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Abstract

We present three exact approaches utilizing (a) the unterminated circuit model,
(b) the canonical representation, and (c) the loaded filter network, as well as two approximate
approaches, namely, the approximate determinant method and the Neumann series method,
to the simulation and sensitivity analysis of narrow-bandpass multi-cavity microwave filters.
The principal aim is to highlight the efficiency of these approaches in computation and
flexibility in exploiting various network structures. Detailed formulas of filter responses,
including group delay and gain slope, and their sensitivities w.r.t. design variables are

presented and tabulated in detail.
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I. INTRODUCTION

The frequent application of multi-coupled cavity narrow-bandpass filters in micro-
wave communication systems and their advantages have been extensively discussed in the
literature. See, for example, Atia and Williams [1-2], Chen et al. [3] and Cameron [4].

As in many other situations where the complexity and requirements of the problem
are ever-increasing, the commonly accepted approach is to employ modern computer-aided
design techniques. For example, when asymmetric, nonminimum-phase characteristics are
of interest, the traditional approach to an analytical solution may be inappropriate.
Furthermore, the CAD techniques can be utilized to predict the effects of nonideal factors
such as modeling and manufacturing imperfections which are not to be ignored in microwave
devices. Needless to say, a systematic and efficient simulation and sensitivity evaluation
method is essential here.

In this report, three approaches to the exact simulation and sensitivity analysis of
narrow-bandpass multi-coupled cavity microwave filters are presented. The formulation and
description of each method are self-contained, yet they are related in a unified manner. Two
approximate methods are also derived, aimed at minimizing the computational effort,
wherever possible. The structure of the filter as well as the terminations considered could be
arbitrary. Various types of responses, including group delay and gain slope, and optimization
variables, including all possible couplings, cavity resonant frequencies, and cavity dissi-
pations, are taken into account. The solutions of the network involve only real operations.

The algorithms presented can be easily implemented on a digital computer.

II. NOTATION
Unless otherwise specified the notation used in this report is the following: Boldface
lower-cases b, p, etc., denote column vectors. Boldface capitals, M, Z, etc., denote matrices,
except I and V which are reserved to denote current and voltage vectors, respectively. A

letter with a double subscript denotes an element of the corresponding matrix, e.g., M,



denotes the element at the €th row, kth column of matrix M. A letter with a single subscript
denotes a component of the corresponding vector, e.g., p,, denotes the nth component of vector
p. ldenotes an identity matrix of appropriate dimension. e, denotes a vector whose com-
ponents are zero except that the kth component is 1. 1 denotes a rotation matrix of zero

entries except the anti-diagonal elements which are 1.

III. THE STRUCTURE AND MODEL OF THE FILTER

A narrow-band lumped model of an unterminated multi-cavity filter has been given

by Atia and Williams [1] as
jZI =V , | (1)

where

Z2(Gs1+M), (2)
1 denotes an nxn identity matrix and M the nxn coupling matrix whose (i, ) element
represents the normalized coupling between the ith and jth cavities, as illustrated in Fig. 1,
and the diagonal entries M. represent the deviations from the synchronous tuning. The

normalized frequency variable s in (2) is given by

(.00 w

A (,L)O ( ® (A)O‘) (3)

s = olo T o
where ), is the synchronously tuned cavity resonant frequency, or the center frequency as it
is sometimes called, and Aw is the bandwidth parameter. The physical configuration of the
filter could be either symmetric or asymmetric. Figure 2 shows the shorthand notation for a
sixth-order example.

The matrix M is always symmetrical w.r.t. its diagonal, i.e.,

M (4)

ok = My s
or, in matrix notation,

MI=M . (5)



In the case of a symmetric realization as shown in Fig. 2(a) M could be also symmetric
w.r.t. its anti-diagonal if
=M _, (6)
where

c8n+1-¢ andt§n+l—k, (N
or, using the notation defined in Section II, such a symmetry can be implied by
IMI=M . (8)
From (2), another identity immediately follows, namely,
1Z1=7 . 9)
In this report, a filter coupled in such a pattern is said to be dual-symmetric. We will see later
that significant computational advantage can be exploited in the analysis of the dual-
symmetric structure.

As has been indicated by Cameron [4], the synchronously tuned configuration,
although it may be physically asymmetric, always realizes electrically symmetric character-
istics. The feasibility of configurations that could realize asymmetric characteristics has been
demonstrated in [4], where couplings other than those shown in Fig. 2 are introduced.

Imbedded into a microwave system the filter is terminated through the input and
output couplings, by a source and a load as shown in Fig. 3. The first two approaches,
developed hereafter, first reduce the unterminated filter to a two-port (Fig. 4) based on which
the overall network is analyzed. The third approach solves the filter terminated by the load

for its input-impedance Z,  as shown in Fig. 5.

IV. APPROACH 1: THE UNTERMINATED EQUIVALENT CIRCUIT MODEL

Two-Port Model

Recall the system defined in (1) as

iZI=V .



The system can be reduced to a two-port model whose parameters and sensitivity expressions

can be obtained by solving the real systems

Zp = e, , (10)

Zq=e, (11

Zp=p (12)
and

Zq=q . (13)

It is clear that the solutions of (10) - (13) require only one real LU factorization of the matrix Z
and four forward-backward-substitutions (FBS) with appropriate right-hand side vectors. For
the dual-symmetrical systems described in (8), the computational efforts could be further

reduced by solving only (10) and (12) and then taking

q=1p (14-a)

and
a=1p, (14-b)

ie.,
4 =Pys1_is1=12,..,n (15-a)

and
4G =P, i=1,2,..,n. (15-b)

Equations (14) - (15) are verified by considering the fact that, as given in (9),

1Z1 = Z
and
e =Te, ,
hence
Zlp =11Zip =1Zp=1e, =e_. (16)

Comparing (16) with (11), we get (14-a). The verification of (14-b) is similar.
Having the solutions of (10) and (11), we can model the network (1) as a two-port, as

also shown in Fig. 4(a), in the form
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where the short-circuit admittance parameters are given by
- (18)
yll - p1 ’
o (19)
Y127 Y1 = Py ™ 9
and
, (20)

Furthermore, the two-port model including the input and output couplings, as shown

in Fig. 4(b), is readily obtained as

I \Y y y \
1 . 1 NIESS! 12 1
sl S L
In Vn y21 y22 Vn
where the elements of y are given by
) (22)
Y= MY
) (23)
Yig=™ Yor =™ P99
and
9 (24)

Yoo = Mg Yoy -

It is evident that the sensitivity expressions of y can be obtained via the corresponding

sensitivities of p,, p,and q .

The general formulas for calculating the first-order derivative of p;, p, and g w.r.t.

parameter ¢ inZ are given by

and

apl /7 I://
—=_elz7' 2z le=—p'=p, (25)
aq) 1 1 a(b
ap EY/
2 Tzt &1y ——¢"Zp (26)
od n 1 ad
aq oz oz
Lo _ Tz 187 le = qTE g (27)



If the parameter ¢ enters Z linearly, (25) - (27) become

8p1
2
a €kel
¢
apn
29
w )3 Qg Py (29)
b ¢,k€el
¢
and
aqn
30
.. ——¢C Z qe Clk ’ ( )
a ¢kel
¢
where index set | ¢> and coefficient ¢ are defined by
aZ
1, 8 le,k Tk _ c} _ (31)

Besides the first-order sensitivities, a particular set of second-order sensitivities,
namely,

ap, - 'R oq_
S(52) 252 )ane 2(32).

might be of interest in the computation of the sensitivities of the group delay and the gain

slope.
Applying formulas (28) - (30) for $ = w, we find that

aﬂ __ & pTp (32)
E) dw ’
d
Po_ B o« p (33)
0w aw

and
s aTq (34)
dw dw '

Differentiating (32), we have

ap y
) as ap as dZ
—(—1>: —2—-pT—:—-2—--pT(—Z*1 —Z_lel)
ad ad

Jw



ds dZ ds _qdZ
:2—-pTZ_1——Z_1e:2—pT—p, (35)
oW op 1 do 3
where p is defined in (12). Equation (35) can be expanded, similarly to (28), as
ap
4 1 as - 35-
_<_>:2_CZ PePy > (35-2)
ad \ dw 0w kel
T

where [ o and c are as defined previously in (31).

Following the same procedure, we can derive that

ap_ -
ad as | -1 dZ dz _
_(_rz):_ qT_p+qT_p], (36)
b\ dw 0 ab ad
J (apn> ds Y‘ (" + = ) (36-3.)
—\ T | —¢ ) s
b\ dw do i Qe P ™ Qe Py
)
and
ad aqn as oz 37 '
Mooz ar,, o
b\ dw dw ad
9 (9% ds
o\ dw do - €7k
,EI(D

Detailed sensitivity expressions of the matrix y, utilizing the above results, are given

in Tables 1-3, w.r.t. specific design variables.

The Terminated Filter

Having solved the unterminated network, we continue with the analysis of the filter
terminated with arbitrary source and load, as shown in Fig. 4, where the voltage source is

normalized.

The input and output currents can be solved from the two-port equations

[

1 \%

1

= _iy (38)

\%

[
n n

subject to the terminating conditions

- (39)
V,=1-2



and
_ (40)
Vo=-72.1,
or in a more compact form,
\%
I 1)
v Pl
n
where
Z 0
. é[ s ] , (42)
0 ZL
and
I
I é[ 1] . (43)
P I

Substituting (41) into the two-port equations, we get

A
[ =jyZI —jye . (44)
Defining
A A
Y21-jyZ, (45)
we can write the solution of (44) as
A
_ syl
Ip—-»—JY ve, , (46)
where
b _ L 1=021y99 3299 , (A7)
Dybizgyy,  1-izgyy,
and
A 2 Vo
Dy =1+ ZLZS(y12— Y1 y22>— J(ZS vyt ZLy22> . (48)
Equation (46) can be expanded explicitly as
2 .
[ 2, p— ¥y ¥ = ivyy (49)
1 D ’
y
[ T (50)
n D ’
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Sometimes, as for the evaluation of the output reflection coefficient, it is also of
interest to solve the network excited at the output port instead of the input port. The solution,

A
denoted by Ip, can be obtained by simply replacing e, in (46) by e . Thus,

A
A Il A
_ _ _y-1 (51)
L= [? ] =-JjY 'ye_,
n
where, to avoid any confusion, we define
0
e 2 ] (52)

n 1

A
The derivation of the sensitivity expressions of Ip and Ip, utilizing Tables 1-3, from
equations (46) and (51) is straightforward. For convenient reference, the results are

tabulated in Table 4.

The Reflection Coefficient and the Return Loss

The input reflection coefficient of the network is defined as

7. — 7.
p A S5 (53)
" Zin + ZS
It can be expressed in terms of [,, which is given in (46) and (49), by
2Re(’ZS)
P, = 1 — Z_—Q-_Z— =1- 2R€3(ZS)I1 . (54)
in S
Usually only the modulus of p,  is used, that is
= (o V2 (55)
[pinl - ('pin pin) ’
whose sensitivities are given by
aIpin] 1 * apin _2Re(ZS) * 811
= — Re|p, = Refp, —]|. (56)
s o, b lp,,| )

Usually Re(ZS) is frequency independent, i.e., aRe(ZS)/ao) = O even if 8Im(ZS)/aco = 0.
This may not be true when Zg represents an adjacent network, in which case, (56) needs to be

augmented by

(57

in

dlp. | _9 . /9L dRe(Zy)
== = Re{p. (—— Re(Zy) + I, )
3w lp. | do

n

Jw
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For a full description of the filter characteristics, we can define the output reflection
coefficient as

Z ..~ 4.

out

ne

A
— 58
p =1- 2Re(ZL) In , (58)

t
A ™ Zout+ ZL
where I is given in equation (51). Similar to (55) - (57), we have

o | = )2 (59)

out out p out ’

A
dpoutl — 2Re (ZL) * aIn
p = el Poue = | > (60)
b 1P yud b
and
P I Re(Z
9 p -2 # J A dRe L)
out _ —————Re[p (——ERe(Z )+ 1 > (61)
I 10l out\  geo L' 'n 50
The input return loss and the output return loss, also commonly used, are defined as
A _ (62)
in,out ~ 20 log10|pin,out| B,
where Fin,out and Pin out MEAN [ orT .andp, or Py for brevity. Their sensitivities are
aI1in,out 20 1 C',lpin,outl 20 1 al:)in,out
= — = - Re (63)
ad ¢n10 ]pm‘out] ad ¢n10 Pinous P

The Transducer Loss and the Insertion Loss

The transducer loss, which is also referred to as the discrimination loss, is defined as
the logarithmic ratio of the real power transmitted to the load under matched condition, i.e.,

the maximum transmission, to that of the actual network under consideration. The former is

given by
1
P = — (64)
Lmax 4Re(ZS)
when
_7* - (65)
ZL- Zs and Es—l s
and the latter by
2 (66)
PL_ |In| Re(ZL).

Therefore, the transducer loss is
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P
¢ 1
A8 10 log, ;mak =10 loglo[ 5 ] dB . (67)
L 4|In| Re(ZS) Re(ZL)
Its sensitivities are evaluated by
A —20 19,
a  ¢nlo I ad

If Re(Zg) and/or Re(Z, ) are frequency dependent, (68) should be modified for dA/dw as

oA —20  [1%] 10 [ 1 dRe@9 dRe)
— = Re| —— | - + (69)
dw  ¢nl0 I do ¢n10 Re(Zg)  ow ReZ)) do
For a lossless network, the transducer loss is related to the input reflection coefficient by
_ 2 (70)
A= —10log, (1-lp, [

Another filter response, namely the insertion loss, is defined as the logarithmiec ratio
of the real power absorbed by the load when the load is directly connected to the source, which

is given by

) Re(Z,)
p L

L ,(E.=1) (71)

1Zg+2,]

to that when the filter is inserted in between, as given by (66).

Denoting the insertion loss by A, we have

Py

1
A=10log,, — =10 log [————]dB. (72)
10 10 2
P Zg+ 21 |
Comparing (72) with (67), we observe that
A=A - Ay {(73)
where
Z.+2 *
i )
A2 10 log s v =0 (74)
0 10 4Re(ZS) Re(ZL)
represents the extra loss due to the mismatched terminations.
From (73) it is clear that
A A —20 19 ,
= _ = _ Re | —— |, (75)
b ap €nlo [

except for dA/dw, which is
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- Re +
I tn10 In 3w Z.+7Z

n ( 5 )] . (76)

The Gain Slope

Sometimes we are interested not only in the gain response at given fre(iuencies but
also in its variation with the frequency. A measure of this variation is the gain slope, defined
by

5 A

Jdw

S

G dB/Hz . (77)

Actually it can be computed using equation (76) as

Re —+ —
{n10 ZS+ ZL 1) ow

20 1 9L,

= — e
G n10 [ o

= SG1+ SGZ , (78)

where S, = 0if the terminations are frequency independent. Following (78) we have

S _ &1 al ol
—G _ =20 [1__._“_1_;1_“ (79)
b ¢n10 [ dpiw 2 b dw
n
where the second-order derivative term can be found in Table 4. Furthermore, we have
Bgy 20 Re[ 1 ( 7 aZZL) ) ( Ly >2 o)
Jw {n10 ZS+ ZL 6w2 60)2 (ZS+ ZL)2 ) aw

Obviously 855,/d¢ = 0 for = w.

The Group Delay

Unlike all the responses discussed before, the group delay is related to the network

phase characteristics. It is defined as[6]
d dJ
TGé—-[AE_AVI:-—AV , (81)
o S n 3 n
or, equivalently, by

av

n

1
T.= - Im| — 2
G m[v 3w 82)

Notice that Vn =-17Z, therefore
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=—Im —-—E]-—Im
I dw
n

17 dw

where T,=0if Z; is independent of w.

(83)

Note the similarity between (78) and (83), which suggests that the evaluations of the

gain slope and the group delay be unified as
CsSat iTey=~- 77—

where the coefficient

as aT S A
cC —4i—e_ -2, __o_1

+
S & ad [ 0pdw 23 dw
n

In (83), we have

and

G2
— =0 forp#zw.

V. APPROACH 2: ANALYSIS IN CANONICAL FORM

(84)

(85)

(86)

(87

(88)

In the previous sections we constructed the two-port model of the filter by solving the

linear network directly. Alternatively, a second approach accomplishes the analysis by

decomposing the matrix Z as

Z=Ts1+DTT,

(89)

where the diagonal matrix D contains the eigenvalues of M, and the orthogonal matrix T

contains the corresponding eigenvectors of M, i.e., the ith column vector of T, namely t,isan

eigenvector of M corresponding to d,, which is an eigenvalue of M as well as the ith diagonal

element of D.
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Then, the two-port matrix y’, corresponding to formulas (17)-(20), can be constructed

as follows. We have, as given in [1] and [3]

2
° 1 Y; tlitni} >
" = (90)
y Z ((S+ dl)[ t2 ’

i=1 tlitni ni
from which
2
S A L)
aw dw TN (s+ di) bt i
The solutions of equations (10) and (11) can be obtained by
S bita
1 1
= 2
P= 2 ((s+d.)> ©2)
i=1 i
and
n Y
AN ( L.) 93
W =\ eray /) ©3)

respectively, which can be used to compute the results in Table 1.

We observe that in formulas (90) and (91), y' and its sensitivities w.r.t. frequency are
expressed explicitly in w, so this approach possesses advantages in some simulation cases. On
the other hand, it should be noted that a numerical decomposition of M (e.g., the QR
algorithm) usually requires much more computational effort than the LU factorization of the

matrix.

VI. APPROACH 3: SOLUTION OF THE LOADED FILTER

The Basic Analyses

The third approach, as mentioned in Section I, simulates the network by solving the
loaded filter, i.e.,
Z1=V , (94)
where

Z' = jZ+ diag{0,0,..,0,n’Z }, (95)
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for its input impedance, instead of obtaining the two-port representation (cf. Fig. 5). It is
shown in Appendix 1 that a solution of the complex equations (94) requires only real LU
factorization of Z.

We define the original and adjoint analyses, after the pattern of the equations (10)-

(13), as
Zp=e,, (96)
Z'q=-e_, 97
Zp=p, (98)
and
Zq=q. (99)

For brevity we use the notation p, q, p and q to denote the solutions of (96)-(99) throughout
this section. They should not be confused with those defined in Section IV.

The definiticns and derivation of the corresponding sensitivity expressions are so
similar to those presented in (25)-(37) that they are not repeated here. The results are simply
tabulated in Tables 5 and 6.

It should be noted that, due to the presence of Z; , Z' can not be dual-symmetrical, i.e.,

121 =27 (100)
even if the cavities are coupled in the dual-symmetrical pattern, therefore the relationship
defined by equations (14)-(15) does not apply here.

The solutions of (96)-(99) can be used directly to formulate various responses of

interest.

The Input Reflection Coefficient and the Return Loss

Referring to Fig. 5, we know that

7 = — (101)

and the input-impedance of the loaded filter is
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Z. .
7 = — = , (102)
in 2 2
RS

The input reflection coefficient, as has been defined in (53), is now

*

- - S (103)
n 2
Zin+ZS 1+n1plzs

7. —7. 1-n’p. 7Z
in " % —-mpy

p

Its sensitivities are

ap. dp
i 2 1
Y = ——2(1V Re(Zs) o , @Inl,w , (104)
. ap dRe(Z.) oz, -
= 942 ! S 022 ( S
o —2a | Re(Zy) P + o p, —jnjp; Im \ZS o )] ) (105)
and
2
Pin & (106)
= -4 —p, Rel?,),
an n, P17e s

where a_ is the voltage divider ratio (cf. Fig. 5) given by
v, A n,
a,= — =n o = - , (107)
v 4

Equations (103)-(107) can be used to compute |p, |, the return loss [, and their

sensitivities as have been shown in (55), (56), (62) and (83).

The Transducer Loss and the Insertion Loss

From (96) we know that p_is the output current when V', =1, therefore the output
current when the filter is connected to the actual source is
[ =a,p,, (108)
where a_is given by (107). Furthermore, since the network model considered is lossless, the
fact that the input real power is wholly absorbed by the load leads to the identity
Re(p,) = |p /> Re(Z}) . (109)

The transducer loss, defined by (67), is then given by
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vl

A=10 log10 5
4|avpn| Re(Zy) Re(Z))
1
=10 loglo[ . . (110)
4la | Re(Zg) Re(p,)
From (110), we have
N 20 Ip 1 ap, -
o Re(a n 7 _1>_ Re(_l)] Cbron (111)
a  €nlo v 1S 5 2Re(p,) ad 1
A 20 ap, GZS\ 1 p, 1 aRe(Zs) (112)
— = [Rean(z —+p ——)—- Re —)— —_—
dw €nl0 viIVTS LT 2Re(p,) 9w 2Re(Zgy) o
and
20 [ 2Re(fz> (113)
an, n €nl0 n,

The definition of the insertion loss A and the formulas for the evaluation of A and

dA/d¢ from A and dA/dd, as given in (72)-(76) also apply here.

The Gain Slope
Using equations (108), (109) and the definition (77), we have

oA 20 (}pl aZS 1 GZL GZS
= —= ReanZ-—+p—>— —+ —
G sw  ¢nl0 VIVS g0 T G ZtZ \ do
N R U } (114)
2 r. 9o g, dw
where
A A (115)
r = Re(ZL) and g = Re(pl).
Differentiating (114), we get
Bg 20 azp1 pydLg 0PI
—_— = Rela {nZ,—+ a ———nZ——))
VATLTS Ghdw Y\ 9p ow 178 9 dn
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1 [ 1 %08, azg1 }

—_— (116)
2g1 g, o dw ddpdw

aS ) aZ

ST R

. Re| a®| Z, —+p, — || .

an,  n¢€nl0 A8 56 P10 (117)

The following extra terms should be added to (116) for 35g/dw if Zg and Z; are frequency

dependent,

20
Re{ a
€nl0 M

2
d ZS aZS ap, 5 9 aZS
np — +a —

2
L[ 9%, dZ

dZ ., » ar, \2
1 1
_ b3 (_‘:+ _§>2|+__£_1_(_£> } (118)
ZS+ ZL 30)2 8(1)2 ZS+ ZL dw el0} 2I‘L 8(1)2 I‘L 0w
The Group Delay
In equation (83), we have shown that the group delay is given by
T,=—-Im| — — |- Im| — —
G [ o Z, 9o
Substituting (108) into the last equation, we have
ap ap ., - aZ
1 1 1 77
TG:—Im ——n—an(Z —+0p -—S)+ —— (119)
p, o vILTS 5 1 9w Z,
Consequently,
2
aTG { 1 ( 3 pn 1 apn apn °
— = _Im{ — - —-——_)
adp P, dddw P, dd dw
2
ap dp, dZ ap, dp
alnz, — (——I-—S_ 72 — I)H (120)
vi 178 3w Y\ ap  dw 1S ap dw
and
oT, 20’/ ap, g
% ———-(z _+p_)J, (121)
an, n, S 9w 1 9w
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Similarly to (118), the supplementary terms for 3T /dw in (120) are

2
T2 ﬂ(ﬁ 2 2 %s A O i
nlp1 2+(1 —

2 ,
6ZL 1<aZL‘2
o) Y dw

} a2

1

Im[a —-n - —
v dw 1P1 5 Z 1 g0 2.\ o
Notice that a n,(Zg(dp,/dw) + p,(8Zg/dw)) and its derivatives are common factors in

the corresponding expressions of both S; and T. Also, in both cases, the second-order

sensitivities of p; and p_appear only in (116) and (120), respectively.

VII. A BRIEF COMPARISON OF THE EXACT METHODS

Three different approaches to the exact simulation of the filter network have been
described in detail.

For the first approach, the basic solutions and the resultant two-port parameters are
independent of the terminations. Therefore, this approach has greater flexibility in
accommodating various external network structures, e.g., multiplexers.

The second approach analyzes the system in its canonical form, in which the
traditional design parameters such as the eigenvalues, eigenvectors, loss poles and zeros are
explicitly available. Although having obvious significance in the traditional analysis and
synthesis, it requires much more computational effort and does not treat the couplings as
variables directly.

The main advantage of the third approach lies in the simplicity and explicitness of
formulating the responses from the basic solution. As has been shown, only one solution is
needed to evaluate the gain responses and the corresponding sensitivities, compared with the
two solutions needed in the first approach. But we have also seen that when the load is
frequency dependent some formulas appear bulky. For this reason, this method is more
suitable for a resistive load.

Actually, the solutions of the unterminated filter and those of the loaded filter are
related as follows. Consider the systems defined in (1) and (94), as

jZl1 =V, (123)
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and v
A . 9 A
2'1= (jZ+ diag{0,0,...,0,nZ DI= V. (124)
Equation (124) can be thought of as resulting from perturbing (123) by
Z+ADI =V

with
AZ 8 ngzLe el=Aze el . (125)
nn n n
From matrix theory, we know that the perturbed solution is given by

GZy e eT(jZ) 'V Az
non (126)

A —
I= (Z) 'v- - -
1+Aze. (GZ) 'e_

Letting V in (126) be e,, e , p and q, we can relate the solutions of the loaded filter to those, as

defined in (10)-(13), of the unterminated filter by
1= —ji+ —25 o, (127)

where

I=p,q,pandq
represent the solutions of the unterminated filter, as given in (10)-(13), and the corresponding

A
results I are the solutions of the loaded filter, as defined in (96)-(99).

VIII. APPROXIMATE METHODS
As has been shown for the exact methods an nxn linear system has to be solved at each
frequency. Here, two approximate methods are introduced with the aim of further reducing
the computational effort, which becomes especially significant when the filter is considered as

a part of a large network, e.g., a multiplexer.

The Diagonally Dominant Z Matrix

The normalized frequency variable

A @, ( ® (‘)0) (+ mo)(w— 0)0)

wAw



22

is a unimodal function in w. Its modulus [s| satisfies the inequality

w+ coo

|s|>| ~ 2 for| w— @, | > Aw .
In other words, in the frequency regions that are Aw away from the center frequency the

above inequality holds. Consequently, the matrix Z = sl + M becomes diagonally

dominant, since its off-diagonal elements, namely the couplings, are usually smaller than 1.

Method 1: Approximate Determinants

By definition we know that the solutions
p = 71 e
and
q= Zle
are actually the 1st and the last column vectors of Z=!. From matrix theory, we know that
the elements of Z~! can be calculated with the determinants of the corresponding algebraic
complementary matrices, known as the cofactors, and the determinant of Z.
In order not to divert attention, we put the mathematical proof of our theory in
Appendix 2, where we show that the determinant of the diagonally dominant matrix Z can be
approximated, by neglecting the lower-order terms of s¥, as

det(Z) ~ s" — [Z(M;;)*]s"7, (128)

where the summation is taken over all the nonzero elements in the upper-triangular part of

M.

The cofactors of the elements of the first column of Z, denoted by det(Zel), can also be
approximated by

~ n—1 ' 2] n-3
det(Z, )~ s"" '~ [ Z (MU.)] s (129)
izl
and
det (Z,) ~ (=12 M, s"7 2, €=1 . (130)

Similarly, we have
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~ -1 2| n-3
det(Z_)=~ s [Z M)’ s (131)
j=n
and
_ k— 2 n-2
det(Z, )~ (- 1) *M,_s""?, ke#n. (132)

Eventually, we have

S2__ [ Z (Mij)2
=1 , (133)

~ det(Zu)

PIT % T ez S =M. s
ij
£+ 1
-1 det(Z —M
p:Z—lz( ) et( gl)z €1 ,eil, (134)
¢~ L det(Z) S [ZM )
ij
— 1 etz —M
q, = —— ( ! o =~ n , k=n (135)
k= Zen det(Z) &~ [T (M. )]
ij
and
2 2
detz_) [ Z‘n Wy
Q,= Z;nlz ¥ T3 J 2 ' e
det(@) & moM s

The results of (133)-(136) give the approximate solutions of (10) and (11).

Method 2: Neumann Series

The Neumann series [7], arising from matrix perturbation theory, is referred to as the
following infinite series expansion,
I+A) " =1-A+AZ - A%+ (137)

subject to the condition

1> max |A
I=i<n

(138)

ail ’

where the A ; are the n eigenvalues of the nxn matrix A. It is actually the generalization of
the one-dimensional Taylor series expansion of

A+ t=1-x+x2-x3+.. 1>]|4. (139)
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By definition we have

1
Z=sl+M=s1+—-M), (140)
S
hence
1 1
Z7'=-a+-m L. (141)
S S

The right-hand side of (141) can be expanded by the Neumann series as

1 1 1 1 1 1 .
Z7'l=-a+-Mm = -M+=M =M+ ., (142)
s s s s 2 &
if the condition, corresponding to (138),
1>  max [A/s, (143)
1<i<n

or

Is| > max A, (144)

1<i=n
is satisfied, where A; denotes the ith eigenvalue of M.
Obviously, matrix Z is diagonally dominant if (144) is satisified, in which case we can
approximate Z-1 by taking a finite Neumann series. The first and the last columns of the
resultant matrix can be used directly as the approximate solutions p and q, furthermore, the

other two solutions, namely p and q, can also be approximated by

5: Z“lp , (145)
and

a=72"'q : (146)
This actually implies that the second-order sensitivities can also be approximated, which is
not possible for the first approximate method. Generally, the Neumann series expansion
approach achieves better accuracy and has more flexibility at the cost of more computational

effort. This is also verified by the numerical example tried.

IX. CONCLUSION
Various approaches, both exact and approximate, to the simulation and sensitivity

evaluation of arbitrarily terminated narrow-band multi-cavity microwave filters have been
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described and compared. Detailed formulas and, for convenient reference, tables have been
presented. Computational efficiency and flexibility have been stressed.

By performing appropriate analyses on the filter network, various responses of
interest, including the group delay and the gain slope, and their sensitivities w.r.t. design
variables and other network parameters, including the nonideal cavity losses, can be
obtained. Consequently, the application of efficient, modern computer-aided design
techniques, such as design optimization, automatic modeling, tolerancing and optimal
tuning, to multi-cavity microwave filters becomes possible and very practical.

Some of these applications have been actually implemented, yielding excellent

results. Further treatment of this subject is to be presented in subsequent reports.
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APPENDIX 1

The Augmented LU Factorization Method

Recall the system defined in (94) as
Z1=V (147)
where
P A . 2
Z' = jZ+ diag{0,0,...,0, n2ZL} }
Suppose the real matrix Z is factorized by, say, the Crout algorithm, into
Z=LU, (148)
where L and U are real lower- and upper-triangular matrices, respectively. It can be easily
verified that
Z =jLU , (149)
where the augmented matrix
2
nyZy,
L
nn

(150)

U 2 U+ diag{0,0,...,0, — j

is also an upper-triangular matrix. That is, complex matrix Z' can be factorized using only a
real algorithm. Now, system (147) can be solved by one real forward-substitution

LI =V, (151)
and one backward-substitution involving mostly real operations, as

Ul=—-jI. (152)
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APPENDIX 2
The Determinant of a Matrix [7]
The determinant of a matrix A 2 [Aij ]"*" can be expressed by
det(A) = 28 sign(o) - Ao( D1 Ao(2)¢2' e Ac( manl| ’ (153)
g€
n

where §_ is the set of permutations on the index set {1, 2, ..., n}. A permutation o can be
expressed as the product of some elementary transpositions T
0=TyTg.. O - (154)

v, is a transposition if for distinct integers k and € € {1, 2, ..., n}, it holds that

v, (k) =¢, (155)
T (0 =k (156)
and
tG)=j, forallj=¢,j = kandj€{1,2,..n} . (157)
In (153) we have
sign(o) = (- 1™, (158)

where m, as in (154), is the number of the elementary transpositions.

The Determinant of a Diagonally Dominant Matrix

Consider the diagonally dominant matrix
Z=s1+M.
[f we denote the off-diagonal elements by ¢, then, corresponding to (153), det(Z) is composed of
terms of the form
Tsfeinmr (159)
We arrange the terms according to the order of s, apparently, the highest-order term is s".

Also, we know by definition that a transposition involves two integers, should there be a
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transposition at least two diagonal elements have to be ruled out, therefore no terms such as
s7~ g could result. The next highest-order terms of det (Z) are those of the form
—sn-zzijzji , i%j (160)
corresponding to one transposition between index i and j. Actually, in (160) we have
Zij = Mij = MJ.i = Zji ,
hence (160) can be written as
-2 (M)? (161)

Neglecting the remaining lower-order terms, we come to the final result:

172 (162)

__.n 2
det(Z) = 5" — [ > o
where the summation is taken over all the off-diagonal elements in the upper-triangular (or,

the lower-triangular) part of M.

The Approximate Cofactors

Deleting the jth row and the ith column of Z, we define the remainder, denoted by Zij’
as the algebraic complementary matrix of the element Zij. The determinant det(Zij) is known
as the cofactor of Zij.

Two of these complementary matrices, namely Zy; and Z_, are two (n— Dx(n—1)
principal submatrices of Z and, therefore, are also diagonally dominant.

Applying formula (162), we have

det(Z ) ~s"~! - [ > s (163)
izl
and
det(, ) =s""" = | > o770 (164)
j #n

The other cofactors of interest here are det(Z,,) and det(Z, ). First consider det(Z,,),
for €=1. Unlike the principal submatrices discussed above, two diagonal elements, indexed
(1,1) and (£,£), are deleted, hence the highest-order term is of the form * ¢ s"~2 This term

can be determined by comparing (162)
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det(Z)~ s" — [ > (Mij)zl s 2

with the Cramer expansion of det(Z) by the first column, i.e.,

n n
_ e-1 _ e-1 (165)
det)= > (1717, det(Z,)= > (-1 M, det(Z,)
=1 =1
as
- £— 2 n— 2
det(Z,)~ (-1 *M, "% e=1. (166)

Similarly, we have

_ k-2 n—2
det(an)~ (-1) Mkns , k=zn . (167)
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TABLE 1
FIRST-ORDER SENSITIVITY EXPRESSIONS FOR
(a) SYMMETRICAL AND (b) DUAL-SYMMETRICAL COUPLING MATRICES
Basic solutions (a)Zp =e, Zq=e¢, ()Zp=e, q= ip

First-order Sensitivity Expressions
Variable Derivative

Symmetrical case Dual-Symmetrical Case
2n2 ( + ) 2( + ) n,n.( + )
b=M ay . C[ 1PePr  MPo'Pely pkqe] ' PePy T PP/ By ol PP+ PPy
=M, A
oM 2
ek 0 g(Pedy t Pdp)  2R9dpdy 0 (PP ¥ PLP,) (PPt PP
2T T 2T TI
b= 0.A0,0 ay os[ mPP ™M AP as| MPP MR IP
S0 ab T o T 2 T T T3 2 T
nn,q'p n,qq nngp lp n,pp
2 n nz( 2+ ) 2n
. ay I ™5 1"2 P9 J M T Pa g 1"2PiPht+ 1 i
(b_ri — ] 2 9 J 2 2 2
ar. n,n.p.q. n,q. 2n.n,p.p . ng(p.+p 2)
1 17254 21 125" n+1-1 25 n+1—1
ay P ngp, Zopp mypy
¢=n A
1 anl ny P, 0 NP, 0
day 0 1Py 0 L
¢=n P
? o, np 20,9 np. np
|
- 5 if¢=k or 6=k

t where C1 é[

—1 otherwise

and o2n+1-2¢ , 2nt1-k
T rj is the lumped resistive parameter of the ith cavity. Taking the dissipation into
account the unterminated filter is described by
(diag {rl, Loy oo rn} +j)I =V,

which is reduced to equation (1) at nominal (zero dissipation)
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TABLE 2
SOME SECOND-ORDER SENSITIVITY EXPRESSIONS FOR

A SYMMETRICAL COUPLING MATRIX

Basicsolutions Zp=e,,Zq=e_,Zp=p,Zq=q

Second-Order Sensitivity Expression

Variable Derivative
2 on(p,, + p,7,) n.n (p,d, +p, 3,+D,q,+D, 4,
ay Cz[ 1'PePic™ PP 172 Py ™ Pide™ Ppd ™ Py

M, dw - - = - 2 _ _
tk By Mg Pedict Pg* Pyt Py 94Tyt q)dp)
b= Mey
1
A 5 23 if¢=k
A W
C2_ { 9s .
a— otherwise
(O]
9 - _
3 3 \[ n;p P nn,pq
b= ©,A0,0, °y 2(£)(-> 1 172
dpaw /N a0/l nn plq nZq'g
12 2
2_ _
a’s [ ?1Py M9l
dw 2.
% Moy Moy
2 _ -
b=r &y 05 [ P B nyRy (Pt By
i - ]
ar, dw , s+ 2.z
1 R (P Bay) - 2n5a,;
5% 2n_ p. n,p
p=n y o [ 1Pt 2Py
=n, _
an_Jdw L0} 5
1 Ny P 0
9 _
ay ds 0 P,

¢=n, I
anzaw Jw n15 2n, T
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TABLE 3
SOME SECOND-ORDER SENSITIVITY EXPRESSIONS FOR
A DUAL-SYMMETRICAL COUPLING MATRIX

Basic solutions Zp =e,, Zp =p

Variable Derivative Second-Order Sensitivity Expression
2
J yii . 2 - - - -
aMekaﬁ) =12 2Czni(pepk-*- pkp€+ p0p1;+ ptpo)
b= Mex
Y,y o'y 21 - _ _ _
Moo M g  2CMaPP T PPt PoPt PPy
¢k ¢k
A %?— iff=koro= k
A w
CZ_ as .
— otherwise
0w
ofnt1-¢ , tBntl-k

addw b /\ dw Ppaw Py
b= (o,u)o,Aco

2

I 825'21 (as >( B\ - IS _

_— = nn| 2 — —)p 1p-— p

apIw apaw 12 "\ o /\ dw apow P

gﬁi._ s 9 _

ar, 9o =12 = 2i n(pp PP
b=r,

2 2

IY1g Yy

. 08 - -
= = 20 -nnypP + PPy

2n+1-k
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TABLE 3 (continued)
Variable Derivative Second-Order Sensitivity Expression
&y 11 5 s _
- n
an, 3 R1%) 1Py
2 2
IYyq Yo s _
= — —— n,p
an, de an, 86 o 2°n
&y 2 oy 1
$ = ny, n, = 0
an, dw an_ow
1 2
2 2
Vg Iy ¥
N0 N6 o 1Pn
&y 22 0 s _
-2 —n
an_dw o 2P1




p I

n

I I
1 RO A 1 A A .
I=[ |=—JY yel’IP:l?]:_JY ye ,YE1-jy
n
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TABLE 4

A
SENSITIVITY EXPRESSIONS OF Ip AND Ip

A

N>
N>
ne>

¢=M,,, r;, n;, n,, Ao, g

2 A A
3’1 A 82 A A ol A 2 | 2

_ y oz 3 3 oz oy
Mo ff(Drpem ) gt ag by B
3ddw Capow  ad dw/ P A o \ dw o/ ap  opdw 1L

A A A .

Pl oa [(Pvr ey I ay A az\%, Py
—=jY 2— —+y— |1 +2| —Z+y— |—— )
8(02 8(02 Jn Jn amz p [0} Jw / 60)2

a "_'1 ay A a% ay
=jY ——Z+y——)l-——e1

P 9w

|

A
The sensitivity expressions of Ip are the same as those of Ip except that e, is replaced

by e_ as appropriate.
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TABLE 5
FIRST-ORDER SENSITIVITY EXPRESSIONS FOR
A LOADED FILTER
System Z'I =V, where Z' = j(s1 + M) + diag{0,0,...,0,n,2 Z }

Basic solutions Z'p = e, Z'q=e,

d
Variable 8& _pll
o ad
1
Mex €1 PPy 5 C1(Peat Py
—j ift=k
clé{
— 2] otherwise
zZ. - 9z
® —(ja—Spr+ n2p2—L) —(jﬁprH n’p q —E)
1) 270 3o 1) 2%n"n g4
Js ds
Aw, wg —j—p" —j—p"
Ja<1> Ppp Jaq) P q
2
n2 —-2n,7Z;,p, —2n,7,p,q,

rj
(cavity losses) - P - g

[SV]
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TABLE 6
SECOND-ORDER SENSITIVITY EXPRESSIONS FOR
THE LOADED FILTER OF TABLE 5

Basic solutions Zp =e,, Zq=e_ , Zp =p, Zq=q

Derivative Second-Order Sensitivity Expression
azpl oz
oM, 0 ColpePyt Py + Cyp (Pt pay) ——
= = C,(p,d,+ p,d,+ D,q,+ p,a,) + = C.Iq (p,q + p, q,)+2 | —
oM, 30 g ~2Pedi™ P Pely™ Pdy) T o Lgld,iPeq T Pt 2 P9, T 0
_E fe—k noj ife=k
where C2é{ (39(: C3é{ 9
- 2= otherwise 2 n2j otherwise
o]
2
d pl aZS 2 T
— - =P -2 —) PP
0’ aw dw
n2 pn J P dw p,+ n2 3 pnqn_ 60)2 pn
a2pn azs - 2( ds >2 T-
—J75 P - ./ P4
8&)2 80)2 n 3w
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TABLE 6 (continued)

Second-Order Sensitivity Expression

Derivative
¢ = wp, Aw
2
apl .623 _ (85)(63) T +2_2<as>(BZL> _
—_— - _ 9%\ [ 95 2 %L
dpow jaq)aco Py b 3 pp jng % — PP,
azpn ) s _ (as>(as T _2(5 <8ZL ( _ _
Ipda T a0 T N s/ PO IN — J\Pad,t qp,
2
apl ‘An 7 1_9_8_ _ 9 9 0 2Z . ﬂ
2
__a P . s o _ R A
an_dw j2ny 2y o (P 4yt P, + 20,P,q, (2052, q, — 1] o
2
2
1
62p dZ

or.dw
1

. as - - 2 L
I3 a4+ pa) + mp(pa, + pa)a -~
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Fig. 1 Unterminated coupled-cavity filter illustrating the coupling coefficients.
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|
—» 1 «f» 2 =-t» 3 —» 1 6 =» 5§
<l— 6 w{» 5 «f> 4 2 - 3 «» 4
i My, Ml(? My,
My, Mg My My, Myg
Mg, Mgy Mg, Mg, M
Mys Mys M3 Mys
My, M;, My My, M
(Mg, Mgs - - Mg, Mg
Symmetrical Realization Asymmetrical Realization

Fig. 2 Notation for symmetric and asymmetric filter realization examples [5].
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1: n% j(51+M)

Block representation of the overall network considered.
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Zs I I,
. -]
+ +
1:n2 |V, -y’ Vo | nZ:
(a)
Z, I, I
+ +
V1 iy Vn
(b)

Two-port representations of the coupled-cavity filter.

(a) they matrix. (b) they matrix.
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Zg :_ _______________
I
—=1 1 nf ———: 4 n22=1 Z
o |
L 7/_______
Zln Zin z

Fig. 5 The input impedance of the loaded filter illustrating Z, Z', Z', and Z, .



