usually to restart only after n or
n+1 iterations. However, when n is large this can be very inefficient. There is therefore
general agreement that occasional restarting is very helpful in practice. Accordingly, it is felt
desirable to restart more regularly. First of all the algorithm is modified to reject the search

direction if it lies too nearly along a constant contour of the objective function passing through

xJ, since such a direction would not give much reduction in the value of the objective function.
If ¢ is the limiting angle with —VF(xJ) (see Fig. 1), then the new search direction would be
used if

— PHTVF)) > |Ipi|| [VF)| cosd . 12)

—VF(x))

3

x4

Fig. 1 Graphical representation of the limiting angle.

If this condition is not satisfied then pJ is generally replaced by — VF(xJ) and the algorithm is
restarted. The algorithm is also restarted [4] whenever
(VF(x)T (VF(xi~1)) = 0.2 [VF(x)|2 . (13)
The left hand side in (13) would be zero if the conjugate gradient algorithm were working with
perfect line searches on a quadratic function. Its size is, therefore, an indicator of the
nonconjugacy of the search directions and so is an indicator that the algorithm should be
restarted. Finally, the algorithm is restarted whenever
| Il < <, Il (142)
or

Il < ¢, ligll, (14b)

as this implies that enough iterations have been undertaken to approximately minimize a

quadratic function closely related to the nonlinear objective function.

Inexact Line Search

Quite obviously, accurate minimization along each search direction can be expensive
in function evaluations. The results quoted earlier show that high accuracy is not required in
most cases, but that the failure to obtain a function decrease can occur if the accuracy is too
low. There is also the possibility of finding a local minimum with an increased function value
if the function is not unimodal along the search direction. There is therefore great concern to
relax the requirement of minimization and to replace it with a stability requirement that the
function must decrease at every step.

Now, the special properties of the conjugate gradient algorithms are related to their
use on quadratic functions, and for such functions a single step resulting from a quadratic or
cubic fit attains the minimum along the line. Thus, the finite termination property will not
be impaired if only a single such fit is made at each iteration, and since the special properties
do not apply in a non quadratic region nothing is lost by not continuing to the minimum in
this case. It seems therefore, important to employ a strategy that uses just enough quadratic
or cubic fits to secure a function decrease. In fact, mere stability is not sufficient to ensure
convergence. Wolfe [6] gave a sufficient conditions for convergence of well-behaved functions.

The line search in the implementation discussed here consists of first performing a
parabolic interpolation using the values of the function and its d;rivatives at the starting
point and the function value at an offset point. If the predicted function value does not satisfy
Wolfe’s conditions II and III [6], then the Armijio [7] procedure is adopted by halving or
doubling the predicted step al until

F(x + al p) < F(x)) + 0.1ad (VF(xI)T pl
and

F(x! + 2alpl) > F(x)) + 0.2 (VF(x)T pl.

The selected value of of is the one that corresponds to the least function value obtained
throughout this procedure. This new line search strategy, although simple, works quite well

in almost all cases.

Termination Criteria

The algorithm is terminated when any one of the following conditions is satisfied:

1) the required accuracy is obtained, i.e.,
lg'l < &, or xI*! —xI| <e,, (15)
2) an uphill search direction is obtained, which can only be due to rounding errors and

the required accuracy cannot be obtained in this case,

3) the number of iterations exceeds the limit defined by the user.

Algorithm

The structure of the algorithm [2] consists of the following steps, where we assume the

notation t, = tit] t, = t), t, = ti=1 etc. and t is any given vector.

Step 1 Choose x,, set j < 0, iter « 0.
Step 2 Evaluate g, set p, < —g; -

Comment Start with the steepest descent direction.

Step 3 Perform an approximate line search to find Q

Comment For details, see the Inexact Line Search discussed in this section.

Step 4 Set d < a,py, X; < x, + d, iter «iter + 1,

Comment

Step 5

j (_J+1’ g_l (_'g() M
Evaluate

g — 8 (Xl)-

Determine the new point and the gradient at this point.

If g ll < ey or [lx; — x| <e, stop.
Ifiter = iter max stop.
Set d—l <—d0 i P_; <P

Ifj=2setp_, < p_, '

Calculate

Yo = 8y — 8_4

Pp=-Yy+tBpP o+ vyp_,

zp,=2z_; —0-1)d_, , z_; =0 ifj=1

wyo=w_; —(0-1y, , w_ ;=0 ifj=1

where
T
go p—l
—1= - — =1,
YoP_y
T
yo y—l
- i=2
Y_,P_,
B::

Comment

Comment

Step 9

Comment

Step 10

Comment

Step 11

Comment

10

T
Yo Yo

T
YoP_y

Determine the new search direction using Nazareth’s three term formula (6).

IEC lpyl lggll = — poT g, then go to Step 9.

Ifllgy"ll = C, ligyll or Ipgll = C, ligyll then go to Step 9.

The first condition is Wolfe’s condition [(12) where C; = cos¢. The significance

of these tests is discussed in the Restarting Procedures of this section.

Ifj=nsetz | «z,, w_ «w), x;<x .

Go to Step 3.
I£C, Izl llgyl < — zoT g, then go to Step 11.
Test z, for Wolfe’s condition I (12).

Set py < — g, X, < X;,j < 0.

Go to Step 3.
Restart with the steepest descent direction.

Setp, <z, , X, < x,]j<0.

Go to Step 3.

Restart with z, as the new search direction.

11

ITII. STRUCTURE OF THE PACKAGE

MAIN
FMCG1
FUNCT
FMCG2
GRAD
LSERCH

Fig. 2 Structure of the main subroutines of the FMCGA package.

The package is composed of three main subroutines FMCG1, FMCG2 and LSERCH.
FMCG]1 subdivides the work space (defined by the user) into a set of vectors used by the
remaining subroutines and calls FMCG2. FMCG2 controls the minimization procedure,
generates a sequence of conjugate search directions, a corresponding sequence of points and
checks the convergence of the algorithm. FMCG2 also calls LSERCH at each step to
implement the line search. The line search chosen is inexact but incorporates a parabolic

interpolation and terminates at a point that satisfies Wolfe’s conditions II, III [6]. There are

12

also three function subprograms, namely, VALUE, ANORM and BNORM. VALUE
calculates the quotient of the product of the two vectors A and B divided by the product of C
and D. ANORM calculates the norm of vector A. BNORM calculates the product of the two
vectors A and B.

The main segment MAIN, subroutine FUNCT for evaluating the objective function
and subroutine GRAD for evaluating the gradients of the objective function must be supplied
by the user.

All subroutines of the FMCGA package are listed in an alphabetical order in Table I.

TABLEI

LIST OF SUBROUTINES OF THE FMCGA PACKAGE

Number of Lines Listing
Subroutines (source text) (page [3])
1. ANORM 14 10
2 BNORM 15 10
3 FMCG1 100 4
4 FMCG2 257 6
5 LSERCH 129 11
6 VALUE 17 10

IV. HOW TO USE THE PACKAGE
The package is available at McMaster University on the CDC 170/815 system as a
permanent indirect group file LIBFMCG under the charge RIWBAND. It exists as a library
of binary relocatable subroutines.
The general sequence of NOS commands to use the FMCGA package may be as

follows:

13

/GET (LIBFMCG/GR) - fetch the library,

/LIBRARY (LIBFMCG) - indicate library to the loader

The user’s program should declare all arguments appearing in the call statement and

initialize required variables.

V. LIST OF ARGUMENTS

The arguments appear in subroutine FMCG1 which is the entry of the package. The

subroutine call is

CALL FMCGI1 (FUNCT, GRAD, N, M, X, EPS, C1, ITERM, W, LW, ICH, IFLAG, IPR)

The arguments are as follows

FUNCT

GRAD

is the name of a subroutine supplied by the user to calculate the values of the

objective function at the point x. It must have the form

SUBROUTINE FUNCT (N,M, X,F,GD).

is the name of a subroutine supplied by the user to calculate the gradient of

the objective function at the point x. It must have the form

SUBROUTINE GRAD (N,M, X,GD, G)

Note: the two names FUNCT and GRAD must appear in an EXTERNAL
statement in the segment calling FMCG1.

is an INTEGER argument which must be set to n, the number of optimization

parameters. Its value must be positive and it is not changed by the package.

is an INTEGER argument. It is the length of the array GD which is defined

by the user and is not changed by the package.

is a REAL array of the length at least N which on entry must be set to the

initial approximation of the solution, X(I) = xIO. On exit X contains the best

solution found by the package.

GD

EPS

C1

ITERM

LW

ICH

IFLAG

14

isa REAL array of length M. It is used to transfer the common mathematical
expressions from subroutine FUNCT to subroutine GRAD, hence avoiding
repetitions in calculations.
is a REAL variable which on entry must be set to the required accuracy of the
solution. The iteration terminates when the norm of the gradient of the
objective function is less than EPS. It is not changed by the package.
is a REAL variable that determines the limiting angle between the search
direction and the steepest descent direction at each iteration. Its value is
between 0 and 1. It is supplied by the user and is not changed by the package.
is an INTEGER variable which must be set to an upper bound on the number
of iterations performed to reach the minimum. It is supplied by the user and
is not changed by the package.
isa REAL array which is used for working space. Itslength is given by LW.
is an INTEGER argument which must be set to the length of W. Its value
must be at least

LW =19*N+M.
is an INTEGER argument which must be set to the unit number (or channel
number) that is to be used for the printed output generated by the package.
Usually it is the unit number of the file OUTPUT.
is an INTEGER variable which on exit contains information about the
solution:
IFLAG = —1incorrect input arguments,
IFLAG = 0 required accuracy obtained,

IFLAG = 1 limit of the number of iterations is reached.

IPR

15

is an INTEGER argument which controls the printed output generated by the

package.

IPR =0 the printed output of the package is supressed,

IPR =1 the point x, the objective function and its gradients are printed at
each iteration.

IPR = 2 the point x, the objective function and its gradients are printed only

at the starting point and the last iteration.

16

VL. EXAMPLES
Example 1 (TRIDIA Test Problem [2])
Minimize
n
Fx)= > [i2x,— x,_).

i= 2

We consider fhe starting point

X=[1.. 1",
Two solutions are shown for
a) n=10
b) n = 20.
This example demonstrates the quadratic termination property of the package when applied
to quadratic functions. For the required accuracy 10~ % and n = 10, the solution is obtained
after 9 iterations. Also, for the same accuracy and n = 20, the solution is obtained after 19
iterations. We can also see from the listing of the program how the array GD is used to
reduce the computational effort by transferring the common mathematical expressions from
subroutine FUNCT to subroutine GRAD, hence avoiding repetitions in calculations. Its size

M is variable and is defined by the user. In this example, we use M = 9.

aaan

10

aaAn

10

C

10

17

PROGRAM FMEX1(OUTPUT, TAPE6=0UTPUT)
TRIDIA TEST PROBLEM’

DIMENSION X(10), W(200)
EXTERNAL FUNCT.GRAD

LW=200

N=10

M=9

ICH=6

EPS=1E-4

C1=1F-3

IPR=2

ITERM=45

DO 10 I=1,N

X(1y=1.

CONTINUE

CALL FMCG1 (FUNCT,GRAD,N,M,X,EPS,C1, ITERM, W, LW, ICH, IFLAG, IPR)
sror .
LEND

SUBROUTINE FUNCT (N,M,X,GD,F)
REAL X(N) ,GD{IMD

P=0.

Do 10 1=2,N

J=1-1

GD(JI=2. %X [)-X(1-1)
P=r+ 1% (GDCJI) ¥%2)
CONTINUE

F=P

RETURN

END

SUBROUTINE CRAD (N,M,X,CD,G)
RFEAL X(N),G(MN) ,GD(M)

MM=N—-1

DO 10 1=2,MM

J=T1-1
GC(1)=4.%[xCD(J)=2.%(I+1.)*XCD(J+1)
CONTINUE

GC1)==4.xGDC1)

G(N) =4, XN*GD(MDD

RETURN

END

OO 000NN RN ITNNEWIE T > P o bbRPEdEDDD

WENAANDRWN -

e gk el

CR=30VUNAAANN=LER=OPONOUBRNR ~

Ptk

18

UNCONSTRAINED MINIMIZATION BY CONJUGATE GRADIENTS (FMCGA PACKAGE)

INPUT DATA

NUMBER OF VARIABLES (M)ciceaaccanen

ACCURACY (EPS).cicvoecsvscccceosvscosccsoce
WORKING SPACE (LWvcvesocnonercocss

PRINTOUT CONTROL (IPR) it

STARTING POINT.

VARIABLES

. 10000E+01
. 10600E+01
. 190009L+01
. 10000L+01
. 10000E+01
. 10000E+0O1
< 10000FE+01
. 10000E+01
. 10000E+01
. 10000F.+01

DVVNOAD UGN~

-

SOLUTION

OBJECTIVE FUNCTION

VARTABLES

. 14985F+01
- T4927E+00
.37T463E+00
. 18732E+00
+93639E-01
.36829E-01
.23415E-01
.11707E-01
.38537E-02
10 .29268E-02.

VONSIAh LN~

TYPE OF SOLUTION (IFLAG) . . i et ceacenas
NUMBER OF ITERATIONSc.icecceacacs
EFFECT1IVE IFUNCTION EVALUATIONS (EFE) ..

EXECUTION TIME (IN SECONDS) ...ceceveons

.

.

OBJECTIVE FUNCTION

s e s ecse s

.

D A S

D A A N I I AT

D I N

s s s e

10

eee. 1.000E-04

e e e e e 00

e e s s 000000

: 35.40000E+01

GRADIENT

. 40000E+01
«20090E+0 1
+40000E+01
<.600NVE+0O1
«BOVOVE+D]
- 100991+02
« 12090E+02
. 14090E+02
« 16999 L+02
. 800JQE+02

: - 2.44113E-26

s 800000

e s e e

s e e

DR]

-

-

.

GRADIERT

.24899FE-13
. 15586F-13
.68012E~-13
. 12983E-12
.49494L-12

-.01438L-12

« 1235011

-.1932Z1E-11

. 11394E-11
.23035E-12

DR N SN
I AN
“ e e

v e v v

209

19

UNCONSTRAINED MINIMIZATION BY CONJUGATF. GRADIENTS (FMCGA PACKAGE)

INPUT DATA

NUMBER OF VARTABLES (N)cceccecnnecaccssssnncnss

ACCURACY (EPS) ...t ttieecerossscsssosessssosacsnosscss

WORKING SPACE (LW) ...c.vcecsrevovssossonevsonnnonnns

PRINTOUT CONTROL (IPR)t iniceciccnccnnssanas

STARTING POINT.

1
1
1
1
1
1
1
1
1
1

CCNGOADLWDN -~

o

1
2

3
4
L
()
7
a
9

20

-

OBJECTIVE FUNCTION

VARIABLES

. 10009E+01
. 10000E+091
. 10000E+01
. 10000E+01
. 10000F.+01
. 10000F.+01
. 10000F+01
. 10000E+01
+ 10000E+01
. 10000E+01
. 19000LE+01
. 10000E+01
. 10000E+01
. 10000E+01
. 10000E+01
. 10000E+01
. 10000E+0 1L
. 10000E+01
. 10000E+01
. 10000E+01

.
:

s 00800

20

eeess 1.000E-04

cseevsvee

L I I I AR S AP Y

2,09000L+02

GRADIENT

-.40090E+01

+20090E+01
«40090LE+0 |
. 60000E+01
. 80090E+01
. 10099F.+02
. 12000F.+02
. 19090F+02
. 16090E+062
. 18090LE+02
. 20090L+02
c22090K+02
+ 29090E+02
. 26090E+02
. 28090E+02
. 30090E+02
L B2090LK+02
.39900E+02
.36090F.+02
.80000F.+02

400

2

20

SOLUTION
OBJECTIVE FUNCTION : 3.11268E-13

VARIABLES CRADIENT

1 - 15000E+01 -.95932E-11

2 . 75000E+00 .40335E-10

3 . 37500E+00 -.580839E- 16

4 . 18730E+00 .31370F-10

3 L 937TSVE-0 1L +47T737TE~-11

6 .46875E~-01 -.43311F-11

7 .23437E-01 ~-.17471E-11

8 .11719E-01 -.14340E-10

9 .38394E-02 . .85192E—-10

10 - 29297E-02. - .44494E-09

11 . 14648E-02 . . 19743E—-08

12 . 73242E-03 —.T4995E-00

13 -836621E-03 . .244935E-07

14 -18311E-03. —.69067E~07

13 .913553E~-04 -16711E-06

16 43775E~-04 T -.34306F-06

17 .22890F.-04 .538311E-06

18 . 11442E-04 ~.792676E—-06

19 .537246E-03 .79238F—-06

20 . 28B597E-905 -.41983F.~-06
TYPE OF SOLUTION (IFLAG)... ceseann cceecscsssactaatensan (]
NUMPER OF ITERATIONSt cecctsernssccsnosoosssssssonsanas 19
EFFECTIVE FUNCTION EVALUATIONS (EFE) cccccecvvoonssvonsos 4490

EXECUTION TIME (IN SECONDS) . e ceoceovvseoosososnsonssosnons . 264

