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Abstract

A completely general and attractive theory is presented for computer-oriented
simulation, sensitivity analysis and design of multiplexing networks represented by branches
connected at arbitrarily spaced and defined junctions along a main cascade. This theory
permits an efficient and fast analytical and numerical investigation of responses and
sensitivities of all functions of interest w.r.t. any variable parameter, including frequency.
Thevenin equivalent circuits at any reference plane and their sensitivities are also expressed
analytically and calculated systematically. Thus, responses such as common port return loss,
channel output return loss, insertion or transducer loss, gain slope and group delay can be
handled exactly and efficientl<y. Any junction model can be accomodated. A comprehensive
set of explicit analytical formulas is also provided in the text and by tables for various
response and sensitivity calculations. The basic analysis approach, namely, the forward and
reverse analysis approach, is fully demonstrated and can be further developed for more

general applications in network simulation, sensitivity analysis and design procedures.
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I. INTRODUCTION

This paper presents a general theory for computer-aided design of multiplexing
networks, which can be represented by a cascaded circuit having channels connected at
various arbitrarily spaced and defined junctions to the cascaded circuit (Fig. 1). An exact
analysis approach for cascaded structures originated by Bandler et al. [1-3] is used in our
multiplexer network to yield an efficient and fast analytical and numerical investigation of
responses and sensitivities of all functions of interest w.r.t. any variable parameter, including
frequency. Thevenin equivalent circuits at any reference plane and their sensitivities are
also evaluated exactly and systematically using this approach. Thus, responses such as
common port return loss, channel output return loss, insertion or transducer loss, gain slope
and group delay can be handled exactly and efficiently. Channel models can be fully
imbedded into multiplexer structures, e.g., of the waveguide manifold type and any desired
junction model can be accommodated, e.g., models from Marcuvitz [4].

This paper is organized such that the new theory is introduced from first principles
and then we proceed to various advanced multiplexer response and sensitivity expressions.
The basic analysis method used in this theory, namely the forward and reverse analysis
method [1], is made possible in our multiplexer structure through systematic reductions of 3-
port junction models to 2-port representations, which are demonstrated in Section II. In
Section III, we fully illustrate the forward and reverse analysis method and simultaneously
introduce basic definitions of systematic reference planes, subnetworks and general
multiplexer configurations. Then, we start the multiplexer simulation and sensitivity
analysis, first with channel output voltage responses in Section IV, second with Thevenin
equivalent eircuits in Section V. These two sections, i.e., IV and V, constitute the basic and
key simulation and sensitivity analysis procedures. In Sections VI, VII and VIII, various
formulas are derived for the calculation of responses and sensitivities of common port and
channel output port reflection coefficient, return loss, insertion loss, gain slope and group

delay. The simulation and sensitivity analysis at subnetwork levels are discussed in Section



IX. A complete set of tables is provided to show the flexibility of our general theory and to
permit efficient computations of responses and sensitivities for various situations where, for
example, the variable can exist in a junction, spacing, channel or everywhere, the junction
can be a series or parallel connection, the main cascade termination can be S.C. or O.C., etc.
An appendix is provided for conversions between different forms of subnetwork matrix
representations which will be helpful in the reduction of various 3-port junctions to 2-port
representations.

While our theory is general, we have in mind a typical multiplexer network consisting
of a waveguide manifold with series connected filters and short-circuited main cascade
termination. First- and second-order sensitivity expressions are derived with respect to every
possible design variable, such as filter coupling coefficients, input-output transformer ratios,

waveguide spacings or section lengths, non-ideal junction susceptances and frequency.

II. REDUCTION OF A 3-PORT JUNCTION TO A 2-PORT REPRESENTATION
The forward and reverse analysis approach [1-3] provides a powerful tool for cascaded
network analysis. By reducing certain 3-port junctions to 2-port representations, various
response and sensitivity formulas are derived and efficient computational schemes are
constructed for multiplexing networks.
Consider the 3-port network shown in Fig. 2. The 2-port representation can be
obtained by terminating one port in the original network and studying the external
behaviour of the remaining ports. For different terminated ports, we have the following two

cases.

Case 1 Port 3 Terminated

Suppose the 3-port network of Fig. 2 is characterized by a hybrid matrix H such that
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Case 2 Port 2 Terminated

Consider the hybrid matrix H given by
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We have the transmission representation between ports 1 and 3 given by
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and the equivalent termination of port 2 is given by
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In some cases, e.g., for a special ideal 3-port network consisting of a pure parallel

connection, neither H nor H exists. The corresponding hyrid matrix expressions then take

the form
Vl V2
[ = H I
V3 [3

and

(16)
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Simultaneously, Y5 and Y, in equations (5) and (14) are replaced by Z; = 1/Y4 and Z, = 1/Y,,

respectively, and equations (8) and (9) become

T_
a = [h31 —h32] , (18)
and

T_
B'=I[1 ha.1 . (19)

Formulas are provided in the Appendix for various conversions between different

hybrid matrices, e.g., H and ﬁ, the admittance matrix and the impedance matrix.

III. THE FORWARD AND REVERSE ANALYSIS APPROACH IN THE
MULTIPLEXER STRUCTURE
Introduction

The forward and reverse analysis method is an exact and efficient approach to
network analysis for cascaded structures [1 - 3, 5]. In this approach, all calculations are
applied directly to the given network, no auxiliary or adjoint networks being required.
Response functions, sensitivities, or large change effects are expressed analytically in terms
of the variable parameters in the network. All parts of the network to be kept constant are
reduced to a few 2-element vectors appearing as constants in the analysis.

In the previous section, we have reduced general 3-port junctions to 2-port
representations so that forward and reverse analysis can be readily carried through these
junctions in different desired directions, either along the main cascade or into any desired
channel. As a consequence, all functions of interest and their exact sensitivities w.r.t. any
variable in the multiplexer, including frequency, are calculated systematically and efficiently

by cascaded analysis only.



Reference Planes

Consider the multiplexer consisting of N sections, as shown in Fig. 3. A typical
section, the kth section depicted in Fig. 4(a), has a junction, a spacing and n(k) elements of
branch k considered in cascade as the kth channel. All reference planes in the entire
multiplexer are defined uniformly and numbered consecutively beginning from the main
cascade termination, which is designated reference plane 1. The source port is designated
reference plane 2N +2. The termination of the kth channel is called reference plane t(k) and
the channel main cascade connection is reference plane o(k), k = 1, 2, ..., N, where

(1) = 2N + 3,
o(k) = uk) + n(k), k=1,2,..,N, (20)
k) =ak-1) + 1, k=23,..,N.
Two-port matrix and vector representations A, a, B and D (in equations (4), (8), (9) and (13))
are calculated for each branch/junction combination and are denoted as A, , agx, B,y and Dy,
for the kth junction. Elements in every channel and spacing in every section are represented
by chain matrices A, where i is the index of the reference plane at the output of the
corresponding element or spacing. See Figs. 3 and 4(a).
Let
[ =11,2,3,..,0N)} (21)
be the index set containing indexes of all reference planes and
I={|i€],i#2N+2,i=o0k),k=12,.,N} (22)
be the index set containing subscripts of all A matrices which can logically be defined using

subscript of the associated output reference plane.

Cascade Analysis [1]

Let

<

(23)
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<
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where yli and y2i are the voltage and the current, respectively, at reference plane i,i € [, as
shown in Fig. 5.

The principal concepts using forward and reverse analysis in multiplexer simulation
are summarized in Table I. Figures 3 and 4 can be referred to for associated reference planes

2k+1 _ D

and chain matrices. The basic iteration is y' 1 = A, y fori€ I and y yo® for

2k

2k+1 41d v are

k=1,2,..,N, where A, or D2k is a chain matrix and where yi+ Land yi, ory
the voltage-current vectors at the input and output ports of the corresponding chain matrices
respectively.

The forward analysis (u®)T is the result of a row vector initialized at reference plane x
as either [1 0],[0 1] or a suitable linear combination and successively premultiplying each
corresponding chain matrix by the resulting row vector until reference plane i is reached. The
reverse analysis, on the other hand, is similar to the conventional cascaded network analysis.
The column vector v'* is obtained by initializing a column vector as either [1 0]T,[0 11T or a
suitable linear combination at reference plane x and successively postmultiplying each chain

matrix by the resulting column vector until reference plane i is reached. Also, the unit vectors

necessary for the analysis are given by

e 2| |, 24
0
and
N (25)
62 = .
1
The result of the analysis between reference planes i and j is defined as
.. B.
A Al T 1j (26)
Q;=1[p;q;l= c D
ij i
where
A, B..
A i Al (27)
Pi= C. i = D




and where A.., B

i Bip Cij and Dij are the equivalent chain matrix elements between reference
planesiand j and are expressed in the form u” A v to facilitate sensitivity, first-order change,
and large change analysis [1]. Table II can be referred to for various definitions associated
with Aij’ B. Cij and Dij'

ij?

Sensitivity Analysis

From the definitions of A, u"**! and v¥, we can write

— iL,x+ 1T Xj
Aij - (ul ) AX Vl

T
=e A_ A oA AL Ae (28)
Therefore,
aAij i-1 an
— = e A _— Ae
ad xzzj 1 7i-1 x+ 1 ad x—1 j 1
1—21 [( ) +1\T8AX
_ ,x X xj
= u —v
R
X=] ' b
) \T 0A
_ Z ubttl g
cel 1 aq) 1
Iy
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Y 5 (29)
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4
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has been defined in Table II and where I<1> is an index set whose elements identify the chain

matrices between reference planes i and j containing the variable parameter ¢. Generally, we

have
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where Q represents A, B, C or D. Table II can be referred to for the definition of
¢
ap

Second-order sensitivities can be derived in a similar manner as

2 ot
aQij _ Z Z azQij (31)
%y €e1, el P oy

where [ ®

between reference planes i and j containing variables ¢ and y, respectively. Also, we define
2~ Ct
d Qij
ab oy

as the second-order sensitivity of Qij as if variables ¢ and y exist only in A, and A,

and Iqr are index sets, not necessarily disjoint, which identify the chain matrices

respectively,i.e.,

e ) \T aAe .
<u1,€+1) ___[V{’,t+1 e+ 1 ____tvtj i e> ¢
a(b 1 2 aqj
22t
Q! \T PA
Y (“WI) = v it o=t (32)
ad dy by ’
\TOA, A,
(ul,t-!-l) ot V;,e+1 V;en ot i e<t
\ oy ad

where the unsubscripted u and v indicate the form of u,, u,, v} OT V,, Specific subscripts, as
indicated in Table II, must be provided to distinguish whether Q is A, B, C or D.

From equations (29) to (32), we can see that any sensitivity analysis can be reduced to
a series of sensitivity analyses as if any variable exists only in a single branch element,
junction or spacing subnetwork. The series.of individual sensitivity analyses in the forward-
reverse analysis method are the basic forms. Therefore, using this approach, possible

common factors are saved and can be used for sensitivity analysis w.r.t. other variable

parameters. The overall sensitivity can be calculated systematically as a summation of basic
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sensitivity factors aQije/aq) over those indexes €, € € I(b’ and A, contains the variable

parameter .

Properties of the Analysis

From the definitions of A, B, C and D, we have, from (26)
v =Qy
= [p; aly’

A B,
[ ij 1J] -y (33)

The following are interesting properties enjoyed by the Q matrix and u, v vectors and
can be exploited in our analysis and computations.

The Qij’ Q;, and er matrices are related by

_ (34)
Q= Q, Q-
For the u and v vectors, we have
. . T .. .. T . . T
[u}f1 u?] [uiJ ul;] = [ll}fJ u;] (35)
and
- P . . T
[u’lﬂ u;l] [v;] vl;] = [u’fJ u;J] } (36)

If the chain matrices between reference planes x and i are all nonsingular, then from (35) and

(36) we find that

T _
)

iiI T, d o« 1 xj xjT
@) =e (u uy'l [u? u3'l (37)

and
- . T T
1j__ xi xq 1 Xj . X]
vi= ([ug uy 1) [ufu)] e, (38)
where e can be.e;, resulting in u1ij and vlij or e,, resulting in uzij and vyl
Notice that, in practical networks, the condition of nonsingularity will usually be
satisfied. Thus, under certain circumstances, equations (37) and (38) can be expedited to

calculate the equivalent forward and reverse analysis between any two reference planes by
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performing only a full forward analysis. In certain cases, the matrix inversions can be

avoided and computational effort can be saved.

IV. RESPONSE AND SENSITIVITY FORMULAS FOR CHANNEL
OUTPUT VOLTAGE
Consider our multiplexer problem and perform forward and reverse analyses between
reference planes o = o(k) and v = t(k), i.e., in channel k. Let V = VK be the output voltage at
the kth channel, as shown in Fig. 4(a). Note that, for an open circuit at the channel

termination reference plane t, we have

(39)

0

Thus, from (33), we find that the voltage and current vector at reference plane o, namely y°,
can be expressed as
y'=Ip, a,y" =Ip, q,le V
=p, V. (40)
Similarly, from the analysis between reference planes 2k and 1 along the main
cascade (see Fig. 3), we have

y2k I

= oy 1 (41)

L
for a short circuit main cascade termination, where I, is the short circuit current at reference
plane 1, i.e., y1 =e, .
For an analysis between reference planes 2N +2 and 1, we have, as a special case of

(41),
Vg = e T y?N¥2

= Bontoa (42)
where Vg is the source voltage associated with the common port location (reference plane

2N +2). Equation (7) indicates, for the 3-port junction at the kth section (Figs. 2 and 4),

aTka — BT G’ (43)
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where yZX corresponds to port 2 and y° to port 3. Eliminating I, y*X and y°© from (40) - (43),

we obtain the following formula to calculate channel output voltage responses:

T
a qg 4V 44
Ve ,1°8 (44)

T
B P, Bonyios

for a short-circuit main cascade termination (at reference plane 1).

Various response formulas can be derived in the same manner for different
excitations and terminations. Table III gives a complete set of these various formulas. Table
IV summarizes results for special 3-port junctions yielding special values of a and .

For the short-circuit main cascade termination, using ' to denote d/dp, we have,
differentiating (44), the following formula to calculate sensitivities of channel output voltage

w.r.t. variable parameters in the multiplexer:

- T , . T ’
V- (@ qy Vg =B p By, V (45)

T
B P, Bonsay

For different ¢, appearing in different parts of the multiplexer, this formula can be simplified
as shown in Table V.
Also note that appropriate sensitivity expressions, analogously to (45), exist for

various cases considered in Table III.

V. THEVENIN EQUIVALENT CIRCUIT OF A MULTIPLEXER
Formulas have been derived by Bandler et al. to calculate Thevenin equivalent
circuits in cascaded structures [1]. These formulas can also be applied to multiplexer

analysis, i.e.,

i
v s (46)
S iy
A+ 7Z.C..
ij S 7ij
and
i
7 = Bij+ ZSDij (47)
JS—
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where Vsi, Zsi, VSj and ZSj represent Thevenin equivalent voltages and impedances at
reference planes i and j, respectively. All forward and reverse analyses in equations (46) and
(47) are performed between reference planesiandjas shown in Fig. 6.

Sensitivities of VSj and ZSj w.r.t. variable parameters in the multiplexer can be

evaluated by

iy ' i~ iy ]
Wiy= (Vs) - [Aij+ Zs ('ij+ (Zs) Cij] Vs (48)
S A +7.C.
ij S Tij
and
_ Zé
i ! iy ]
‘ 1 ZS] Qij[ . ] + (ZS) (Dij— ZS Cij) (49)
(ZJS)' =

i
Aij+ Zg Cij

Formulas (46)-(49) can be used to calculate the Thevenin equivalent circuit at any
reference plane in the multiplexer looking towards the common port (Fig. 6). Norton
equivalent circuits at those reference planes looking away from the common port can also be

found as [1]

y i ‘
vi= (’ij+ YLDij (50)
LA +YIB.
ij L ij
and
[iL: 0, (51)

where YLi and ILi are the Norton equivalent admittance and current, respectively, at
reference plane i and YLJ is the Norton equivalent admittance at reference plane j. Note that
equation (51) is valid for a multiplexer having excitations only at the common port. Also,

sensitivity formulas can be derived as

1
i ' I i
(=Y, ”Qij[ vl l L) (D= Y By (52)
(vl y= _
A +Y!B.
1j L7ij
and

ry=o0. (53)



15

Consider the Thevenin equivalent circuit at the output port of the kth channel
(reference plane j = (k) + 1), looking towards the source at the source port (reference plane
i= 2N+2 as shown in Fig. 4(b). This equivalent circuit plays an important role in
calculating the reflection coefficient at the channel output ports. Let v = u(k),i = 2N+2,j =
t+1,Q = Q2N+2,t+1’ A= A2N+2,r+1 and B = B.‘ZN+2,:+1' Then we have the following

special cases for equations (46) to (49) of the form

\%
V'l:+1_ _S (54)
S T A
B
Zt+l: -, (55)
S A
' ryrt+ 1
R Ve~ A'Vg (56)
S A
and
i+ 1
1, B AL 57)
(ZS Yy = ———‘T—-—

For different variables ¢, appearing in different parts of the multiplexer, equations
(56) and (57) can be simplified as shown in Table VI.
As special cases of (50), the equivalent admittance Y, defined by equation (6), can be

calculated as follows for the kth 3-port junction:

C
Ao(k),r(k) , k=12 ..N. (58)

ol k), t(k)
Notice that YL‘(k’ = 0, provided that the kth channel load is not a short circuit. YLO‘k’ is the

_ wvotk) _
Ys— YL -

Norton equivalent admittance of the kth channel looking into the kth channel-junction from
connection reference plane o(k).
Similarly, the equivalent admittance Y, defined by (15) can be calculated, for the kth

3-port junction, as

c 2k, (
Y= k= == k=1,2,.N, (59)
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Notice that YL1 — o for our short-circuited main cascade termination. YLZk is the Norton
equivalent admittance at kth junction output port (at main cascade) looking towards the

short-circuited main cascade termination.

VI. REFLECTION COEFFICIENT, RETURN LOSS AND THEIR SENSITIVITIES

Consider the circuit of Fig. 7(a). The reflection coefficient can be defined as

7. —
pd in Rg (60)
T Z. +R
in g
The return loss for the same circuit is defined as
A 1
Ly = —20log,[pl . (61)

At the common port of our multiplexer network of Fig. 1 the term Z, + Rg can be
evaluated by 1/YL2N+2, where YL2N+2 is the Norton equivalent admittance at reference
plane 2N +2 and is calculated by (50). Notice that for a short-circuited termination of the

main cascade at reference plane 1, we have, similar to (59),

D
y2N+2_ 2N+2,1 (62)
L _—

B2N+ 2,1

Therefore, the common port reflection coefficient and return loss can be calculated as

By 21

— — 2R

D S
0 2N+21

BZN+ 2,1

D2N+ 2,1

2RS D2N+ 2,1 (63)

32N+ 2,1

= 1-—

and

2R Doy y 2,1 (64)

0 _
LR— - 20 log10 1 -

BZN+ 2,1

The sensitivities of p® and LRO w.r.t. variable parameters, including frequency, can be

calculated by
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- ®R.D +R.D

©% = ZRSD2N+2,IBQN+2,1 ST2N+2,1 'S 2N+2,1)B2N+2,1 (65)
o (Byygy 51
N+ 2,1
and
- 20 * . ov
(Ly) = ———5 Re{0™ () }, (66)
(¢n10)|p’

where * signifies the complex conjugate.

Using equation (55), the reflection coefficient and the return loss at the kth channel
output port (reference plane t(k) + 1) can be computed by

+ 1 k
. ZS - RL

- t+1 k
ZS + RL

k
_ B- AR, (67)

k
B+ AR/

and

B— AREF
(68)
L;z - 20 log10 -

k
B+ ARL

wheret = t(k), A=Ay o jand B =By o

The sensitivities of pX and LRk w.r.t. variable parameters, including frequency, can be

evaluated by
k Ky 4rpk Ky
oy (1-p")B — A+ p)[ AR+ AR)] (69)
p =
k
B+ ARL
and
Ky — 20 Kk Ky
(Lgy= ———— Re{(p") (p7) }. (70)

(¢n10)| p*|?
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VII. INSERTION LOSS AND GAIN SLOPE COMPUTATIONS

Consider the circuit of Fig. 7(b), for which the insertion loss is given by [6]

Rg+ RL> 1)

L=-20 log10]V|— 20 10g10< R

where V is the output voltage for a unit voltage excitation, Rg and R; are the source and load

resistances, respectively.

Using equation (44), we can obtain the insertion loss for the kth channel of our

multiplexer from

, T
Rl Y
Li(: — 20 log, - ’
Tv B
B P, Bonion

E{S_iR_L') (72)

— 20 log (
10\ R
L

where 0 = o(k), t = t(k), a = ay,, B = By, and R, = R~
The gain slope of a network is defined as the first-order derivative of the insertion loss

w.r.t. frequency. In our multiplexer network, the gain slope for the kth channel can be

calculated, usingd = ﬁT P, BZN+2 1 by

3
k_ 9 -k
SG— awLI
T *
_201 d !2 H“qzm)
= Re
fn10 T | d

T T ' M2
FB P Bonig T B me2N+2.1)] /d } : (73)

The gain slope can also be calculated directly from sensitivities of channel output

voltages w.r.t. frequency as
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sk———a—(-zmo V|| =
G ge \ E10 B

20 I\
- B refw ) 74)
n10|V| dw

where V = V¥ is the kth channel output voltage.

Using Table V to substitute dV/dw in equation (74), we also arrive at equation (73).

VIII. GROUP DELAY AND ITS SENSITIVITIES

The exact group delay can be defined as [6,7]

1 oV
T é-—Im{—-—}, (75)
G V dw

where V is the output voltage. In multiplexer networks the exact group delay from the source
port to the kth channel output port, namely TGk can be calculated, using Table V as

T T T T a '
(@ay  tay o) B p +p, B) By, (76)
TG: —Im — —

’

T T
aqy B'p_, Bontan
where T, = T55, B = By, a@ = ay, 0 = o(k), v = ©(k) and 9/do is denoted as '.
The exact group delay sensitivity for the multiplexer network can be calculated using

the formula

T T
dTg [( T 7q ot da Mgy . da Mgy,
— m R — ——
ddpdw ad Jw dw ad

247 L
i q2k,1) /(a qzk,x)

T ‘
o Mo da r M1 G
—a + —aq,,)|a + —

Jw dw q“

SV

T ’
/ (‘1 q2k,1)
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v (8]
2

aN+21 “TaN+2,1 o
b PR IN+ 2,1

(77

aB B }

For different ¢, appearing in different parts of the multiplexer, this formula can be

simplified as shown in Table VII.

IX. TYPICAL EXAMPLES OF SUBNETWORKS AND THEIR SENSITIVITIES
As discussed in the previous sections, the multiplexer simulation requires, as a
fundamental step, all subnetworks such as junctions, spacings and channel elements to be

represented by 2-port chain matrices A;, i € [, where I has been defined in (22), and D, , k =

2k’
1,2, ..., N. The basic sensitivity analyses are expressed in the form of u'(8A/d¢)v for first-
order sensitivities or the form of (32) for second-order sensitivities. These basic sensitivity
analyses are formulated as if any variable exists only in a single subnetwork. This section
discusses typical examples of subnetworks, namely, junctions, spacings and channels, their
chain matrix representations, first-order and second-order sensitivities. Tables VIII, IX and
X present complete summaries of these results.

Series and shunt inductors and capacitors as well as ladder section subnetworks are

considered first. See Fig. 8.
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Second, we deal with the series and parallel 3-port junctions shown in Fig. 9, where
Y, Y, and Y. or Z,, Z, and Z_ are non-ideal reactive junction admittances or impedances.
Formulas introduced in Section II are applied to appropriate 2-port equivalent chain matrix
representations of these junctions. Consider the series 3-port junction of Fig. 9(a) as an
example. We can obtain the chain matrix between port 1 and port 2 by terminating port 3,
where the termination is represented by Y, In this example, the H matrix defined by

equation (2) is

1 0 1
H=| Y, +Y, -1 Y, . (78)
-y, 1 Y,

Applying (5), we have the 2-port representation as

Yb 1
1+ -
A Y3+ YC Y3+ Yc (79)
Ya Yb Ya
Y +Y, +— 1+
a b vy +y Y.+Y
3 ¢ 3 ¢

The waveguide subnetwork (Fig. 10) is considered next.
Finally, the unterminated lossless filter shown in Fig. 11 is handled by solving an nxn
system of linear equations with the coefficient matrix Z defined by
Z =sl +jM, (80)
where M is an nxn real, symmetrical matrix whose (a,b)th element, namely M, represents
the coupling coefficient between ,e.g., the ath and the bth cavities for a waveguide cavity filter

[8]. Also

A% ( w ‘*’o“) (81)

s=j—

where w; and Aw are the center frequency and bandwidth parameter of the filter. The
variables n; and n, are the input and output transformer ratios, respectively. The sets of
linear equations are solved for the simulation and sensitivity analysis with right-hand-sides

as unit n-vectors e, e,, e, and e, respectively, where the a and b indices identify the (a,b)th
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element of M, namely M ,, as the variable parameter. Correspondingly, p;, q;, Py 9y Pps
p,, and qy are the 1st, nth, ath and bth components of the vectors p and q, respectively. Note
that vectors p and q in Tables VIII, IX and X are defined only for the unterminated filter
simulation and sensitivity analysis as solution vectors of the linear equations indicated in
these tables. They should not be confused with similar symbols defined in (27).

Suppose we construct a multiplexer using subnetwork models shown in Figs. 8,9, 10
and 11. Then all chain matrix representations required, namely, A, i € [, and Dy, k = 1, 2,
..., N, as indicated in Figs. 3 and 4(a), can be obtained from Table VIII. Terms of dA,/d¢ and
9Dy, /0d required in the basic sensitivity analysis can be directly taken from Table [X, while
3*D,, /(3pap) or a2A./(3aw), required in (32) are provided in Table X. Performing the
appropriate forward and reverse analyses to obtain the necessary u and v vectors and
formulating Q and Q' according to Table II, all responses and their sensitivities are readily

computed by implementing the relevant formulas given in previous sections.

X. CONCLUSIONS

A general theory has been presented for the simulation, sensitivity analysis and
design of microwave multiplexers. Thevenin equivalents at any reference plane and various
frequency responses as well as their sensitivities are expressed analytically and calculated
systematically. A computer algorithm can be developed to implement this theory and to
compute all responses and sensitivities efficiently using the results of forward and reverse
analysis. Various properties of the forward and reverse analysis approach can be exploited to
save computational effort.

Further design procedures, such as centering, tolerancing and tuning of multiplexers
can be developed from this theory. It is also possible to develop the forward and reverse

analysis approach for a more general electrical network structure.
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APPENDIX
CONVERSIONS BETWEEN DIFFERENT MATRIX REPRESENTATIONS OF A N-
PORT NETWORK
Under certain circumstances, it is desirable to convert matrix representations of a
network from one form to other forms (e.g., the hybrid matrices between case 1 and case 2 in
Section II.) This can be achieved in the following way.

Consider the set of linear equations

— N -
1 B2 - A X [y,
, ) — (A1)
91 899 - 49n X9 = Yo
a a a X
- nl n2 nnJ Lo L yn_J
Exchanging x, and y;, we have
[- ! — =
X M
B Xe_1 |~ Vi1 (A2)
Y Xp ,
Xor1 Ye+1
L% o L Y
where
-
r bll b12 bln
B = by;  byy by, (A3)
_ nl bn2 bnn_J

and
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Va,, i=k, j=¢
bij = aij/akg, izk, j=¢ (A4)

—aij/ake, i=k, j=¢f

a; — Ao 85/ Ay, izk, j=¢

Matrix B in (A2) does not exist when A, = 0. This corresponds to situations in which

conversion between hybrid matrices is not physically possible, e.g., the hybrid matrix for a

pure series connection of the form given by equation (1) cannot be converted to the hybrid

matrix of the form given by equation (16).

The conversions among various hybrid matrices, admittance matrix and impedance

matrix of an n-port network can be readily carried out by using equation (A4) with necessary

column permutations, as the case may be.

ACKNOWLEDGEMENT

The authors thank S.H. Chen for providing unterminated filter simulation and

sensitivity analysis formulas listed in Tables VIII-X.

(1]

(2]

(3]

(4]

REFERENCES
J.W. Bandler, M.R.M. Rizk and H.L. Abdel-Malek, "New results in network
simulation, sensitivity and tolerance analysis for cascaded structures"”, IEEE Trans.

Microwave Theory Tech., vol. MTT-26, 1978, pp. 963-972.

J.W. Bandler and M.R.M. Rizk, "Tolerance analysis of cascaded structures", [EEE

Trans. Microwave Theory Tech., vol. MTT-28, 1980, pp. 935-938.

J.W. Bandler, R. M. Biernacki and M.R.M. Rizk, "The impact of generalized symmetry

on computer-aided design of cascaded structures”, J. Circuit Theory and Applications,

vol. 8, 1980, pp. 445-455.

N. Marcuvitz, Waveguide Handbook (MIT Radiation Lab. Ser., vol. 10). New York:

McGraw Hill, 1951.



[5]

(6]

(71

(8]

25

J.W. Bandler and M.R.M. Rizk, "Analysis and sensitivity evaluation of 2p-port

cascaded networks”, IEEE Trans. Microwave Theory Tech., vol. MTT-29, 1981, pp.

719-723.

G.C. Temes and S.K. Mitra, Eds., Modern Filter Theory and Design. New York:

Wiley-Interscience, 1973.
J.W. Bandler, M.R.M. Rizk and H. Tromp, "Efficient calculation of exact group delay

sensitivities", [EEE Trans. Microwave Theory Tech., vol. MTT-24, 1976, pp. 188-194.

A E. Atia and A E. Williams, "Narrow-bandpass waveguide filters", IEEE Trans.

Microwave Theory Tech., vol. MTT-20, 1972, pp. 258-265.




26

TABLEI

PRINCIPAL CONCEPTS INVOLVED IN THE MULTIPLEXER SIMULATION

Concept Definition Initial Reference Terminal Reference
Plane Plane
: i+1 _ i
Basic y =AY - -
iteration y2ktl = Dy, yoo - -
Forward (usi+thT A = (u’ X 1
operation (uoZk+ T D, = ( usotknT X o(k)
Reverse vithe = A, vi¥ X i+1
operation vekrlx - D,, yotkox X 2k +1
Voltage ulii = e i 1
selector
Current u2ii = e, i i
selector
0.C. v, R =g w(k) (k)
termination vl11 =€ 1 1
S.C. v, k) — e, t(k) t(k)
termination v211 =€, 1 1
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TABLE II

NOTATION AND DEFINITION OF THE Q FORMS

Factor Identification Initialization Plane
Forward Reverse
(b T (%) yE (+); i j +
(ui,2k+ 1)T () vﬁ(k)j (+ )U i j 4
* denotes Ae, 8A€, dA,/ad or AA,
(] denotes Dy, 6Dy, aD,, /3¢ or AD,,
+ denotes Q, SQe, aQ"/acp or AQe
where Q=A ifu=u and V=V

Q=28 ifu=u and V=V,

Q=C ifu=u, and v=v

Q=D ifu=u, and v =,

T eitherj ¢ [t(k), o(k)] or € = 2k, € = o(k)

T j€luk),ok)], € =2k

) denotes first-order change

d/dp denotes partial derivative w.r.t. ¢

A denotes large change
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TABLE III

V=VEI=1K g =0k),t =tk

Excitation Channel S.C. 0.C.
at Common Output Main Cascade Main Cascade
Port Response Termination Termination
T T
Voltage 4 aqy Vg a Py Vs
source (Vg) T T
B Py Bon o B P, Agnian
T T
Voltage I A Ay VS @ Py VS
source (Vg) T T
B a, Bynyny B a, Ao
T T
Current A% Qg IS @ Py g IS

source (Ig)

Current
source (Ig)

T
B P, Doyoy

aT I
Qor1's

T
B a, Doy on

T v
B pcrt CZN+ 21

T
@ Py iy

T
B a, Couyoy
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TABLE IV

CHANNEL OUTPUT VOLTAGE RESPONSE FORMULAS FOR SPECIAL

3-PORT JUNCTIONS

V= VK g =o0(k) andt = t(k)

Main Cascade aand Cascade Response
Connection Termination Formula (V)
pure series a=f=e, 0.C. C2k,1 Vs
Cm: A2N+ 2,1
S.C. b 2k,1 VS
Cot B2N+ 2,1
pure parallel a=p=¢ 0.C. Afzk,l VS
Am: A2N+ 2,1
S.C. B%JVS
A B

ot 2N+ 21
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TABLE V
PARTIAL DERIVATIVE FORMULAS FOR INDIVIDUAL CHANNEL OUTPUT
VOLTAGES FOR DIFFERENT VARIABLES AND SHORT CIRCUIT MAIN
CASCADE TERMINATION

V=VEo=ok),v=uk),d=B"p, By g €A,

Location of Position of Partial Derivative of
Variable ¢ Variable kth Channel Output Voltage
T ' T /
rth section r<k aq 2k,1 VS - B P BZN+ 2,1 v
d
T ' T ’
rth spacing r=k Rl B VS - B Py BQN+ 2,1 v
d
T, .
rth channel r=k -B (p(nB‘ZN-f— 2,1+ me2N+ 2,1) v
d
N r aV —p (B B, , +BB, . )V
rth junction r=k Qo1 @ Vg— Py IN+ 2.1 IN+ 2,1
d
. -8'p B v
rth section r>k P Pone 21
d
T
source voltage common port aq 2k,1
d

TN SN TN
(*)“= [(*).11], i= 2N+ 2, 2k, (*)m— [(*)m] and * denotesp, q or B
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TABLE V (continued)
Location of Position of Partial Derivative of
Variable ¢ Variable kth Channel Output Voltage
Frequency everywhere Ty T v oL .
@ fa'qy ; Vgt ay,(aVgtaVy

T
—B P, BonyorV

oo ,
=Py (B By, o1t BByy, o) VIA

i—1 o—1
(*),i = Z [("‘)f1 ]’, i= 2N+ 2, 2k, ("‘)'OT = Z [(*);]' and * denotesp, q or B
=1 f=1
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TABLE VI
PARTIAL DERIVATIVE FORMULAS OF THEVENIN EQUIVALENT CIRCUITS

FOR DIFFERENT VARIABLES AND SHORT CIRCUIT MAIN CASCADE

TERMINATION
— — — yik+1 _t(k)+1
A= A2N+2,uk)+1’B‘ B2N+2,t(k)+1’V— Vs ’Z_ZS
Variable ¢ Thevenin Voltage (a) Partial Derivative Formula

Thevenin Impedance (b)

- AahHv
o} € Ae, Dg (a) —""A——
' ey ey
(b) (BY - 7(A%
A
o @ N+ 1 otk)— 1
- 2 v'_[ >oah+ > (Af)'] v
S
Frequency £= 2k = uk)+1
A
AN+ 1 ok)— 1 ‘
(b) S oBh-zah1+ > (Y- uah)
e= % e= )+ 1
A
¢ = Vg (a) 1
Source voltage A
(b)
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TABLE VII
PARTIAL DERIVATIVE FORMULAS FOR INDIVIDUAL CHANNEL
GROUP DELAYS FOR DIFFERENT VARIABLES AND SHORT CIRCUIT

MAIN CASCADE TERMINATION

Q=g 15 P =Py ) @ = Ay, B =By

B=Byyia1> () denotes a, B, p, q or B,
2
) o) a“(T)
(T)¢= P (T)w== P ,(T)m: o o€ Ae
Location of Position of Partial Derivative of kth
Variable ¢ Variable Channel Group Delay
T, T T T T T
rth section r<k —Im [a(q pd T 94 cl>)+ % (q <1>q — 4 qu)] ¢
((qu)2
B cme— BmB N
(B
T T T T T T
[a(q, g —q,_q)+a (q,q —qq, )la
rth spacing r=k —Im o © ¢ © "¢ ®
(a’q)?
B q>mB_ BmB N
(B
T T T T T T
rth channel . . (B (py,p—p P)+B (PP —pp)IB
(3"p)?
B o> B— BwB A

+
(B)?
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TABLE VII (continued)

Location of Position of Partial Derivative of kth
Variable ¢ Variable Channel Group Delay
T, T T T T T
[q (aqma -a a¢)+ q, (ad)a —a acb)] q

rth junction r=k —Im

(Cqu )2

"8, 8"~ B, B+ p. (BB~ BBYID

B p)?
_ quB— BmBq) }
(B
B B—-B B
rth section r>k Iml w_@__z_g__()g}
(B)
=
g

il—l
p= 2

=i

2

Fe
dwdd

i; and i, are initial reference planes for forward and reverse analysis of (1),

respectively, and () denotes B, p or q
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TABLE VIII

EXAMPLES OF SUBNETWORKS AND CHAIN MATRIX DESCRIPTIONS

Subnetwork Configuration Chain Matrix Chain Matrix
Expression Notation
1
series inductor Fig. 8(a) [
0
_ 1 0
shunt inductor Fig. 8(b) { l
1IfjoLl) 1
. _ ‘ I Ujel)
series capacitor Fig. 8(c) !
0
. . 1 O
shunt capacitor Fig. 8(d) [ ]
joC 1
1+ YZ Z
one section ladder Fig. 8(e)
Y 1
Y
series 3-port 1+ b 1
junction Fig. 9(a) Y+ Y, Y.+,
(terminatng port 3) Y. Y, Y,
Y + ¥4 —— 1+
a by +vy Y +Y
c 3 c 3
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TABLE VIII (continued)

Subnetwork Configuration Chain Matrix Chain Matrix
Expression Notation

series 3-port similar to terminating port 3, but

junction Fig. 9(b) interchange Yp © Y.

(terminating port 2)

change Y3 — Yo

Y/ YAVA
parallel 3-port 1+ —2 2+ 7+ a
junction Fig. 9(c) Z.+1Z, 2 Z.+Z4
(terminatng port 3) ) z,
1+
Z+12, Z .+ 2,
parallel 3-port similar to terminating port 3, but
junction Fig. 9(d) interchange Zy, & Z,
(terminating port 2) change Zg — Zo
series 3-port similar to the case Y=Yy, but
junction Fig. 9(e) change Yp,— Y,
(terminating port 3)
Yy =Yy
waveguide Fig. 10 l cos® jZSiHQ]
0 =p¢
( Bo) jsinb/Z cosf
n, q
unterminated _ 2 _ !
filter Fig. 11 9 04y
(Z=s14+jM) 2
4™ Py By
n n -
b2oq P9 44y

where Zp =e;, Zq=e¢
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TABLE IX

FIRST-ORDER SENSITIVITIES OF THE SUBNETWORKS IN TABLE VIII

Subnetwork Identification Partial Derivative of the
Chain Matrix
series 0 o
inductor dA/dL [ ]
0 0
0 jL
JA/dw [
0 0
shunt 0 0
inductor dA /3L [
j/(wL2) 0
0 0
JA/dw [
j/(cozL) 0
series . N
capacitor dA/8C 0 jAwCH
0 0
., 2
JA/dw 0 jA"C)
0 0
shunt 0 0
capacitor dA/aC [ ]
jo 0
0 0
Ao { ]
jC 0
one section o -
ladder dA/ddp [
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TABLE IX (continued)
Subnetwork Identification Partial Derivative of the
Chain Matrix
series 3-port dA/dd
junction b€ Y3 K;
(terminating port 3)
(Y2Y, + Y3) dA/d Ky + K
bed
IA/dw K; + Ko + K3
where
-1 Yb 1 -1 Yb 1
Kl = - Y3 5 K2: - Y 3
y? YY Y vy2 °‘lyy Y
a b a b
Y, 0
1 b
T
Ya(Yb+ YH Yb(Ya—l- Y) Y
series 3-port similar to terminating port 3, but
junction interchange Yy, « Y,
(terminating port 2) change Y3 — Yo

change A—>D
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TABLE IX (continued)
Subnetwork Identification Partial Derivative of the
Chain Matrix
parallel 3-port dA/op
junction b€ Zs Ly
(terminating port 3)
7287, + Zg dA/ddp Ly + Lg
¢oed
JA/dw L + Ly + Lg
where
Z A/ Z 77
-1 . b -1 . b
L1:—2—z3{ = ,L2——-2—Zc[ : o,
V/ 1 Zb Z 1 Zb
L 1. [ Z Za(Zb-l- 7+ Zb(Za+ Z)]
37 7 '
0 Zb

parallel 3-port
junction
(terminating port 2)

similar to terminating port 3, but
interchange Zy, < Z,

change Z3 — Zo

change A—> D

series 3-port
junction
(terminating port 3)

similar to the case Y, = Yy, but
change Yp— Y,
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TABLE IX (continued)

Subnetwork Identification Partial Derivative of the
Chain Matrix
waveguide — Bsin jZ Bcosd
© = Bo) 2A/a¢ [ ]
jBcosb/Z  —Bsind
— ¢ f sinf jZ € B cosb
dA /3w [ l
j€B cosb/Z —+¢f sind
unterminated iw
filter dA/dMyy —(p qb+ q pb) A+
Z = sl + jM) 2q, ? 2
ﬂ2 0
J'W‘ " fa
9 : B!
= gl Pyt 4P Py Ayt APPt PPy
ifaz b
where w = [
ifa=b
dA/d S T
@ —pqA
a4
B2 T
, - —agq 0
S n
2 nl T
{20, P a-pa a—q P P} - “_2 PP
1 -1 0
dA/dny — ] A
o, 0 1
1 1 0
JdA/dny _ A{ ]
n 0 -1
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TABLE X

SECOND-ORDER SENSITIVITIES OF THE SUBNETWORKS IN TABLE VIII

2
a(t) «T) a° ()
MH=——-060=—,, = —
© ap v ap T W apay
(1) denotes Y, Z, Ya, Yb, Za, Zb, H
Subnetwork Identification Second-order Derivative of the
Chain Matrix
series 0 i
inductor 32A/(3wdL) [ }
0 0
shunt 0 0
inductor 32A/(0waL) [
Uiolth o
series 9.9
capacitor 32A/(30dC) [ 0 e CH ]
0 0
shunt 0 0
capacitor 32A/(0waC) [ ]
] 0
one section Y Z+Y.Z +Y Z +YZ z
ladder 2A/(0day) by bW wd by bw
0

Y
oty
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TABLE X (continued)

Subnetwork Identification

Second-order Derivative of the
Chain Matrix

s_erieg 3-port 3 9 Y, 1
junction 2A/(3day) (—Y + =YY )
(terminating port 3) vz v 3 0w YY, Y,
1 (Yb)ty 0
¢
vZ A v vy Y (Y )
ay b by a ay
A
(Y2Y,+ Y3) Ty 0
- =Y
yZ2 Uy Y+ Y (Y )
ad b b a ad
Y.
. 1_ ( b)(b‘v 0 ]
(Y ) gl Yt D€ YoVt Y et Ylpy Yot ¥ S -
series 3-port similar to terminating port 3, but
junction interchange Yy, © Y,
(terminating port 2) change Y3 — Yo
change A—D
paral?el 3-port -1 9 [ Z z2,
junction 2A/(0pay) (—Z + —7 7 ) a a
(terminating port 3) 72 v g3 e w/l z,
-1_Z [ Z), (Za)tpzb+(zb)1yza
— 2%
Z 0 (Zb)w
(Z27Z, + Zs3)
¢ 1_Z (Za)(b (Za)¢ozb+(zb)¢>za
2 g
y/ 0 (Zb)¢>
N 1 0w @) Tyt Dt (‘Za)q)<zb>w+(Za)w(zb)¢+<zb)¢w<za+ 7)
AN (Z.)

b oy
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TABLE X (continued)

Subnetwork

Identification

Second-order Derivative of the
Chain Matrix

parallel 3-port
junction
(terminating port 2)

similar to terminating port 3, but
interchange Zy, < Z,

change Z3 — Zo

change A—>D

series 3-port

junction similar to the case Y, = Yy, but
(terminating port 3) change Yp— Y,
XY, =Yy
any 3-port
junction 2A/(dday) T
in Table VIII e e, parlH, [pqriH,
- H,,* Hq)[pq rJH )lpql
where Hp= L Hq:e2, Hr= e,
e, e, and e are unit 3— vectors,
1 0 —1 | forseries 3-port junction
H=|—-(Y,+Yy) 1 Yy terminated at port 3
L Y. -1 Y.+Y3
~ ~
1 —(Zy+7Zy) -7y for parallel 3-port junction
H= 0 1 1 terminated at port 3
1 —Z, ZetZs
- -

For the cases of terminating port 2 and Y, = Yy, interchange and change appropriately
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TABLE X (continued)
Subnetwork Identification Second-order Derivative of the
Chain Matrix
waveguide B o8
8= po) 2A/(dwat) - ga(sin9+ BcosH) ng(cose— Bsin6)
L a—B(cosﬁ—— 0sin®) - ﬂ(sin6+ Ocos0)
Jw w0
2
I Yoo
unterminated 11 000 0
filter 32A/(0wdd) - y azy
(Z = s1 + jM) b = Mayp 12 1
3w dd
2
9Yyq 19 W9
i, b oA do A
Y12 Yig 90 Yig 9P
where
2 2
Yy 9y gg Uy Wy Toe  Wig Wiy a23’12
* = Voo T + —ty,, ——=2— —=2y,,—,
00dd "2 dw  dd p  dw 11 903 d 12 3000
2
INIRESERST NP MY
y = = s |
Yig Yoz M9y Moy
2 nln
ay [ nlpapb 2 (paqb+ qapb)]
= —Jw ’
ad "% 9
T2 Palp’ 9 Pdadp
and
2 ifazb
w:[ ,
1 ifa=b
2 T
ay as nlp p n1n2p q
> _ = . ,
do  dw nngp q 0,4 q
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TABLE X (continued)
Subnetwork Identification Second-order Derivative of the
Chain Matrix
2 T T M2 7 T T T
Py 3 n(p, g p+p P O (p,g ata,p f+p fatq gp

—_—= _jw —

dwdd do L MMy T T T T 2 T T

5 tp,ga+t qp ftpfatqgp nylq g qtqyfaq

Zp= e, Zq=e , Zf= e Zg= e,

n

A is the chain matrix of the unterminated filter as shown in Table VIII.

dA/dw and dA/3¢ are the first-order sensitivities of the unterminated filter chain matrix as
shown in Table IX.

unterminated L[ -1 0] 2A
filter 92A/(9wany) 1 an.
(Z = sl + jM) nl o 1lew
1 0
2A/90dny) 1 ]
n, dwl o _1

where dA/dw can be found in Table IX.
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+ V3 -
13
I, I,
+ 00— | -0 +
V, junction Vo
- O0——f - o0 -
Fig. 2 A 3-port network in which ports 1 and 2 are considered along a main cascade and

port 3 represents a channel or branch of the main cascade.
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transmission reference voltage and
matrix plane current vector
k
+ V-
-—=-=-0-—-0———-—- y©
R
Ar T}
+1
———-—0---0———— 71t yT
————0---0———— T+j-1 yT -
element
Ar+j-1 i
_______o___o_ —— — 0,_1 yd'-1
A element
o-1 n(k)
—_——T“_T———_ ] "
: | '
— .
| Jy ! Sk {
] e 7
I | I
| I ]
[
: A2k | Azk-1 .
2k+1 2k 2k=-1
D2k
2k+1 -
y y2k y2k-1
(a)

Fig. 4

T+1

(b)

(a) Detail of the kth multiplexer section showing the reference planes along the

branch. (b) Thevenin equivalent circuit at channel output port (vx = u(k),

o = o(k)).
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reference
plane

+ Y- ,
==~ ————|—— i reference
y é plane
| |
| |
(b)
Fig. 5 Illustration of vector yi containing the voltage and the current at reference plane

iin the multiplexer. (a) Reference plane i in the main cascade. (b) Reference
planeiin a channel.
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_——— -——_——_———e——
|
. I
i J
Zg zZ ;
i | l |
Vs ! Vs !
I i
! |
I I
| i
| I IYL ! I IYL
| ]
I I
Fig. 6(a) Thevenin and Norton equivalents at reference plane i and j, where reference plane i

1s towards the source port w.r.t. reference plane j and reference plane j is in the main
cascade.
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Fig. 6(b) Thevenin and Norton equivalents at reference plane i and j, where reference plane i
is towards the source port w.r.t. reference plane j and reference plane j is in a
channel. :
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I
]
Yol
|
|
I
|
I
A
Y
P =>»

I
Lg =1=>l

Fig. 7(a) [Mlustration of reflection coefficient and return loss for a general network.
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Fig. 7(b) Ilustration of a general network for the definition of insertion loss.
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L
o—uww ° ° °
L
O- O (o O
(a) (b)
C
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Fig. 8 Elements considered. (a) Series inductor. (b) Shunt inductor. (¢) Series capacitor.

(d) Shunt capacitor. (e) Ladder section.
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Fig. 9 Junction subnetworks. (a) Series 3-port (terminating port 3). (b) Series 3-port
(terminating port 2). (c) Parallel 3-port (terminating port 3). (d) Parallel 3-port
(terminating port 2).
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Fig. 10 Waveguide section.

Fig. 11 Unterminated narrow band coupled cavity filter.



