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Abstract

In this paper, various fault location techniques in analog networks are described and
compared. The emphasis is on the more recent developments in the subject. Four main
approaches for fault location are addressed, examined and illustrated using simple network
examples. In particular, we consider the fault dictionary approach, the parameter
identification approach, the fault verification approach and the approximation approach.
Theory and algorithms that are associated with these approaches are reviewed and problems
of their practical application are identified. Associated with the fault dictionary approach we
consider fault dictionary construction techniques, methods of optimum measurement
selection, different fault isolation criteria and efficient fault simulation techniques.
Parameter identification techniques that either utilize linear or nonlinear systems of
equations to identify all network elements are examined very thoroughly. Under fault
verification techniques we discuss node-fault diagnosis, branch-fault diagnosis, subnetwork
testability conditions as well as combinatorial techniques, failure bound technique and the
network decomposition technique. For the approximation approach we consider probabilistic
methods and optimization based methods. The artificial intelligence technique and the
different measures of testability are also considered. The main features of the techniques
considered are summarized in a comparative table. An extensive, but not exhaustive,
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I. INTRODUCTION
For more than two decades, the subject of fault location in analog circuits has been of
interest to researchers in circuits and systems. In recent years this interest has intensified
and a number of promising developments has emerged.
One distinguishes three main problems that are the main concern in network testing,

namely, fault detection, fault location and identification and finally fault prediction. In the

fault prediction problem [1], [63], [119], [120], [167], the response of the network is
continuously monitored to identify whether any of the network elements is about to fail. The
main concern is to replace these elements before an actual failure occurs and with minimum
loss in the lifetime of the replaced elements. Fault detection is obviously a minimum
requirement for fault location and identification. We address in this paper the fault location
and identification techniques for analog networks. Therefore, we assume that the network
has already been identified as faulty, i.e., a fault has been detected.

The analog circuit fault location problem [32] can be an extremely difficult problem
[162]. This is because of the difficulty of measuring currents in-situ (without breaking
connections), the lack of good fault models for analog components similar to the stuck-at-one
and stuck-at-zero fault models, which are widely accepted by the digital test community, and
the nonlinear nature of the problem. If, for example, a parameter value changes by a certain
factor, the responses do not change by the same factor, i.e., the relationship between the
circuit responses and the component characteristics is nonlinear, even though the circuit may
be linear.

By a fault we mean, in general, any change in the value of an element with respect to
its nominal value which can cause the failure of the whole circuit.

The faults could be catastrophic faults (hard faults) when the faulty element produces

either a short circuit or an open circuit, or deviation faults (soft faults) when the faulty

element deviates from its nominal value without reaching its extreme bounds. These soft

faults could result from manufacturing tolerances, aging or parasitic effects. Many fault



location techniques only address the case when just one parameter causes the fault. This is
referred to as a single fault. Practically, multiple faults, simultaneous changes in several
parameters, could occur and recent techniques address this difficult case.

Several criteria may be used for categorizing fault location techniques. The most
popular one is categorization according to the stage in the testing process at which simulation

of the tested circuit occurs [102], [121], [130]. In particular, we have the simulation-before-

test approach as well as the simulation-after-test approach [5], [70]. Fig. 1 summarizes the

different techniques according to this classification.

In Section II we consider the fault dictionary techniques. These techniques, as

indicated in Fig. 1, fall under the simulation-before-test approach. The techniques are widely
used in digital networks. We first consider the three main methods in constructing a fault
dictionary of the analog circuit, namely, the de¢, frequency domain and time domain
approaches. We then study methods for the optimum selection of a limited number of
measurements to achieve the required degree of diagnosability. Many criteria could be
implemented for the on-line isolation of faulty elements using the stored entries in the
dictionary. We consider heuristic as well as statistically based criteria that have been

proposed for that purpose. Fault simulation plays a very important role in the fault

dictionary approach. We therefore consider efficient simulation methods for simulating
network faults for linear and nonlinear networks.

Parameter identification techniques are addressed in Section III.  Under the

assumption that enough independent measurements are available, all network parameters
could be identified. These techniques fall under the simulation-after-test approach, since
most of the network simulations are performed at the testing time to identify the network
parameters. These techniques are classified as linear or nonlinear according to the nature of

the diagnosis equations. For the nonlinear techniques we consider dc testing, time domain

testing, multifrequency testing and resistive network testing. For linear techniques we

consider the generalized star-delta transformation technique as well as the component



simulation techniques. The main theoretical results for the parameter identification
techniques are given and illustrated using simple network examples.
Under the assumption of a limited number of measurements, all parameters of the

network can not be identified. Fault verification techniques address this problem (Section

IV). The basic assumption is that a few elements are faulty and the rest of the network
elements are within design tolerances. Network theory, mathematical theory and graph
theory are utilized to provide very promising theoretically based techniques. Fault
verification techniques fall under the simulation-after-test category. We consider the
substitution theorem based techniques, failure bound technique, the network decomposition
approach, the symbolic function techniques and fault verification using nonlinear diagnosis
equations. The techniques are explained and the theoretical bases of these techniques are
examined and illustrated.

In Section V we consider the approximation techniques which utilize optimization.

We also consider the inverse probability method. Being a probabilistic technique, many
network simulations are performed before testing to characterize the network statistically. €2
optimization, €; optimization and quadratic optimization techniques utilize an appropriate
objective function to estimate the most likely faulty elements. On-line simulation is needed
and these techniques are considered under the simulation-after-test techniques.

The artificial intelligence technique is briefly described in Section VI. We then give
an overall comparison of the different techniques against the practical goals and examine in
some detail the problems with the practical implementation of the techniques. Throughout
the paper a number of testability measures are considered. Since design for testability is
quite important, we consider different measures of testability that have been proposed in a

separate subsection.



II. FAULT DICTIONARY APPROACH
The usual method of automatically testing digital networks compares failed board

output levels with a set of pre-stored outputs on the Automatic Test Equipment (ATE).

Similar techniques are developed for fault location of analog networks. These techniques are
based upon pattern recognition methods [7], [169].

The first step in constructing the dictionary (look-up table) is fault definition, where
the most likely faults are anticipated. This is a very critical aspect of the entire approach
since only these faults could be identified. Large numbers of potential faults must be
included. This, of course, will have an impact on the size of the dictionary and impose a
limitation on the approach.

The circuit under test (CUT) is then simulated for these hypothesized faulty cases, in

order to develop sets of stimuli and responses which will detect and isolate the faults. The
signatures of the responses are stored in a dictionary for use in the on-line identification of
faults. The optimum choice of stimuli, responses and signatures is required to store the
minimum amount of data that achieves the desired degree of detection and isolation.

At the time of testing, the faulty CUT is excited by the same stimuli that are used in
constructing the dictionary. The signatures obtained are compared with those stored in the
dictionary. A fault isolation criterion is implemented to identify the faulty CUT to one of

prestored faults or to an ambiguity set that contains a set of possible faults.

2.1 Dictionary Construction
The construction of the dictionary is initiated by choosing the input signals to the
circuit, the domain of analysis and the responses to be measured. We classify the different

methods according to the domain of analysis.



2.1.1  DC Approach for Dictionary Construction

A representative method of this class has been described by Hochwald and Bastian

[563] and Bastian [6]. Their method utilizes SYSCAPII, a general purpose computer-aided

design simulator, to compute the dc voltages at the nodes of the circuit under arbitrary dc

stimulus. A block diagram of the overall dc approach is shown in Fig. 2. The approach is

summarized in the following steps:

Step 0

Comment

Step 1

Step 2

Comment

Comment

The test engineer provides the network description, fault definition and the
input stimuli.

The input stimuli are selected to exercise the "on", "off" and "linear" states of
the semiconductor devices (e.g., diodes, transistors, FETs, ete.).

Different fault situations (single, hard or soft faults) are inserted one at a time
into the circuit simulator. The simulator computes dc nodal voltages and
component overstresses resulting from the faults.

The effectiveness of a stimulus in detecting a fault f is evaluated using the

Euclidean distance dydefined by

A 0 f\2
df='Z V)= VP, feF,
JEM

(2.1)
where V0 is the nominal dc voltage of jth node, V;fis the fault dc voltage of the
jth node, M is the set of measurement nodes and F is the index set of possible
faults.

If d¢f < 0.5 ny, (heuristic bound), where n,, is the number of measurement
nodes, the fault f is not detected and another stimulus is required.

Form the ambiguity sets for every measurement node using the different
input stimuli. Every ambiguity set has a range 1.4V (% 0.7 V of a specific
fault voltage).

The nominal ambiguity set has a range of + 0.7 V of the measurement node

nominal voltage value.



Step 4 Manipulate the ambiguity sets to find out the level (degree) of isolation and
the unnecessary measurement nodes.

Comment This is achieved using logical intersection and symmetric difference
operations on the elements of the ambiguity sets, as explained in Section
2.2.1.

Step 5 Construct the fault dictionary using the reduced set of measurement nodes.
Indicate the ambiguity groups and the secondary overstresses caused by
faults.

For the video amplifier circuit of Fig. 3 [53] a set of 20 possible faults outlined in Table

2.1 are considered. Among the possible test node candidates 2, 5, 8, 11, 16, 18, 26, 27, 33 and

36 only five nodes, namely, nodes 2, 5, 8, 11 and 16 are utilized in constructing the dictionary

using two input stimuli + 30 V dc. A part of the fault dictionary corresponding to fault

numbers 4, 10 and 14 is shown in Table 2.2, where the simulated nodal voltages are stored.

2.1.2 Frequency Domain Approach

Different approaches are proposed that utilize the sinusoidal excitations to linear and
nonlinear networks (higher-order harmonics are included in the dictionary [88], [89]).
Frequency domain approaches have the advantage that the theory employed is well
understood by most test engineers [24], [157]. Also, the hardware required for their
implementation is simple, basically a sinusoidal generator, voltmeters and spectrum

analyzers for testing of nonlinear networks.

2.1.2.1 Seshuand Waxman Approach [79],[135]

This is one of the earliest techniques for constructing a fault dictionary for linear
frequency dependent circuits. Using only input-output measurements and magnitude
information the dictionary is constructed.

Let the input-output rational transfer function H(s) be represented by
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where s is the complex frequency and z;, pj,i = 1,2,...n,andj =1, 2, .., np are the transfer
function zeros and poles, respectively. Let the angular frequencies, wj, ®; be the
corresponding magnitudes of z;, p; These frequencies are called the breakpoints and they
could be identified from the amplitude response of H(s). The test frequencies are chosen such
that there must be at least one test frequency below the lowest nonzero break frequency, one
above the highest finite break frequency and one between successive breakpoints. The
rationale behind this choice is that all poles and zeros of the network are functions in the
network parameters. Parameter deviations cause changes in the pole and zero locations and
consequently change the magnitude of the transfer function H(s). This choice of test

frequencies has been widely used ever since proposed by Seshu and Waxman [46], [135], [144].

The procedure for constructing the dictionary could be summarized as follows:

Step 1 Compute the transfer function of the given network in symbolic form as a
rational function in s, with the coefficients expressed as function of the
network elements.

Step 2 Use nominal element values to compute the breakpoints. Consequently,
choose the test frequencies.

Step 3 For every fault situation (deviation in the network parameter) compute the
gain signature at the different frequencies.

Comment The gain signature is obtained by quantizing the deviation of the gain from
nominal (e.g., within 0.5 dB of nominal corresponds to (0) signature, from 0.5
to 1.5 dB higher than nominal corresponds to (1) signature, and so on).

Step 4 The fault dictionary is constructed using the gain signatures of all fault cases.



Comment Dictionary entries are codes not actual gain values.

For the passive circuit of Fig. 4 [169], the input-output relation is given by

VOut a, -+ a,s

v 2 3’
in bo + bls + b2s + bss

where the coefficients as functions of the network elements are given by

ag = Ry,
a; = R1Ra Cy,
bo =Ry + Rz,

by = R1C1R2 + RaR4C3 + (C2 + C3) (ReR3 + R3Ry + RaRy) + R{R4C3,

ba = R1R9R3 C1(C2+C3) + R1RaR4C3(C1 +C2) + R3gR4C2C3 (R1 + Ry),

bs = R1R2R3R4 C1CoCs3.
The circuit has 3 poles and one zero. For the nominal values R; = R4 = 1 MQ, Ry = 10 MQ,
R3 = 2MQ,C; = 0.01 pF and C9 = C3 = 0.001 pF, the break points of the network are at 100
rad/sec for the zero and 83.3, 288.6 and 2288.1 rad/sec for the network poles. Five test
frequencies are chosen according to the proposed suggestion by Seshu and Waxman. The
fault signature codes are given in Table 2.3. The fault dictionary using the test frequencies
10, 95, 200, 800 and 5000 rad/sec for =50% deviations in the network elements is shown in
Table 2.4. Note that the first column of the code corresponds to the amplitude response at
10 rad/sec. Similarly, the remaining columns correspond to test frequencies 95, 200, 800 and
5000 rad/sec, respectively. Also, note that both R3+ and C3+ as well as R3— and C3— have the
same codes (see Table 2.4). As such they form ambiguity sets. The rest of the fault cases are

uniquely identified.

2.1.2.2 Bilinear Transformation Method
The method, as presented by Martens and Dyck [81], is based on the fact that the
transfer function of a linear network can be expressed as bilinear function in any network

elements ¢;, i € I, as follows
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a8, + a(s)

H )= i€l 2.
(s, $)) b, 13, + by L (2.3a)

where
I, -A_-{1,2,...,n¢}, (2.3b)
is the index set of the network parameters and aji(s), bji(s) are polynomials in the complex
frequency variable s and are evaluated at the nominal values of the remaining network
elements cbj, jel » j # 1. We are interested in the variation of the function given in (2.3a) with
respect to the change in the network element ¢, (¢, is to change between its bounds) at a
number of test frequencies. The locus of the change in the function H(s,,) with respect to ¢,
is plotted in the complex plane. As such, both the magnitude and angle of the transfer
function are taken into consideration. The locus of H(s,,) is either a straight line or an arc of
a circle for a given frequency s, = jw, Test frequencies are chosen according to the Seshu
and Waxman proposal with the assumption that the change in ¢, should produce appreciable
change in the transfer function H(s) at the chosen frequencies. From (2.3a) it is clear that to
compute the coefficients a and bji’ J = 0,1, three settings of ¢, are needed. So for n _ frequency
points, a network of n ® elements willneed 3n_n ® simulations to construct the different loci of
the transfer function. These loci constitute the dictionary. The method is applicable to single
soft or hard faults in linear networks.
The loci of the transfer function of the network of Fig. 4 is drawn in Fig. 5 at the test
frequency w = 200 rad/sec. Each locus is obtained by changing a single network element

from 0.1 to ten times its nominal value, as is indicated on the figure for the seven different

elements of the network.

2.1.2.3 Sparse Matrix Recognition Techniques
A number of approaches has been proposed which use the frequency domain response

in constructing a sparse recognition matrix (dictionary).
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In one version of the voting technique, [141], [143], the response of the network is
quantized into three levels. Let
Ay _u (2.4)
d, = H(0)- H()
be the deviation of the network response from nominal due to faultf = 1,2, ..., n;at w,i =1,

2,..,n,, where H(w,) is a real gain or phase. The response deviation is quantized as follows

e *
1 fordif> v,
- * 2.5
d,= 0 for|dif|s v, (2.5)
-1 fordif<— v,

L

where y, is a predetermined threshold level related to uncertainty in the network response
resulting from parameter tolerances and measurement errors. The number of test
frequenciesn  is usually chosensuchthatn = 3n " These extra redundant frequencies are
utilized to improve the isolation capabilities of the voting technique. The dictionary is
constructed using the entries d, Itisclear that a sparse dictionary will result.

A sparse fault dictionary for the network of Fig. 4 is constructed in Table 2.5, utilizing
gain measurements at = 10, 200 and 800 rad/sec as well as phase measurements at o =
2000 and 8000 rad/sec. We applied the quantization indicated in (2.5), with g, = 0.08 for
phase measurements and 0.025 for gain measurements. Only the fault cases similar to that of
Table 2.4 are considered. Note that (Rl+, Ry7), (R, R2+), (Cz+, C3+) and (Cz‘, C3_) form
ambiguity sets.

Another approach for constructing a sparse recognition matrix was proposed by
Varghese et al. [168]-[170]. Prior to the storage of the elements dif*’ they are normalized to
compensate for wide ranging deviations in the elements of dif*' If g, is the threshold level

defined in (2.5) the elements dif* are modified to

*

d

’ if
d,= — ,i=12.,n ,f=12..,n. (2.6)
]y ©

If frequency domain gain and phase measurements are used, the checkout

normalization will enable these different physical quantities to become comparable. Other
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normalizations are reported in [55]. Let ||d'f] represent the Euclidean norm of d'f =
[d'yr dof... d'nmf]T, where T indicates the transpose. The normalized response of (2.6) is

given by

¢
dif = 1.f. i=1,2,..,n ,f=12,.,n,. (2.7
d |

Let the €; norm of df = [dyf dor ... dnwf]T be given by
< d|. (2.8)

If the absolute value of any of the elements of df is less than a certain fraction of the €; norm
(2.8) (say (1/(3ng,))) it is set to zero. With these elements set to zero the renormalized stored
entries of dir constitute a sparse fault dictionary.

Sparse formulation of the dictionary results in the saving of dictionary memory and
required computing time.

In Table 2.6 we followed the procedure described by equations (2.5) - (2.8) to construct
a normalized nondimensionalized sparse fault dictionary. The threshold level wyj is taken as

in Table 2.5. Note the similarity in the configuration between Table 2.5 and Table 2.6.

2.1.3  Time Domain Analysis Approach
The dynamic testing approach has been proposed for testing linear dynamic circuits.

We consider here two representative techniques of this approach [129]-[132], [142], [156].

2.1.3.1 Pseudo-Noise Signal Method [76]-[78]
The network under test is excited by a periodic pseudo-noise signal n(t) as shown in
Fig. 6 [83], [86]. Under certain well-defined conditions [156], the input-output cross-

correlation function approximates the circuit impulse response, i.e.,

T
1
h(it)= — [ n(t— iv) v(t)dt , (2.9)
T!o

where it is a multiple of the pseudo-noise clock frequency and v(t) is the output signal. The

test time T depends on the signal/noise ratio required to reduce measurement errors to
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acceptable levels. If the cross-correlation function does not approximate the circuit impulse
response, it can still be used as a signature describing the condition of the circuit. Let the
deviation in the impulse response, for the fth fault case, from its nominal value at the ith time
delay be given by

d. 2 h%Gv - hiGy) . | (2.10)
Either the djf*, i =1, 2, ..., ny, f = 1, 2, ..., ns, where ny, is the number of measurements, are
used directly in forming the dictionary or they are first quantized as illustrated in (2.5) and

then stored in a dictionary.

2.1.3.2 Test-Signal Design Method [129]-[132]

Schreiber proposed the test-signal design method which utilizes the modern ATE
system capabilities for arbitrary signal generation [129]. A test signal is designed that first
drives the linear dynamic circuit under test to a non-trivial initial state and then to a zero
state in finite time. This signal, realized as a piecewise constant waveform, is called the
complementary signal. It constitutes a fault signature because its step amplitudes are
functions of the circuit pole locations in the complex s-plane and therefore are also functions
of the circuit element values.

When zeros of transmission are present in the transfer function of the circuit the
response of the system to the complementary signal could cross the zero level at a number of
times less than or equal to the number of zeros of the transmission. The changes in the zero
crossings in the time domain are augmented to the changes in the complementary signal
levels due to all possible faulty cases and are compiled to form the fault dictionary. Or,
similar to the bilinear transform method, the fault dictionary is established by drawing the
loci of all single element drift failure fault signatures in the augmented signal space. A
decision region is defined around each locus to uniquely identify an ambiguity group of

elements. The definition of these regions takes into account the tolerance variations in the
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good element components and simplifies the definition of the dictionary. For non-catastrophic
failures, the dictionary takes the form of a set of mathematical inequalities.
The complementary signal is derived for the nominal as well as the faulty circuit

using the circuit response to a pulse function u(t). Let

1, 0=st=rt,

u(t)= { (2.11)

0 , elsewhere .

Then the complementary signal may be written as

"p
Z a u(t— i) , (2.12)
i=0

where a, = 1 and n, is the number of poles. Let v (t) be the response of the circuit to u(t). The

response of the circuit to the complementary signal is given by

(2.13)

M

a, vu(t— it).
0

-
Il

The complementary signal [q, a, ... (1np]T is chosen such that the response must vanish for t =
(np + 1)t. Let the response in (2.13) be sampled at q points, t intervals apart, for t = (np+ 1)t
Ifq= n+ 1, a system of overdetermined equations in the parameters a is constructed. The

system of equations has the form

- vu((np+ 1) 7 r-‘vu(npt) vu((np—l)t) Vu(t) O a, ]
- Vu((np+ 2)1) vu((np+ Dv) vu(npt) v,(20) a,
- : : : : . 214
- vu((np+ q)v) | _vu((np+ g-1)1) vu((np+ q-2)v) ... v, (qu) o anp

The least-squares solution is employed to find approximate values of the parameters a.
The implementation of the method utilizes a programmable waveform analyzer to
obtain the samples needed in (2.14) from the CUT and a programmable waveform generator

to apply the complementary signal, computed in (2.14), to the CUT and observe the possible
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changes in the zero crossings of the time response of the system. An example of the
application of the complementary signal to a two-pole filter is given in Fig. 7.

The complementary signal approach has been utilized for go-no-go testing of a
partitioned CUT [132], [175]. In[25] it has been shown that one signal is not always sufficient

and a generalization of the complementary signal concept has been proposed.

2.2 Selecting an Optimum Set of Measurements

The objective of optimum selection of measurements is to reduce the number of
measurements without affecting diagnosis capability. It should be possible to select few
measurements and still retain relatively good isolation properties. Consequently, this will
lead to eliminating redundant measurements and reducing the dimensionality of the fault

dictionary.

2.2.1  Binary Logical Manipulation Technique [53]

For every measurement i € I, where
A 2.15
Iy2{,2..,n } (2.15)
is the index set of measurements, the different hypothesized faults are grouped into Y;

ambiguity sets, F.

it Figs -+ Fiy; Every ambiguity set contains the faults that produce almost

the same value of the measurement, taking into consideration measurement errors and
parameters tolerances. In Table 2.7, the ambiguity sets for the video amplifier circuit of Fig.
3 are given for a number of possible candidates of the measurement nodes. An example of
forming ambiguity sets is shown in Fig. 8 [165], [166], where heuristic as well as more
accurate fault groups are generated. A theoretically based method utilizing worst-case
analysis could be implemented to characterize the fault bands. The problem is that exact
worst-case analysis is too expensive to be performed in very large networks. Monte-Carlo

simulation could be employed to identify the fault bands.
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The ambiguity sets must be manipulated to determine which faults can be isolated
uniquely and what measurements provide the highest degree of isolation and, consequently,
should be retained. The basic procedure applies the following logical rules.

Rule 1 Any ambiguity set which has a single fault within it, identifies uniquely that
fault. The measurement corresponding to this ambiguity set is retained.

Rule 2 Ambiguity sets whose intersection or symmetric difference result in a single
fault, also uniquely define the fault. The measurements corresponding to
these ambiguity sets are retained.

An algorithm that implements the above stated rules will proceed by selecting the two

measurements that have the highest number of ambiguity sets. They are manipulated using

the logical rules to obtain a list of faults which are uniquely isolated. If all faults have not
been isolated uniquely, the ambiguity sets of the measurement that has the next highest
number of ambiguity sets are utilized. If the ambiguity sets of a measurement do not isolate
any new faults, then the measurement is discarded. The process is continued until all faults
are uniquely isolated. If after going through all measurements unique identification is not
achieved for single faults, the procedure is repeated to see if isolation can be obtained for two
faults together, and so forth. Hochwald and Bastian [53] applied this algorithm quite
successfully to reduce the number of needed measurement nodes of the video amplifier circuit
to nodes 2, 5, 8, 11 and 16. As an example of the application of Rule 2, fault number 4 is
uniquely identified by the symmetric difference of node 8's ambiguity set 1 with node 11's

ambiguity sets 1, 2 and 3 (all at — 30 V input) of Table 2.7.

\2.2.2 Heuristic Technique for Measurements Selection by Optimization

A heuristic approach which selects the optimum set of measurements was proposed by
Varghese et al. [169]. The proposed procedure selects a set of measurements without
performing an exhaustive search of all subsets of possible measurements. A performance

index or a confidence level is introduced as a measure of the effectiveness of a subset of
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measurements. This confidence level is optimized. As such, the chosen subset of
measurements could be considered optimum.

The discrimination power of the ith measurement is defined as

- 12
ne 1 9

Z (dif - di,f+ 1)

f=1

, i€l . (2.16)

A
D, = M

This is a "distance" measure computed using the entries of the dictionary matrix d;; It
measures the effectiveness of each measurement to discriminate between the different n,
fault cases. A measurement of very low discrimination power is of little use in fault isolation.
In many pattern recognition techniques separability measures are employed for
pattern classification. It is applied here (measurements selection) to reflect the fault cases
separability of a given set of measurements. The following distance measure is proposed to
measure the separability of two fault cases f, f, in the set F of all possible faults using the set

of IM measurements.

12

n 9
o[ (a0,
f1f2 21 lfl 1f2

For ngfault cases we will have n;(n—1)/2 separability measures. A low separability measure

Vi, f'2 €F, flzt £y (2.17)

indicates close fault similarity and possibly confusion in the diagnosis. The separability

measure is usually expressed as a percentage by finding

D* = Max Df1f2 Vfl, f2 €F, flzt f2 (2.18)

and modifying (2.17) as follows.

* _ 12 (2.19)
12

The measurement selection problem in the classical sense can be viewed as a
combinatorial optimization problem requiring the setting of a criterion function such as the
degree of diagnosability together with a search procedure. The ability of the measurements to
discriminate between two fault cases depends upon the distance between them. The

confidence level is defined as a function of the separability measure. A confidence level of
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unity is assigned to combinations of fault cases with separability measure of 50% or more.
Those fault case combinations with separability measures less than 50% retain the actual
value of the separability measures. Let CONF1 be the number of combinations with
percentage separability measure = 50% and CONF2 be the cumulative sum of separability
measure of combinations with percentage separability measure < 50%. Then the confidence

level is given by

NF1 NF2
CONF 2 €0 + €O x 100 . (2.20)
ne (nf— 1)/2

The iterative procedure of measurement selection is explained in the flow diagram of

Fig. 9. Optimization is carried out as follows. Let

‘A — = i (2.21)
D, = Idif dj,f| , f= 12,0, , ijel,
e
A .

L = ldel ,i=12,.,n_ (2.22)

f=1

and

L é Li + Lj . (2.23)

If DY, =1, 2,..., ngis less than a fraction (say 1/0) of L (2.23) the retention of both
measurements i, j need not increase the discriminatory information and hence the
measurement of less discriminating power is discarded. The factor "9" is kept a variable to
add or discard measurements to achieve maximum confidence level.

For the passive circuit of Fig. 4, 56 measurements (gain and phase) obtained at 28
different test frequencies are considered as candidates of the diagnostic measurements. The
selection procedure of Fig. 9 is applied. In Table 2.8, the list of the sets of measurements that
are selected during the heuristic optimization process together with their confidence levels
are given [169]. Note that a few measurements achieve a high confidence level and
increasing the number of measurements increases this level slightly. We have investigated
different implementations of the heuristic technique, applying them to the circuit of Fig. 4.

The results obtained were quite similar to those of Table 2.8.
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2.2.3  Probabilistic Theoretic Approach for Optimum Features Selection
The actual value of a voltage measurement due to the departure of the component

values from nominal and to measurement errors could be given by [39], [43]

0 aV? (2.24)

m __ —_ : .
VAERIEDY 8c1> Ap+ 8, €I,

jel i
¢
where Ac1>j represents the deviation of the jth component value from nominal, §, represents the
error in measurement, ViO is the nominal value of voltage at the ith node (non-catastrophic
faults are assumed) and the partial derivatives are evaluated at ¢ = ¢°.

Given that Acbj, jel > and §,, i € I, are independent normal random variables, their
probability distributions are fully specified by their means and standard deviations. Let us
assume that the means are zeros and the standard deviations of A(bj and &, are g and &,
respectively. As such, the probability of measuring V™ is given by

exple = (V™= VO A=L (vm_ vO)
p 2 mm

Prob(V™) = (2.25)
mm

where exp is the exponential function and [A | is the determinant of the matrix A _ whose

(i,j) element is given by

avo, ,av?

S (=)L) (2.262)
ap, /\ap, /K’

kel k k

®
ifi # jand by

\ aV?- 2

2+ S (a__> &, (2.26b)
kEl(b ) (bk

wheni =j.
Similarly, we can write the probability of the changes in the parameter values A¢ v
conditional on the observed measurements, namely, Prob (A¢|V™). The conditional

distribution is normal with the mean vector given by

A AL ovmo Vo ©2.972)

$m ~ mm
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and covariance matrix

A —1 AT 2.27b
App = Do~ Aom A Apm ( )
where
A 2 2 2
Ad>¢ £ diag {81, 82,...,8n¢} (2.28a)
and the (i,)) element of the matrix A om is given by
av?
( Vi > 2 (2.28b)
ap, /17

1

with the derivatives in (2.26) and (2.28b) are evaluated at nominal values.
An information theoretic measure of the expected information deficit (compared with
perfect certainty) when we have performed a set of measurements V™ is given by [39]
JV™) & J Prob (Ad | V™ log_[Prob(Ad| V™ d(Ad), (2.29)
where log, is the natural logarithm function.
The information deficit expected in advance of actually performing the tests is
obtained by integrating over all possible outcomes of Vi each weighted by its respective

probability, Prob(Vm):

J g —-J Prob (V™) J Prob (A¢ | V™) loge [Prob(Ad | VH1dAd [dV™. (2.30)
Since Prob (A}|Vm) is given by (2.27) and (2.28) the second integral can be evaluated and

(2.30) could be expressed as
J = constant + — 1 A | (2.31)
J = constan 5 0g, Al - )
To minimize J (information deficit), i.e., maximizing the information from a set of
measurements IM, we minimize the determinant of A’ o Freeman [39] has shown that the

determinant of A’(N) will be proportional to the determinant of Amm‘1 under certain

reasonable conditions. Then the selection criterion is to
maximize [A_ | . (2.32)
mm

Criterion (2.32) is quite useful for screening possible measurements to obtain a small
efficient set. The application of this criterion requires simulation only of the normal circuit.

The criterion is similar to the D-optimal design criterion in the design of experiments problem
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[101], [104]. It is clear that the selection of measurements could be viewed as an exercise in
designing the optimum experiments for reducing the uncertainties in the parameter
estimates.

Other statistical techniques for the best choice of response measurements are given in
[54], [55].

Due to the nature of the D-optimal experiment design problems, complex optimization
calculations are required. Nevertheless, the concept could be illustrated analytically on
simple examples. Consider the passive circuit of Fig. 10a. Assume that R is the only element
that could be faulty and changes from its nominal value of 1.0. Both L and C are assumed
fixed at their nominal values of 1.0 each. Using|V,u1/Vin| as the measured output we get

‘ v 1-w?’LC

outl

Vin [(1 —?LO)? + @CR?]"

Therefore, using (2.26b) the matrix Ay, is just a scalar value, which is given by

(002 (1 — 2 LORJ

o

3
[(1-0?LC) + (WCR)?

where g2 is the variance of the element R. The frequency dependent part is plotted in Fig.
10b as the dashed curve with R = L = C = 1.0. It shows that the determinant of A, is
strongly dependent upon the test frequencies. Specifically, the points @ = 0 and w = 1.0 are
to be avoided because they are noninformative. The region ® > > 1.0 is unacceptable for the
same reason. Using |Vyut9/Vin| instead as the measured output, the frequency dependency of
|Amm| is plotted in Fig. 10b as the solid curve. Note that, using statistical interpretation,

|Voute| provides more information than |V 4.

2.3 Fault Isolation Techniques

A fault tree approach [153] is usually followed during the diagnosis process. First the

CUT is diagnosed to be either sick or healthy. If the CUT appears faulty, the fault is first



assigned to a certain ambiguity set F;. Then, the fault is isolated to a component of this
ambiguity set, q)ij € F;. Itis possible that a component be a member of more than one subset.
We consider a statistically based criterion, a fuzzy concept criterion and other

heuristic techniques for isolating faults.

2.3.1 Maximum Likelihood Measure[39]
Freeman [39] has utilized the theory of statistics to develop a fault isolation criterion.

For n¢fault cases (2.24) is given by

VE=VEE D — Ag + 5, i€,
jacb |

where Vif is the fault voltage of the ith measurement, stored in advance as in the dec dictionary
approach, corresponding to the fth fault case and the derviatives are evaluated at the
parameters of the fth fault case ¢f. Similarly to (2.25) the conditional probability of obtaining
measurements Vm when f is the fault case is given by

1 m £ T f -1 om f
exp{-—g(V —V)(Amm) (V- -V}

Prob (V[ f) = ,
(2H)U2|Af !1/2

mm

(2.34)

where the elements of the matrix Apn,! are as given by (2.26) except that the partial
derivatives are computed at ¢ = ¢f, the assumed values of the network elements for the fth
fault case.

The probability of classifying the fault to be the fth fault case given the measurements

Vm is denoted by Prob (f1Vm) and is expressed using Bayes' relation as

Prob (V™| f) Prob () (2.35)

Prob (V™)
where Prob(f) is the prior probability that the CUT corresponds to the fth fault case.

Prob (f| V") =

Prob(Vm) is the overall probability of measuring Vm and is given by

Prob (V™) = > Prob(V™| ) Prob (f) . (2.36)
fer
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The isolation criterion is to pick the fault case that results in the highest value of
(2.35). Using (2.34) this can be expressed as: Choose f € F that minimizes
m AT Af Tlom  of f 2

V:=-V) (Amm) (V7 '=-V)+ loge [|Amm| / (Prob(f)°] . (2.37)

Under the assumption that all faults are of equal probability (2.37) reduces to

m AT af -l om of f
V'=V) (Amm) (V7=V) + loge|Amm! ) (2.38)
Suppose further that the variance-covariance matrix Ay,f is independent of the fault type.
In this case we drop the superscript f and (2.36) is given by
2.39
(v vHTA-L (v _vi) (2.39)
mm

(2.39) could be also used if A,y is the pooled covariance matrix [55], i.e., the matrix obtained

by taking the average of the different Aynf, f= 1, 2, ..., ng. Expression (2.39) should be

compared with the well known nearest-neighbour rule criterion for fault isolation which is

widely used [53], [87], [168] - [170]. The nearest-neighbour rule is given by minimizing over
all f the value of

VeV vmov) | (2.40)
which is the Euclidean distance between the measured and stored quantities. It is to be noted
that (2.39) could be reduced to (2.40) under the assumption that the variances of the
measurement errors &;2 of (2.26) greatly outweigh all the other terms involving the variances
of the network parameter deviations g2 of (2.26). As such A, could be considered as a
diagonal matrix. If all §;2 are equal, the criterion cited in (2.40) could be used instead of
(2.39). The immediate advantage of using (2.40) is its simplicity. Nevertheless, the criterion
of (2.37) is more general as well as being closer to the practical situation. Implementation of

the criterion (2.37) implies:

1) Utilizing reliability data in assessing the likelihood of every fault case.
2) Employing information on circuit parameter tolerances.
3) Errors and inaccuracies in measurement devices are taken into consideration.

For the video amplifier circuit of Fig. 3, three faults were actually induced on a

breadboard [53] and the resultant nodal voltages at the five test points were measured. Table
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2.9 summarizes the results for the application of the nearest-neighbor rule for the three
induced faults. For the induced faults 4 and 14 (see Table 2.1) the minimum distance occured
correctly at faults 4 and 14, respectively. For the induced fault 10, the minimum distance
resulted in a tie between faults 10 and 12. These faults could not be uniquely identified and,
therefore, have to be replaced together [53].

For the passive network of Fig. 4, a comparison between the criterion of (2.39) and the
criterion of (2.40) is provided in Fig. 11 for the 14 fault cases. This comparison must, however,
be interpreted with care, owing to the use of different measurement conditions. Curve a is
obtained [55] using the pooled covariance matrix criterion for seven diagnostic
measurements, with tolerances on the nonfaulty elements assumed to be + 5%. Curve b is
obtained using the nearest-neighbour rule for only five diagnostic measurements, with

tolerances on the nonfaulty elements assumed to be *+ 3% [170].

2.3.2  Fuzzy Concept Criterion [62]

‘ In actual practice, it has been noticed by Bedrosian et al.[11]-[13], [62] that
imprecision and indeterminancy of a faulty circuit often outweigh the statistical randomness
and are difficult to overcome. As such, they considered faulty circuits as fuzzy systems.

For an ordinary set the element is either "included in" or "not included in" the set.

For a fuzzy set every element has a degree of belonging to the set, grade of membership, P,

and the grade takes values on the interval [0,1].
Similarly to the probability measure a fuzzy measure P is defined on the Borel field B

of subsets of the real line Q which has the following properties:

P( ) = 0 (D is the empty subset), (2.41a)
P(Q) =1, (2.41b)

if a,8 € Bwitha C B, then
P(a) = P(B), (2.41¢)

if {aj|1 =< j < »}is a monotone sequence, then
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Limit [P(qj)] = P [Limit (q;)] (2.41d)

J—')(D J—)w

A fuzzy expected value FEV of x over a set A, with respect to measure P is defined as

FEV(0 & "0 (minix(0, P @)}, (2.42a)
where
Ey = {V[V = x} CA, (2.42b)
X Q—10,1] (2.42¢)
and
P:{V|[V = x} > [0, 1]. (2.42d)

The fuzzy entropy FET of x over a set A with respect to measure P is defined as
FET(Y) & —FEV(x) loga FEV(x) (2.43)
and the fuzzy entropy of X, given x, over a set A with respect to measure P is given by
FET(x|x) = — A x(x) logg x(x) — (1=2) P(E,) logs P(Ey) , (2.44a)
where

FEV(x) -P(E)
xx) —P(E)

(2.44b)

A&

The fuzzy mutual information defined by [FET(x) — FET(x|x)] is a positive number
and is used as a criterion for fault isolation.
The implementation of this approach to dc network testing will proceed as follows.
Step 1 Calculate the network fault membership function due to the fth fault
component for the ith measurement.
Comment The membership function Fﬁ(Vi), f=1,2,.., nsvaries between 0 and 1 and is
usually constructed depending on the designer’s experience, network
simulation and reliability data.

Step 2 Calculate the fuzzy measure P (Ex;)
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PE )= — (2.45)
S
[V€ Pif(Vi)dVi

1

where Vit and V;f are the upper and lower limits of the response V;.

Step 3 Using (2.42a) compute FEV (F;f) as
FEV®,) = 25, tminlP, (), PE_ )} @10
where A is the set of all possible values of the ith measurement V;.
Step 4 Compute using measurements Vim, i= 1, 2,.., n, the fuzzy mutual
information
diféFET(Fif) — FET(FidVim),i € Iy, f€ F. (2.47)
Step 5 Find f corresponding to the minimum value of
> dy (2.48)

i€l
Learning could be incorporated in the diagnostic scheme to improve the diagnostic

performance. After gathering some correctly decided data the fuzzy measure P(Ex;p) is

4 \a
— 1 H*

L Pif (Vi)dVi + L cu(Vi-—Vi)dVi

PE )= (2.49)
4 u

\'"
1 —
JV? Pif(Vi)dVi +c
1

updated as

u
i

where u(V;) is a unit impulse function, V;* denotes a correct observation and ¢ is an
enhancement constant lying between 0 and 1.

Fuzzy distance has also been proposed [62] instead of the fuzzy entropy (2.47) to
isolate faults. Other fuzzy measures [12] have been proposed. The problems with the
approach is its difficulty and subjectivity, and it has not found any enthusiastic attention

from other researchers.
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2.3.3 Voting Technique[141],[143]

The voting technique is based upon comparing the stored quantized dictionary entries
with the corresponding quantized values of the measured quantities. Then votes are cast for
and against the likelihood of a certain fault f. Recalling (2.5), djf constitutes the stored
dictionary quantities {1, 0, —1}. The measured values of real gain and phase quantities H;m
are quantized such that

1 for H-H'>y,

i?f“=< 0 for |H?_H§“|slpi,

i (2.50)
-1 for Hp—an<—1p..
\‘- 1 1 1
Let
A Tm
de = Z dip Hy (2.51a)
1EIM
which is a measure of the correlation between the stored and measured values. Let
A - Iym
dp= 2 ldgla—[HD, (2.51b)
1EIM
which accounts for the case when ﬁim is zero but diris not. Then
. _ (2.51¢c)
R [(mgn df) [|df| - dF] , for|df| > df ,
f 0 , otherwise , (2.51d)

could represent the probability of obtaining measurements H;m for the fth fault case.
If Prob(f) is the prior relative probability of each fault occuring, then the posterior

relative probability of the fault fis given by

Prob (f) d, (2.52a)
> Prob®d;
Prob(f) 2 | *F .
0, if ) Probd; =0. (2.52b)

fer
The faults are ranked according to the relative probability of each fault. It has been shown

that (2.52) is valuable in identifying an ambiguity group that contains the fault [143],
namely, to consider a group of elements having the highest values of d¢* as the elements of an

ambiguity set that contains the faulty element.
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2.3.4 Matching Techniques

These techniques are quite simple. If the fault dictionary is represented by a set of
loci as in [81] and [131], the output responses are located on the graphs and the closest
responses to the loci of certain fault cases are identified usually by the naked eye. For other
techniques [135], [144] that utilize a code for every fault case, the measured responses are
coded in a similar way and template matching is conducted to identify the fault that produces

the same code as that of the measured response.

2.4 Efficient Methods of Fault Simulation

It is conceivable that excessive computer time may be required to develop a fault
dictionary for large networks. Efficient algorithms have been proposed for the simulation of
multiple faults in linear and nonlinear networks [33], [69], [151]. Furthermore,
computationally efficient approximations to the fault bands, namely, band faults, were

developed by Pawha and Rohrer [100].

2.4.1 Application of Householder’s Formula [151]

Temes [151] has proposed the use of Householder’s formula for fault simulation. This
technique is primarily applicable to fault simulation in linear networks. Let the node
admittance equations of the nominal circuit be

Y, VE=1", (2.53)
where Y, is the nodal admittance matrix, Vn is the node voltage vector and In is the current
source vector (forcing function).

For the faulty circuit, with its current sources unchanged, the nodal equations are
given by

(Yo + AY?H) (V? + AVD) =17, (2.54)
Consequently, the change in nodal voltages is given by

AV® = [(Y, + AY) L — Y, l1n. (2.55)
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For a single fault, let Ay¢be the change in the admittance value of the faulty element.
In general, this element could be modeled by a voltage controlled current source connected
between nodes €1 and €9 and controlled by the difference between the voltages of nodes k; and
ko. If the element is passive, then €; = kj and €3 = ks. The change in the admittance matrix

AY,, could be represented by

AY =a, Ayf'a-g (2.56)
where the entries of the vectors arand agare zeros except for entries
ag, =ak, = 1, (2.57a)
agy =ak, = —1 (2.57b)
and we assumed neither €1, €9, ki nor ko is a ground reference node.
Utilizing Householder's formula (2.55) can be written as
v Ay, Y 'a @l . 2.58)

1+Ay.a, Y 'a
Since the LU factors of Y, are already known from a nominal analysis, Y, -1 ar is
easily computed in terms of them using forward and backward substitution (FBS) operations.
Since the FBS requires the maximum number of multiplications, the effort in computing
(2.58) is approximately the cost of FBS compared with the full solution of the system of

equations (2.54).

Considering nf faulty elements simultaneously changed, a generalization of (2.56) is

given by
- 2.59
AY = A AYAT (2.5%2)
where
Ar=[a; as... anf] , (2.59b)
Ap=[3) 3z...3n], (2.59¢)
and
AYf = diag{Ayi , Ayi Y Ayi }. (2.59d)
1 2 n

For multiple fault case (2.55) is given by

AV = Y, "L AfAY L + AT Y, AT AT VR (2.60)
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[n this case the computational effort will be mainly due to the evaluation of the inverse of the
matrix

Y+ ATY TAf, (2.61)
which 1s proportional to ng/3 compared to the inversion of the matrix (Y, + AY,), which is
proportional to n¢3/3, where nt is the total number of the network nodes excluding the

reference node.

2.42 Application of Complementary Pivot Theory [69]

Lin [69] applied the complementary pivot theory to nonlinear network de¢ fault
simulation. The procedure consists of representing nonlinearities by piecewise-linear
characteristics, representing faults by switch conditions, using multiport theory to formulate

the fault equations and finally using the complementary pivot algorithm to solve the

equations. This technique has the advantage of a faster dc¢ analysis and establishing a data
base so that the fault dictionary can be easily expanded without resorting to an analog circuit
simulator.

A fixed change in any parameter can be modeled, as shown in Fig. 12, by a switch.
The nonlinear resistive network under consideration is modeled with linear resistors,
controlled sources, dc independent sources and ideal diodes. Let nq be the number of diodes,
np, the number of measurement nodes and ng the number of switches modeling faults. There
are 2%scombinations of switch conditions, only n¢of them corresponding to the assumed fault
cases (single or multiple faults).

We extract (ng + ny, + ng) elements corresponding to diodes, switches and
measurements to form the (nq + n,, + ng)-port network shown in Fig. 13. For a certain fault f
some of the switches are open with their corresponding currents Ise equal to 0 and the rest are
closed with their corresponding voltages Vss equal to 0.

The hybrid equation for the multiport under fault f is given by [69]
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(— ' ~ N ~
sl 0 0 Hs2 Hs3 Hs4 o J°
mi 1 0 m2 Hpg Hpy Vel o= JU, (2.62a)
d d
Hdl 0 1 Hd2 Hd3 Hd4_J I J
0
m
Vd
where
VSO ISO
iy A A (2.62b)
0= 5s , 0= Vss] :

J5, J™ and J9 are due to the dc independent sources inside the multiport. Since O and I™ are

zero (2.62a) can be written as

— T .
H, 0 0 H,| |O JS
m —_ .
H,1 0 ma| | V7] = J» (2.63)
d
Hy 0 1 Hy| |! Jd
L " L
vy

Eliminating O we get
— -1 d -1
vit=[MH H,"H,-H JV°'+ (J" - H A H, J% (2.64a)
and
d _ -1 d d -1
I“=[H;H," H, - H,,]V° +[J° - H;, H, Jo] . (2.64b)
Equation (2.64b) together with the ideal diode constraints
vizod=0, vit=0,i=12.,ng, (2.64c)
form a complementary problem which may be solved by the complementary pivot algorithm

[69]. In implementation Hg; ~1is not found explicitly. Row echelon reduction is employed to

get (2.64) from (2.63). A very comprehensive list of hard failures may be considered initially
to set up the data base given by the left-hand-side matrix of (2.62a). It is to be noted that for a

different fault condition the only operation needed to construct the multiport equations
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involves interchanging matrix columns. No new information needs to be extracted from the
network. This is because, for another fault, the status of some switches will change, namely,
some open switches will be closed and some closed switches will be open. Consequently, some
of the variables corresponding to O and 0 will interchange, as well as their corresponding
columns.

When the faults are arranged such that two successive faults differ by just one switch
condition, then the solution of the second fault condition can be obtained much faster using
the first fault condition and the total time spent in analysis will be considerably less than that

required by the use of a circuit simulator like SYSCAP or SPICE2.

2.4.3 Approximating Fault Bands [100]

As we mentioned earlier in Section 2.2.1, fault bands are usually needed for
constructing the different ambiguity groups. Since full worst-case analysis is usually very
expensive, an approximation to the fault bands has been suggested by Pahwa and Rohrer for
linear circuits [100]. The band fault for a measurement i € Iy is obtained as follows.

Step 1 Compute the worst-case tolerance band that occurs with no faults. This
tolerance band has two extremes: worst-case low and worst-case high. The
worst case responses are assumed to occur when all components are at their
extremal tolerance boundaries in such a direction as to reinforce the deviation
of the nominal response.

Step 2 For every fault condition find the shift of these worst-case responses (low and
high). The fault band is the interval between the shifted worst-case high and
the shifted worst-case low under the fault.

This should be compared with the effort needed to find the exact fault band, which is
obtained by first computing the shift in the nominal response caused by the fault and then

computing the worst-case tolerance band that occurs around the fault response.
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Utilizing Householder’s formula and assuming only single faults, the construction of
band faults for n¢ fault cases needs only 2 ng FBS. For fault bands we need 3n¢ FBS + 2n¢
LUF (LU factorization). Since LUF is the most time consuming, it is clear how efficient the
band fault approach is for large networks.

In the examples considered in [100], there were very few situations for which fault

bands and band faults did not coincide closely.

2.4.4 CUT Modeling [103]

Simulation models for diagnostic test generation must accurately represent the
performance of the circuit under test for all fault conditions. A good simulation model for
fault diagnosis testing should satisfy the following attributes due to Plice [103].

1) Realistic fault simulation. The simulation model must accurately simulate the
behaviour of the CUT for any of the specified faults.

2) Programmable. The simulation model must be easily programmed and the user
should be able to specify the faults in terms of component or node names found in the
as-built manufacturing documentation.

3) Modular. The simulation model of the CUT must be a composite of separately
identifiable modules.

4) TV\'IO level. Each simulation module must have a high level version with low details
(input —output model) and a low level version with extensive details which may be
used interchangeably with no significant impact on the signal propagated through it.

5) Created from as-built documentation. The simulation model modules must be created

from source data found in the as-built manufacturing documentation.
Furthermore, the fault model must be designed so that when the fault conditions are
implemented, the basic topology of the original circuit is not violated. This means that shorts

must be approximated by a nonzero resistor, since a zero-ohm resistor would imply that two
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nodes are replaced by a single node [58]. If such a condition were allowed to occur, a singular
matrix would be formed causing the solution procedure to fail.

A transistor fault model was developed [140], [165], [166] for implementation with
any computer-aided-design program. In Fig. 14 the modified transistor model is shown with
the different fault conditions achieved by changing the values of the added resistors.

It is also important in the practical application of all fault location techniques to
model the ATE/CUT interactions. Avoiding this modeling would affect substantially the

effectiveness of the isolation technique [44].
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III. PARAMETER IDENTIFICATION TECHNIQUES
The parameter identification approach for fault location utilizes the measurements to
identify all the parameters of the network. The faulty elements are consequently identified
by determining which circuit element values fall within or outside the design tolerance
margins.
The circuit under test is assumed to be of known topology. In general, a subset of the

network nodes are accessible nodes (test nodes), where voltages and/or currents can be applied

and/or measured, and the rest of the nodes are designated as internal nodes (inaccessible
nodes), at which neither voltages nor currents can be applied or measured. The nominal
element values are usually assumed known.

A network is said to be element-value-solvable [10], [14]-[16], if and only if the value

of each of its elements is uniquely determinable from the network’s behaviour as seen from its
external or accessible terminals.

The parameter identification techniques are classified according to whether the
diagnosis equations are linear or nonlinear. Nonlinear diagnosis equations usually provide a
locally unique solution, whereas linear diagnosis equations normally yield a global unique

solution.

3.1 Nonlinear Techniques for Element-Value Determination

Nonlinear diagnosis equations usually result for linear and nonlinear circuits when
not all the nodes of the circuit under test are accessible. We consider dc testing and dynamic
testing of nonlinear networks. The theory introduced for nonlinear network testing is applied
to multifrequency linear network testing. We also consider necessary and sufficient

conditions for resistive network testing.
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3.1.1 DC Testing of Nonlinear Networks
Most of the material presented in this Section is based on the excellent work by
Visvanathan and Sangiovanni-Vincentelli [172]. The nonlinear resistive circuit under test is
assumed to have the input-output model
Vi = hI" ), (3.1)
where, without loss of generality, we assume that the outputs are the nodal voltages V™ and
the inputs are the nodal currents I'"". Note that the input-output function relation (3.1) for
nonlinear circuits depends on the inputs and the parameters ¢ of the circuit. In linear

networks the input-output behaviour is usually expressed in terms of functions that are

essentially independent of the circuit input.

As a consequence of the nonlinear description of the circuit the element-value-
solvability definition is relaxed.

Definition 3.1 [172]: Two network parameters <l)1 and ¢2 € R"?® are said to be observationally

equivalent if and only if
h(I™ ¢!) = h (™ ¢?) V I™ € R™m. (3.2)
Definition 3.1 characterizes the uniqueness of the solution, namely, if for ¥ ¢ € R"®, ¢ = ¢*,
3 I such that
h(I™, ¢*) = h(I™, ¢), (3.3)
the solution of (3.1) will be unique at ¢*.

Definition 3.2 [172]: A parameter ¢* = R"? is said to be locally diagnosable if there exists an

open neighborhood of ¢* containing no other ¢ which is observationally equivalent to it. We

say that the local diagnosability property holds at a point ¢* € R"® if ¢* is locally

diagnosable.

If the local diagnosability property is a generic property, i.e., a property that holds for

almost all parameter points ¢ in R"®, the circuit under test is said to be locally diagnosable.

Thus, the condition of the circuit to be locally diagnosable replaces the more stringent

condition that the circuit be element-value-solvable. Since the network is nonlinear, any
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change of the input I"™ will produce a new set of outputs V™ that are, in general, independent
of the outputs observed before the change. To characterize the local diagnosability of the
circuit, a test matrix that is dependent only on the network parameters ¢ is introduced. Let

w(I™) be a continuous scalar weighting function with respect to I™ such that w(I™) > 0 for all

I™ € R"m. Then the test matrix is given by

R(@) 2 J wJ :...J WAV R, Y R, QI I diy (3.4)
where V o indicates the gradients of the functions h w.r.t. the parameters ¢. Note that R(}) is
a symmetric positive semidefinite matrix. The elements of the matrix R(¢$) are continuous
functions of ¢. A parameter ¢* is said to be a regular point [122] of R(}) if there exists an
open neighborhood of ¢* in which R(¢) has a constant rank. The rank of R(¢) plays a very
important role in characterizing the local diagnosability property.

Theorem 3.1 [172]: Let w(-) be any weighting function such that the matrix R(¢) exists V ¢€
R"®, and let ¢* be a regular point of R(¢p). The parameter point ¢* is locally diagnosable if

and only if R(¢*) is positive definite.

If the rank of R($*)is equal to p, then the measure of solvability of the parameter

point ¢* is defined as

we*&n, —p. (3.5)
Whenp < n ® there is an (n . p)-dimensional manifold of observationally equivalent points
that contains ¢*. If pu(¢*) = 0, ¢* is a locally unique solvable point. If the local

diagnosability property for a parameter point is a generic property, the circuit under test will

be locally diagnosable.

Theorem 3.2 [172]: Suppose that

*2 max rank R(}) (3.6)
dbER"D '

P

is the generic rank of R(¢). Then

1) almost all ¢ € R"® are regular points of R(¢),
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2) the circuit is locally diagnosable if and only if p* = n "

When h(I™, @) is analytic in ¢, then p* as defined in (3.6) is the generic rank of R(¢) and

1(d*) of (3.5) has a generic value p* which is the measure of testability of the circuit. This

measure is determined by the circuit structure and the location of the inputs and outputs of
the circuit. It does not depend on the choice of the test signals, the test algorithm or the
parameter values. Therefore, it can be used as a design aid to check the testability of a circuit,
to choose test nodes and to design testable circuits.

From the definition in (3.4), it is clear that the evaluation of R(¢}) is expensive since it
involves an infinite multidimensional integral. Under the condition that h(I™, ¢) is analytic

in I™ and ¢, it is almost sufficient to check the rank of
K3
D 1V, hTAR @0V, WA, o

i=1

(3.7

for any randomly chosen inputs L™, i = 1, 2, .., and randomly chosen ¢*. If the rank of

nq),

(3.7) equals n " then the circuit is locally diagnosable and any n, randomly chosen inputs can

(i

be used to solve uniquely (locally) for the element values of the circuit. The solution is carried
out by solving the equations

h(Iim; (l)) - Vim = 0’ 1 = 1: 2: . (38)

Dy
for the parameters ¢, using a stabilized Newton algorithm [26], [92]. Usually, the number of
inputs is chosen to be greater than ng to avoid numerical difficulties. A sub-optimal
algorithm proposed in [171] selects sequentially the test node among a possible set of nodes
that increases as much as possible the rank of the matrix R. The algorithm stops when rank
[R(d)] =n " Due to the nonlinearity of the network the number of outputs chosen is smaller
than the number of network parameters n "
Consider the diode circuit in Fig. 15 [172]. The input-output characteristic is given

by

I = G V™ + [ (eaV™ — 1),
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where IS is the diode saturation current, a is the diode constant and G is the conductance of the
linear resistor. Note that the relation is analytical with respect to V™ and ¢ = [G I all. We
apply (3.7) to check the testability of the network. Let V™ = —1, V,™ =1, V,™ = 2 and

d*=1[11 11T Accordingly, we have

r-alf.“j
3
G
3 algn F) aIJf“ F)
>3 e & =l -
F1 S S
F
_J
— Ja —
—~ Vm -
i
3 aV av™ av™
> (e _1) [ij (e1—1> ISVmejl
F1 ‘
uVm
m ]
LISVj e
-1 1 2 -1 —0.632 —0.367
= | —-0.632 1718 6.389 1 1.718 2.718
—0.367 2718 14.718 2 6.389 14.778

6 15.128 32.641
= | 15.128 42.936 99.318
32.641 99.318 225.9106
which is nonsingular. Hence, the circuit of Fig. 15 is locally diagnosable.
The problem of choosing appropriate dc biases such that the faults will not be blocked
and do appear at the terminal test points is of particular importance. Conditions that depend

on the network element types and connections have been given in [40].
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3.1.2 Time Domain Testing of Nonlinear Networks

A similar theory for the diagnosability of nonlinear dynamical circuits has been
developed by Saeks et al. [122]. The inputs and outputs are functions of time and could be
considered as elements of an infinite dimensional Hilbert space. v"™(t) and i™(t) are assumed
to be piecewise continuous functions of time on the interval [0, T]. Let U be the space of R"m-
valued piecewise continuous functions of time on the interval [0, T]. Then, similarly to (3.4),

the test matrix is defined as

T
R(p) 2 J [ w(im(t))[v¢hT<im(t),¢)1 [Vq)hT(im(t),¢)]Tdtdim(t). (3.9)
ulo

The nonsingularity of R(¢*) implies that ¢* is a locally diagnosable point and if the rank of
R(¢*) is a generic property, then the local diagnosability of ¢* implies that the circuit is
locally diagnosable. Instead of performing the integral over the whole space U we usually
check the diagnosability of ¢* by computing (3.9) for a finite number of inputs ijm, i=12, ..,
£eU.
1 T
> J [V, h" G1(t), )1 [V, hT (e, %01  dt . (3.10)
F170
Consider the simple illustrative example of Fig. 16 [122]. Note that the circuit

contains both linear and nonlinear resistors and inductors. The various branch relations are

given by
d
id(t): IS (eav (t)_ 1) ’

%t = avi),

t
iL(t) = I’[ viydt
0

2

t .
iYit)= Y(J vV(t')dt’) ,
0

where the initial condition states are fixed at zero and the input-output relation is given by
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t t

m 2
i"t)=1_ (e“ “’_1>+ G v™(t)+ FJ vm(t’)dt’> .

vt dt + Y(J
0 0
For vi™(t) = t V t € [0, 1] and the parameters ¢* = (I,aGT vIT=111111]T we find

T

ai™t) a™(t) Sim(t) ai™(t) aim(t)]
aIS da G ar ay

-m
[Vq)l (t)

m m t t \
— l eGV (t)_ 1 Isvm(t)eﬂv (t) an(t) J Vm(t’)dt’ ([ Vm(tl)dtl )?l ,
0 40

Z[et-—l tet t t¥2 tiu4

Therefore (3.10) becomes

’—(et— 1)? tefe’™=1)  t(e*~1) t2e’~1)2  the'-1)/4 T
tefet=1) t2e% t2 et t3 e¥2 t% et/
ol t(et—1) t2 et t2 t3/2 t5/4 dt
t2ef—1)/2 t3e%2 t3/2 t4/4 t6/8
Lt4(et— /4 toel/4 t5/4 t6/8 t8/16 ]
~— M
0.75786  1.09726 0.5 0.19247  0.0655
1.09726 159726  0.7182 0.28172  0.0998
= 0.5 0.7182 0.3333 0.125 0.04167
0.19247  0.28172  0.125 0.05 0.01786
0.0655 0.0998 0.04167  0.01786  0.00694 |

Note that the above matrix is nonsingular. Hence ¢* is locally diagnosable. Further since the
input-output relation is analytic with respect to ¢, the circuit is locally diagnosable.

In the case of circuits of any reasonable size, the explicit relation (3.1) between the
inputs and outputs is difficult to obtain and usually the circuit is defined in terms of a set of

sparse tableau equations [37],[173] as

h(x(t), i), v(t), )= 0, (3.11a)

i"t)= A i), (3.11b)
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i%(t) e

x(t)= A , Ale
2 Vb(t)

vit)= A, V), (3.11d)

where x(t) is the vector of state variables, vP(t), i’(t) are the voltages and currents of the
circuit branches and A;, i = 1, 2, 3 are appropriate transformation matrices.

The evaluation of the derivatives needed for (3.9) and (3.10) is usually not a
computationally easy task. The proposal of discretizing equations (3.11) [122] has been
carried out in [173]. Using a numerical backward differentiation formula, as is done in a

circuit simulator, %(t) at instant tj is given by

k
, 1
()= - ZO B, x(t. ), (3.12a)

] =

where
5= tj — tj—l (3.12b)
and Bij is formed from the coefficients of the numerical differentiation formula.

Consequently, (3.11) is discretized as follows.

h(x(t)), ib(tj), vb(tj), $) =0, (3.13a)
i"(t) = A i), (3.13b)
k it
1 3.13
- Z Bi.x(t. i)= A2 bJ)] , ( X
% ico ) F v (tj)
vi(t) = Ag vO(t). (3.13d)

vm(tj) is assumed to be an analytic function in ¢ and i"(t)),i=1,2,..,jforallj =1,2,... .
Moreover, it is assumed that the circuit has a unique dc bias point and for a given sequence of
inputs i™(t), 1 = 1,2, ... j, it has unique solutions x(tj), ib(tj), vb(tj) and vm(tj).

Definition 3.3 [173]: The discretized circuit (3.13) is said to be locally diagnosable in K steps if
there exists a sequence of inputs i"(t,), i = 1, 2, ..., K such that for almost all ¢* € R"¢ there
exists an open neighborhood of ¢* containing no other ¢ which is observationally equivalent

toit, i.e., v(t,, ) = v™(t, ¢*) for some i€ {1, 2, ..., K}.
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The test matrix corresponding to the above definition is defined as

K T T
K M A m T 3.14
RS @, ™t 0h & D v, v )y, v™ I, 3.14)

i=1
where {i"(t )} refers to the sequence of inputs i"(t)), i"(ty), ..., iM(tg) and v7(t) is evaluated

for this sequence of inputs.

The discretized system is said to be locally diagnosable in K steps if and only if the

generic rank of RK (¢, {im(t)}) isn >

From the examples given in [122], it has been shown that, unlike the nonlinear de
testing case, a nonlinear dynamical circuit can be tested with fewer test input signals than
the number of parameters and with fewer outputs [173]. The inverter circuit of Fig. 17a was
considered in [173] for both de testing and time-domain testing, with the nonlinear transistor
model of Fig. 17b. Parameters B, B, ryp. r.oandr . are assumed to be fault free.

For dc-testing they have considered the four resistors R, through R, I_; and the I_
associated with each transistor as the possibly faulty parameter. Therefore, there are a total
of nine parameters. Note that for dc testing the capacitors are open circuits. The results
given in Table 3.1 are obtained when V __was kept fixed at five volts, while various dc values
between zero and five volts were used for V, .

The results of time-domain testing are summarized in Table 3.2. V__ was kept
constant at five volts, while the input signal varied between zero and five volts with 100
picoseconds rise time, 400 picoseconds pulsewidth and 100 picoseconds fall time.
Measurements were made at 100 time points, i.e., K = 100. In addition to the parameters
considered for dc testing, the two capacitors C, and C,  are considered for each transistor.
Therefore, there are a total of seventeen parameters. Although the number of unknown

parameters is greater than for the dc case, fewer test points are required for the local

diagnosability of the circuit, i.e., when p* = 0.
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3.1.3 Multifrequency Testing of Linear Networks
The theory for the diagnosability of nonlinear networks emerged from a similar

theory for multifrequency testing of linear dynamic circuits [133], [134]. Both have the

following features.

1) The parameter values are only locally uniquely determined.

2) The number of test nodes is much less than the number of parameters.

3) The computation of element values is expensive and involves solving a set of

nonlinear equations.

Two questions, which follow, are fundamental to multifrequency testing [42], [133],

[134].

1) What test frequencies should be employed to optimize the solvability of the diagnosis
equations?

2) How solvable are the equations given an optimal choice of test frequencies?

These two questions are answered by developing the fault diagnosis equations under
multifrequency testing and defining a measure of solvability for these equations.

The approaches outlined in [30], [110] and [134] have utilized the component-
connection model (CCM) for deriving the diagnosis equations. In particular, Sen and Saeks
[134] have utilized the CCM in deriving the transfer function matrix observable from the
accessible nodes of the network. On the other hand, Rapisarda and DeCarlo [110] have
utilized the CCM in developing a tableau system of equations and have avoided the
computation of the composite system transfer function matrix. From the computational point
of view the approach followed by Rapisarda et al. could be superior since the resulting
diagnosis equations have a regular structure with fixed polynomial order, often quadratic.

The theoretical results are basically independent of the use of the CCM [108]
representation of the network. Therefore, we give these results using the nodal approach.

The voltages and currents are represented by their phasors.
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Let n¢ be the total number of circuit nodes excluding the reference node, n,, be the
number of accessible nodes and n, be the number of circuit branches. The element
characteristics are given by

Y, Ve =1°, (3.15)

where, without loss of generality, we assume that
Y, =diag {y1 (8,9, yyls, d), .., ynb (s, (bnb)} , (3.16)
where ¢; indicates that the branch admittance could be a function in more than one

parameter, i.e.,, ny = ny,. sisthe complex frequency and
b _ b b b T b_ b b b T 3.17
V=V, Vo VI, P=[ I .. ] 3.17)
b b
are the voltages and currents of the ny, branches, respectively.
Let Q be the incidence matrix of the circuit. Then the nodal equations are given by

QY,QTV =Y V=1, (318
where Y, is the nodal admittance matrix, Vn is the vector of nodal voltages and In is the

vector representing the nodal current sources of the network.

Let the first n;, nodes correspond to the accessible nodes. We partition the incidence

matrix as

(3.19)

b

U
Q= |
Qn—-m

where Qy, is the incidence matrix of accessible nodes and Q, _r, is the incidence matrix of
inaccessible nodes. Accordingly, the nodal equations are partitioned as [59]
T T m m
QmYb Qm Qm Yb Qn—m ’ [V _ [I
T T n-m| |;m-m
Qn—mYb Qm Qn—mYb Qn—m v I

where the vectors Vn and In are partitioned to correspond to accessible and inaccessible nodes.

(3.20)

)

Eliminating Vn—-m namely, the voltages of the inaccessible nodes, and assuming In-m = Q, a

reduced system of equations which corresponds to the input-output equations is

["=Q, Y, [, - Q__@

n-—m

Y,Q_)7'Q,  Y1Q V™, (3.21)

n-m b

where 1y, is a unity matrix of order n,. We let
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VG, @) = @, Yy oy = Q" @, Yy QD™ Qi Y Q" (3.22)
be the transfer function matrix of the network, which could be constructed by direct voltage
measurements at the accessible nodes using different independent input excitations L™,
i=1,2,..,n . Moreover, being rational, it is completely determined by its value at a finite
number of frequencies. Y(s, ¢) is, in general, a matrix. We transform it to a column vector to
simplify the required mathematical manipulations. So, we assume that vec (Y(s, ¢))
transforms Y(s, ¢) to a column vector. For n  different frequencies the diagnosis equations
take the form of the column vector
B 7

vec (Y (s;, )
vece (Y (52, P)

H () = . . (3.23)
vec (Y (sp,, &)
Let the test matrix be defined as -
R@) = [V, H(@)I [V, H' (@), (3.24)

where * indicates the conjugate transpose. Similarly to the previous results we define the
measure of solvability of ¢* as
u@*) =n, -p, (3.25)
where p is the rank of test matrix R(¢*). For each y(s, ¢,),i = 1, 2, ..., n, being a rational
function of ,, it can be proved that p(¢*) is almost constant, i.e., it is the generic measure of
solvability for the whole network. It is clear that the construction of H(¢) depends on the
choice of the number of test frequencies. It has been proved in [134] that if p* is the generic
number of linearly independent rows of [Vq) [vec Y(s, *)1TIT over the field of complex
numbers, then the minimum value of u, the measure of testability, is given by
p* =n, — p* (3.26)

b

and it is achieved by almost any choice of n o~ p* distinet complex frequencies.
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The above result does not take numerical considerations into account and it has been
noticed [134] that the solution of the diagnosis equations is quite sensitive to the choice of test
frequencies. There is not yet a theory for the optimum choice of test frequencies so heuristic
choices are followed similar to those used in the dictionary approach.

p* characterizes the degree to which the diagnosis equations can be solved given an
optimum choice of test frequencies. It provides a means of choosing the accessible nodes, so
that a specified minimum value of p* is achieved (if p* = 0 the network is locally diagnosable
in the same sense as defined before).

For the purpose of illustration we consider the simple example of Fig. 18. [f Vo is the

only output, then

Xz ~ sC R1 R2
I 1 +sC(R, +R)
in 1 2
and
T a(VJIin) a(VZ/Iin) a(VZ/Iin)
V(V/L )= :
¢ Zin R, IR, aC

= 5

sC R2(1 + sC Rz) sC Rl (1 + sC Rl) SR1 R2 '
1+ sC(Rl+R2)]2 1+ sC(R1+R2)l2 [1 +sC (R +R,)I

For ¢* = [111]T, we have

T | si+s)  s(l+s) S
V¢(V2/[in) = ,

(1+29% (1+25° (1+2¢)?2

which has 2 independent columns over the field of complex numbers, as such the measure of
testability p* = 1 and the circuit is not locally diagnosable using Vg as the only output.

If V1 is the only measured output, then

V1 Rl (sC R2+1)

Iin 1 + sC (R1 + R2)

and

2

(1 + sCR,)’ (sCR) —sR?

ViV /L) = .
¢ [1+sCR,+ R2)12 [1 + sC (R1+R2)]2 1+ sC (R1+R2)]2
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For ¢* it is equal to

a+ s)2 s? —s

a+292 A+2s% a+29°2)°

which has 3 independent columns over the field of complex numbers, therefore the measure of
testability p* = 0 and the circuit is locally diagnosable using V, alone.

In fact, by measuring (V,/I. ) at three independent frequencies we can compute the
coefficients of the transfer function, namely R;, CRiR2 and C(R, + R,), and utilize these
coefficients in computing R,, R, and C using simple algebraic manipulations.

A quadratic system of equations for diagnosis could be constructed using equation
(3.18) in which both V"~™ and the diagonal entries of Y, are unknowns. This system of
equations is quite similar to the tableau system of equations developed in [110]. We may
rewrite (3.18) as

[QY, (s, PQ, Vs +Q, " V") = I(s), (3.27)
where the arguments s, ¢ are indicated to illustrate that for a given frequency s; the terms in
the first brackets in (3.27) are dependent on the parameters ¢ only and the terms in the
second brackets are functions of the unknowns V"~™(s). Both V™(s) and I"(s) are assumed
known. The main difference between this set of equations and equations (3.21) is that the
variables V"~™(s) are not eliminated. Therefore, for every new frequency a set of new
variables, V?~™(s), are added to the unknown variables. For n, frequencies the diagnosis

equations are given by

» -
H, (@ H (V7= 1)

H @) H , (V™™= I'G)

H@)= . =0, (3.28)
H (p)H (V") -TI%s )
L cpn(x) Vn(A) n(A) n(,\) B
where
Y 3.29
)= ] , (3.29)
0
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H (@) = [QY, (s, 9], (3.30)

H (V™™ = 1Q," V™) + Q,_,," V" ™(s)l, (3.31)

VmmA e (3.32)

and
- e T
V;l— m
_ (3.33)
P4
Vn— m
nOJ

Theorem 3.3[110]: Let ¢* be a solution to (3.28? The circuit is diagnosable for the parameter
vector ¢* if there are sufficient test frequencies s, and corresponding inputs I(s),i =1, 2, ...,
n,, with n_ finite, such that the matrix [V H'@*)]" is of full column rank.

Due to the structure of the diagnosis equations it can be shown that if the gradient
matrix [VE HT(@)IT has full column rank for certain ¢*, then it has full column rank for
almost all ¢. Therefore the circuit is diagnosable for almost all ¢ € R"¢.

Using the diagnosis equations we can place some bounds on the number of test
frequencies n  (nothing is mentioned about their optimal choice). The number of complex
unknowns of the vector V."~™ equals (n, - n, ). The number of complex equations in (3.28)

for n  frequencies is equal to n n. Therefore, the following bound should be observed such

t

that the number of real equations is greater than or equal to the number of unknowns.

2nn =2n (n, —n_ )+ ng, (3.34a)
which implies the bound
n
n > ¢ _ (3.34b)
@ 2n

On the other hand if Theorem 3.3 is satisfied it can be proved thatn < n o [110].
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3.1.4 Element-Value-Solvability of Linear Resistive Networks

Navid and Willson [91], [92] have given necessary and sufficient conditions for the
element-value-solvability of a linear resistive network. Their technique is also applicable to
nonlinear resistive networks that can be effectively modeled by their small signal linear
resistive model.

The admittance transfer function matrix of (3.22) provides the possible observable
information (note that it is no longer a function of frequency). For a reciprocal resistive
network the maximum number of independent entries of (3.22) is equal to

1/2n_ (n_+1). (3.35)
Therefore, the maximum number of resistors ng in the network should be less than or equal to
1/2 np(ny, + 1). This is a necessary condition for the solvability of the network. The transfer
admittance between any accessible nodes i,/ Jj € M, where M is the set of accessible nodes, is
given by the negative of the entry yj; of the matrix (3.22). The transfer admittance between
any accessible node i and the ground node 0 is given by the sum of the entries of the ith row or

column of the matrix (3.22), namely,

m (3.36)
y, = > yip 1€M.

i=1
The set of network branches consists of the subset of ng; free branches Iy, which

includes those branches not incident with internal nodes and the subset of ngo fundamental
branches Iy9, defined to be those which have at least one terminal connected to an internal
node and ng = ng; + ngg = np. The subgraph obtained by deleting the free branches from

the network graph is called the fundamental subgraph. The solvability of the network

depends upon the solvability of the fundamental subgraph, in particular, if the admittances of
the fundamental branches are known then the admittances of the free branches can be
directly obtained.

Recalling (3.22), the transfer admittance between any two accessible nodes is the sum

of two terms. The first term corresponds to the admittance of the free branch which is
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connected directly between the accessible nodes. The second term arises from the elimination
of the internal nodes and is a function of the admittances of the fundamental branches only.
Moreover, the transfer admittance of a linear network, as has been indicated earlier, is a
bilinear function of each branch admittance. Therefore, the transfer admittance between any
two accessible nodes has the form [51]

28

]
Yot

where yj, i€ Iy is the admittance of the free branch which directly connects the two

(3.37)

accessible nodes. A is the determinant of the matrix Q,_, Y, Qu_mT. Each term of A
consists of a different product of (ny — ny,) fundamental branches. In the numerator every g;
term is the product of (ny — n, + 1) fundamental branches, i.e.,

g. =Y

! jly y. ), € I<p2 ) (3.38)

j2 Jnt —nm+1

In general, no two terms of the numerator are alike, moreover, there is no identical
numerator term between various transfer admittances. If the values of the fundamental
branches are known it is readily clear from (3.37) that the admittances of free branches, yj,
can be directly obtained. Therefore, we consider only the transfer admittances between nodes
that are not connected with any free branch, i.e., have only the second term in (3.37). It is

possible to eliminate the denominator A by the following transformation [51]

, Un,-n_+1 (3.39)
_ t m .
In this case the resulting equations are multilinear in y'; and they have the form
. (3.40a)
PR
i
where
g =y. V¥...Y. .
(S T T T (3.40b)
t m

The transfer admittances are linearly related to the variables g';, which can be

represented as

H(¢p) = Ag', (3.41)



52

where g' is a-k'-vector of the k' different g’j terms, H(¢) is a n’_ -vector of transfer

’

admittances that does not depend on the admittances of free branches and A is an’ x k

matrix consisting of zeros and ones with exactly one nonzero element in each column. Let

~ 7 =

g (log g, ]
g; log, g'2
. 4 . , (3.42a)
Lee)  Llog.se
or, more compactly,
g =log g, (3.42b)
where log, is the natural logarithm function. Using (3.40b) we have
g'=By", (3.43a)
where
y' =log,y (3.43b)

and B is a k' x n,, matrix consisting of zeros and ones, with exactly (n, — n_+1) nonzero

¢2

elements in each row. Using (3.42), we can find g’ in terms of g" as

"—g'1 1 [exp (g; ) 7]
g'2 exp (g;)
N S , (3.44a)
i g;{, ] | exp (g;,)_J
or, more compactly,
g =exp(g", (3.44b)
where exp is the exponential function. Using (3.43) and (3.44) we may write (3.41) as
H = Aexp[Blog,y'] (3.45)
and the gradients with respect to y’ are given by
v, H'I"=ADBD,, (3.46a)

where



53

D 2 diag {880 - 8 1, (3.46b)

and
D, 2 diag{lly. ,l/y , .. 1y }. (3.46¢)
y N JZ Ia
b2
Theorem 3.4 [92]: The values of the unknowns y'j, j € Iy2, which satisfy the system of
nonlinear equations (3.45) are unique if and only if the matrix A D B has rank ngg for every
diagonal matrix D > 0, i.e., all diagonal elements are positive.
The system of equations (3.45) is usually solved using a modified Newton’s method
[92]. After finding y'j, j € [42 all y; could be found using the inverse relation
y. = yfA’, (3.47a)
J J
where
A A1/<nt—nm +1 (3.47b)
is the determinant obtained by substituting the values y';, j € l42, instead of the original
values y;.

For the linear resistive network of Fig. 19, nodes 5 and 6 are the only inaccessible

nodes. The measurable transfer admittances are given by the following relations [92].

~ G, G,G, ~ G1G4(G2+G3+G5) o G1G2G5
~ G2G3G4 o G3G5(G1+G2+G4) . . G,G, G
Yo3 = T A o YaaT A and ygq =Get T

where A = (Gy + Gy) (G + G3 + Gs) + Gao(G3 + Gs). From ys34 it is clear that Gg could be
directly found if the Gy to G5 elements, that constitute the fundamental branches, are first
identified. Therefore, we consider only y19, y13, y14, 23 and yosq. Utilizing (3.39) we get
vi2 = G'1G'2G'3,y13=G"1G'4(G'2 + G'3 + G'5),y14 = G'1 G'2G'5, yo3 = G'2 G'3 G'4 and
yoa = G'3G'5(G'y + G'9 + G'4). Consequently,

£=16,0,0) G, 6,6, G 6,0, G060

! ’ ! ! ‘} ! ’ ! ! ! ' ' ! ! ’T
G, G, G, G, G, G, G G, G, G, G, G, G,G.G|]
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" Accordingly, we may write the matrix A of (3.41) as

! ’ ’ ’ r ’ ’ r ’

g g, g5 g, g5 g5 g5 gg g

r 8
Vvpo| 1 0 0 0 0 0 0 0 0

Y13 0 1 0 0 0 1 1 0 0

A= y,|l 0 0o 1 o 0 o0 0 0 0

Veg| O 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 1 1

— s

Yoq

and the matrix B of (3.43a) as
Glll G"2 G"3 G"4 G”5
g [1 1 1 0 0

€2 11 1 o0 1 o0

gy |0 1 1 0 1

gy LO 0 1 1 1
and it can be shown that rank (A D B) = 5 for all diagonal matrices D > 0. Therefore, by
Theorem 3.4 the network is element-value-solvable. (Note that if rank A D B = 0 for specific

D > 0itis almost = 0 for all possible D > 0).

3.2 Linear Techniques for Element-Value Determination
We refer to those techniques that involve only the solution of linear systems of

equations as the linear techniques for element-value determination.
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3.2.1 Generalized Star-Delta Transformation Technique [97]

Without loss of generality, we assume that there is only one inaccessible node in the
network. Consequently, the transfer admittance Hj(q)) between any two accessible nodes that

are not connected by a free branch has the form

y. ¥,
bk _ o (3.48a)
Hj((l)): x Ji“qu , i€l :
where
I, =1{,2.,n} (3.48b)
Utilizing the transformation of (3.39) and taking the logarithm of (3.48a) we get
log, Hj((b): log,, yjl + log, yj2 , J € Iq>2 N1 S (3.49)
which, in matrix form, is given by
log, H(p) = Blog,y/, (3.50)

where Bisan’ xn 2 matrix consisting of zeros and ones, with exactly two nonzero elements
in each row. If there existsan 92 X Dgn nonsingular submatrix of B the system of equations in
(3.50) is solvable and the elements y’ could be obtained. This condition is easily checked by
constructing an auxillary graph G.

G contains n 2 vertices, each of which corresponds to an element y'j,, j; € I 02 Edges in
G correspond to equations (3.50). For example, from (3.49), G contains an edge that connects
vertices y'; and y'j,. A particular subgraph of G that contains all the vertices of G such that
each of the connected components of the subgraph contains exactly one cycle with an odd
number of edges (greater than or equal to three) is called a dendroid [136].
Theorem 3.5 [97]: If G contains a dendroid then equations (3.50) are uniquely solvable for the
variables log_y'".

Due to the logarithmic transformation the elements y’j can not be uniquely obtained
unless more information about the element types, namely, the sign of the real and imaginary

parts are known [138]-[139] or in Theorem 3.5, we restrict the dendroid to be connected and to

contain exactly one cycle. Obviously, for resistive circuits, where all element-values are real
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and positive, we can also obtain unique element solvability from a set of equations
corresponding to a disconnected dendroid.

The elimination of an internal node could be viewed as a generalized star-delta
transformation [8], [9], [174]. The inverse transformation corresponds to the restoration of
the node and all elements incident with the node [35]. The foregoing theorem and the
subsequent discussion provides the conditions for such a transformation.

In the general case we will have a number of internal nodes. It is then required to find
the element values of the network from measurements at the accessible nodes only. We may
assume that the inaccessible nodes in a network are eliminated one by one, in a certain order,
and a sequence of networks Ng, Ny, ..., Nnt— n,, are obtained, where Ny is the original network
and Nyg —np, is the final network, which contains accessible nodes only, and whose parameter
values can be determined from measurements.

Theorem 3.6 [97]: Ny can be revived from Ny, _,  if, for a sequence of all the inaccessible
nodes of No, Ny _1 can be revived uniquely from Ny forallk = 1,2, ..., ny —np,.

The revival of inaccessible nodes is done one by one and the condition for the inverse
transformation (Theorem 3.5) is applied to determine, if possible, the element values of
Nnt—nm-l from Nnt‘nm’ those of Nnt—nm—2 from Nn¢—ny,—1 and so on until those in Ng are
calculated.

The possibility of reviving Ng uniquely from Nn¢—n,, depends on the order of
eliminating the internal nodes. At present, there has not been any suggestions for
determining the best order with which all elements can be calculated.

Theorem 3.6 provides a sufficient condition for determining all the element values of a
network using only linear equations, without the need of accessing all the nodes.

For the circuit of Fig. 19, after eliminating nodes 5 and 6 successively, we get the
circuits N; and N9 shown in Fig. 20a and Fig. 20b, respectively. The elements of the circuit
Ny are measured directly through the accessible nodes. The question is now whether we can

revive Ny from Ng, i.e., revive node 6. In N node 6 is connected to 4 branches G3, Gs,
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G1 G2 G2 G4
“=er61c ™% T erara
1 + 2 + 4 1 + 2 + 4
which are related to the measurements as follows.
G.G
375 G G

Yoa™ G+ G+ G + GS_ 3757

G,G

38 .o
Yo3= = G, Gy,
G3+ G5+ G7+ G8
. G, G, v
14~ I R A
G3+ G5+ G7+ G8
and
G, G, .

Y12= = GG,

G‘r3 + G5+ G7+ G8
Using the logarithmic transformation, a linear system of equations results that is similar to
(3.50) and is represented by the graph shown in Fig. 20c. This graph is a connected dendroid,
therefore from Theorem 3.5 we can revive node 6 and get network N , from N,. Similarly, to

restore the original network, we revive node 5, which is connected to branches Gl, G2 and G4

in the original network N, These branches are related to the measurements as follows.
G7 G8 C'1 G4

_ - G= —— -G ¢
8T G+ G+ Gt G, 9 G+ GtG, 14

’

G1G2 o
G,= =G, G, ,
G1+ G2+ G4

and

G2 G4 '
G8:(}4—G+G A
1 2 4
Note that G; and Gg are obtained after we revived node 6. It is clear from Fig. 20d that the
condition of Theorem 3.5 is satisfied, and we can revive node 5 and restore the original

network. Note that the last step is equivalent exactly to the well-known delta-star

transformation. Ozawa et al. [97] have given examples for active networks.
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3.2.2 Component Simulation Techniques

If enough information is available about the network, the element values of the
network could be evaluated using a linear system of equations. We consider two main cases.
The first case utilizes just a single excitation and where both currents and voltages could be
measured. The second case considers only voltage measurements, with all nodes of the

network assumed accessible.

3.2.2.1 Single Excitation Element-Value-Evaluation Technique [123]
Let T be a given tree of the network under test. The branch currents and the branch
voltages in T (and its cotree) are denoted by VYV®) and I* (I®), respectively. Accordingly, we

may write KCL as
It
b_ —
Qr’=11_ Qc]‘ c! =0 (3.51)
t I
and KVL as

-0, (3.52)

vt
T

-Q; 1, [ v

where Ln, and 1, are unit matrices of appropriate order.
We assume that the measured currents and voltages are related to I¢ and V*

respectively, with the following transformation.

F=A1", (3.53)
Vi=A, V™. (3.54)

We may directly express I’ and VP in terms of I'™ and V™ as follows

-Q
lb:[ C]Allm, (3.55)
1
nC
ln
vb= er'i A2Vm. (3.56)



Therefore, all branch currents and voltages are known and, consequently, all branch
admittances of the network could be computed from (3.15). The problem with this approach is
that we need np simultaneous measurements of voltages and currents. The current
measurements are essential and the minimum number required by this approach is equal to

the number of fundamental loops of the network, namely, n, — n,. As such, the approach is

t
not practically attractive and other approaches that utilize nodal voltage measurements only
have been developed.

For the passive resistive network of Fig. 21a, the network is excited at node 1 and the
nodal voltages V", V," and V3n are measured as well as the branch currents 12b and I 4b. For
lin=1A wehave V"=58V,V,"=28V,V,"=18V,L"=38Aand "= 1/8A. A

proper tree of the network is indicated by the solid lines in Fig. 21b and the corresponding

incidence matrix is given by

Gr1 G3 G5 in GZ G4
— -
Node 1 1 0 0 -1 1 0
Q = Node2 0 1 0 0 -1 1 = [1n, Qc]
Node 3 0 0 1 0 0 -1
L J
Therefore, from (3.55) and (3.56) with both A, and A, being unit matrices of proper orders we
have
"7 1 -1 0 (5/87)
LP 0 1 -1 1 2/8
I = o 0 1 3/8 = 1/8
b
. 1 0 0 /8 1
I, 0 1 0 3/8
L L L0 0 1 _1/8

and
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[ v,b ) 1 0 07 58 )
A o 1 0 5/8 2/8
AN I o 0 1 2/8 = 1/8

b
v, -1 0 0 1/8 ~5/8
V,° 1 -1 0 3/8
Lv,” S R L U8

Consequently, we find that G, = G, = G; = G; = Gy = 1.0 mho and all elements of the

network are completely identified.

3.2.2.2 Multiple Excitation Element-Value-Evaluation Technique
The basic assumption behind this approach is that all network nodes are accessible

[2], [18], [34], [94], [98],[991, [114], [116], [117], [118], [158], [163]. From KCL and (3.18) we

may write
QVv,y’ =1, (3.57a)
where
V, = diag{V, Vb, v‘;b} (3.57b)
and
b T (3.57¢)

y =y vy I

b
For multiple excitations Ij“, j=1,2, ..., kat the same frequency we have

r_ - r— n —
QVbl L
In
QVb2 2
. ) .
y - . . (3.58)
I n
L_vak__J Lk

The number of equations in (3.58) is equal to k n.. Therefore, we should have n, = kn,. This
is a necessary but not sufficient condition for determining y®. A necessary and sufficient

condition is to find n, independent equations.
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Similarly, several frequencies could be utilized to.obtain the required independent
equations. For passive elements the admittance y; could be expressed as

y; = (o) %o, (3.59)

where a; = 0, +1, or —1 depending on whether the ith branch is : resistor, capacitor or

inductor, respectively, and j is the complex square root of — 1. Accordin:ly, (3.57a) becomes

QV, b =1, (3.60a)
where
V, = diag {V,", V,,°, .., Vi, *} (3.60b)
and
\AERANHE (3.60c)

is referred to as the modified branch voltage. For k independent excitations at different or the

same frequencies we have

fav. ~ L™ A
bl
I n
b2 2
é=1 - : (3.61)
J— I n
;vak_.l Lok

For ladder networks two independent excitations were found necessary and sufficient
for the identification of all ladder network branch admittances [18], [163]. We excite the
ladder circuit of Fig. 21a twice, once at node 1 and once at node 3. Constructing the system of

equations corresponding to (3.57), we get

G, G G G G,
- S -
1 0 o 1 ofs5s N1l [

o 1 0 -1 1 2/8 0 G, | =| o
o 0 1 0 -1 18 G, 0
- J I

0 3/8 a,
i 18 | | G, |




for the excitation at node 1 and

Gy
-

1

for the excitation at node 3. Combining these two systems of equations together we get

Gy

0

(" 5/8

0

0

—

0

2/8

0

0

2/8

0

0

0

1/8

0

0

5/8

3/8

-3/8

0

—-1/8

1/8

0

1/8

e

0 i
1/8

-1/8

0
—3/8

3/8

e
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2/8 0

5/8

0 —-1/8

~3/8 |

(G, | 0
G, 0
G | = - |,
G, 0
¢, | 0
— 1 -

o

o o

Kol

o

2

G

4 J

which has 5 independent equations that yield G; = G, = G = G, = G5 = 1.0.

Recalling (3.18), with n, independent excitations we have

where

and

YV =1,
n n n

V. =[V," V0V,

[ =[" L. L.

From (3.62a) the unknown matrix Y _is given by

— -1
Yn - Vn In’

(3.62a)

(3.62b)

(3.62¢)

(3.62d)
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provided that V,, is nonsingular. As a consequence of equations (3.62a) and (3.62d) the
following theorem gives general sufficient conditions for the identification of Y, [20], [21].
Theorem 3.7: If a given linear network can be described by nodal equations and test
excitations are chosen in such a way that I, is a nonsingular matrix then V, is also
nonsingular and the solution (3.62d) exists.

One of the possible choices of independent excitations is to apply a unit current
consecutively to all n; nodes, i.e., I, = 1,, [114]. This, however, could be redundant and, in
general, the number of necessary and sufficient excitations for identifying all network
elements is far less than ny.

If the passive ladder network of Fig. 21a is excited at nodes 1, 2 and 3, successively, we

get
5/8 1/4 1/8
Vn =1|1/4 1/2 1/4
1/8 1/4 5/8
Therefore, _
2 =1 0
Yy =vi= -1 3 -1
n n
0 -1 2
L

and immediately we can identify G; = Gg = G3 = G4 = Gg = 1.0. Clearly, three excitations
are sufficient to identify all network elements although only two of them, as we indicated

before, are necessary and sufficient.

3.2.2.3 Conditions for Sufficient Excitations [147], [149]

The question of characterizing the minimum number of necessary and sufficient ex-
citations for identifying network elements from node voltage measurements has been
addressed utilizing topological and graph theoretical concepts [94], [98], [99], [147], [158].

The basic idea is to identify a sequence of independent cut sets CS;, i = 1,2,...,n¢ such that the
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element values of the branches of CS;,1 =1, 2, ..., n, can be determined sequentially from the

t

node voltage measurements. Obviously, the union of these cut sets would be the total set of
network branches, if all element values can be determined sequentially.
Equation (3.62a) can be written in the form [149]

vTiyT=1_. (3.63)
t

Consider the product V nT and the jth column of YnT. We have

r— -

— -
mT
VAR

vy = v,"7T Yio =€, (3.64)

mT .
L Vo) J L Yime
where e is a vector with elements zero except at the jth position, where it has a value of one.
Some of the elements of Y; could be known or zeros. Let the k unknown elements of Y; be
identified by the set of indices I, = {il, Lo, <o ik}. The set of elements Yip i€ I, are called a

reduced cut set. Transferring the known terms from the left-hand side to the righ-hand side of

(3.64) and adjusting e appropriately we get

— -

0
Yiiy

Yii,
A\ T . :VnCT yjc = ejc R (3.65)

Yijiy

L0
where ejC is the modified right-hand side, yjc is the reduced cut set admittance vector and
VnCT consists of columns I(‘ from VnT. In order to determine yjc we have to find k rows of

(3.65) such that the resulting square submatrix of VncT is nonsingular and the corresponding
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right hand side vector is nonzero. Let Ig be the index set of these rows. Accordingly, we may
write (3.65) as
T ¢ _ ¢ ( 6
VBC y, = ep; 3.66)
where VBCT consists of rows IB from VncT and ejBC consists of rows IB from ejc.

From (3.63) we have

Vi =0T
Consequently, the matrix VBCT is nonsingular if and only if (YnT)BC‘1 is nonsingular. From'
matrix theory this implies that the matrix Yg¢ obtained by deleting Ig rows and I, columns
from Y_ is nonsingular. It is to be noted that the I rows of VnT correspond to different
excitations applied to the subset of nodes identified by the index set Ig

Consider a sequence of sets ICj =j=1,2,.. n, which corresponds to a sequence of
reduced cutsets of the network.

Theorem 3.8 [149]: If independent excitations which are applied at a subset of the network
nodes I, are sufficient for the identification of all elements of Y, then

v ICj 3 IBj CI, :IYEJ.EJ.I = 0. (3.68)
The excitation nodes I  are usually called the injection nodes.

Other graph theoretical conditions for determining parameter values from node-
voltage measurements are given in [98], [99] for single and multifrequency measurements.
The concept of basis voltages [94] is applied and extended to find the injection nodes as well as
the sequence of independent cut sets. Using Theorem 3.8 we can show that excitations at
nodes 1 and 3 are sufficient for identification of all elements of the network of Fig. 21a. In this
case I, = {1, 3}. Consider the sequence Ic; = {1} Iy = {8} and I3 = {2} and the
corresponding sequence I, = {1}, Iz, = {3t and Iz = {1} such that IBj C1I,. Since Theorem
3.8 is sufficient topologically then it is readily clear that IY'Bj(TjI = 0,j =1, 2, 3 for almost all

values of the network elements Gy, Gy, G;, G, and Gy It can be zero for only very few specific

values of the network elements.
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3.2.2.4 Adjoint Network Approach[163]

Trick et al. utilized Tellegen’s theorem and the adjoint network concept to calculate
the component value changes in a circuit from node voltage measurements. The differential
form of Tellegen’s theorem is given by

n

b "m
rb A 1b b b\ __ Jm A rm tm m
> (Vk AR~ T AVk>— -> (Vj AL - TAVE ) , (3.69)
k=1 =1
where ikb, ijm, {Ikb and ij are the currents and voltages in the adjoint network, which is
topologically identical to the original network. AIkb and Aka are the changes in the n,
network branches due to the changes of the network elements from nominal. AIjm and Aij
are the changes in the n  port currents and voltages due to the changes of network branches.

For a current excited network AIJ.'n = 0. For passive networks the change in branch current

AIkb is given by

b _ b b b
A= Ay (V) + AV)) +y, AV, (3.70)
and the branch constraint for the adjoint network is given by
= y b 3.71
L=yV,. 3.71)
Hence, equation (3.69) becomes
b "m
b by(7b _ m im (3.72)
D (Vo AVPVAy = > AVELR.
k=1 Bl

In order to evaluate Ay, we need a set of n, independent equations of the type (3.72).
We can get these equations by using different excitation conditions. However, the maximum
number of independent sets of branch voltages at a certain frequency which we can generate
inann_-port network is no more thann_ [115]. Consequently, the adjoint network concept is
used to partition the network elements into subsets containing the smallest number of
elements. It is clear from (3.72) that by forcing \}kb = 0 the corresponding change Ay, will
not appear in (3.72). An efficient way to divide the elements is to use the concept of

independent cut sets.
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Since all the network nodes are accessible we have n_ = n, the total number of
network nodes excluding the reference node. The measurement ports are assumed to be
connected between the network nodes and the ground node. As such ij is the voltage of node
j. We consider the situation when the cut set is formed of a set of passive elements connected
to node . Let I, be the index set of network elements connected to node € and Iy, be the
index set of the network nodes connected to node € by an element in Lee

In the adjoint network we short all nodes to ground except node €, where we connect a

unit current source. Then the following conditions hold:

7 b _
VL =0k, (3.73a)
Vig” = Vi®, Yk, ky € Iy, (3.73b)
$ —vyub
V=V, Vk €, (3.73¢)
(/jm =0,j=¢, (3.73d)
ijm = V" yicpJ € Igp k€ Iy (3.73e)
Tm __ (ym (3.73
= - V3> y,, kelg,, 3.73f)
k
where Yk; connects node j to note €. Consequently, (3.72) becomes
b b _ m m
Z (Vi + AV Ay, = -4V, Z Yt Z AV, ykj’ (3.74a)
k€, ke, jelg,
— b
= - 2 AV, (3.74b)
3

Equation (3.74) can also be derived by inspection from (3.70), applying KCL at node ¢ for the
circuit under test with unknown parameters and with the known nominal values.

For a number of independent excitation conditions equal to the cardinality of I, we
can solve for the parameters Ay,, k € I, The approach can be easily extended to active
networks using single and multiple frequencies similarly to the approach outlined in 3.2.2.2.

For the ladder network of Fig. 21a we consider the three adjoint networks shown in
Fig. 22. Utilizing the adjoint network of Fig. 22a we have £ = 1 and we may write the

equation corresponding to (3.74) as
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(V2 + AV AG, + (VS + AVDAG, = — (AV2G, + AVEG,).
This equation contains two unknowns AG; and AGg. Therefore, two independent excitations
are required, namely, exciting nodes 1 and 3 to form two equations in two unknowns, since all
branch voltages are assumed known. For the adjoint network of Fig. 22b we have £ = 3 and
we may write the following equation
~(V5+ AVDAG, + (V2 + AVD AG, = — (-AVEG, + AVEG)).
Again, the same two excitations are needed to solve for AG4 and AGs. Finally for the adjoint
network of Fig. 22¢ we have € = 2, and we may write
—(V)+ AV AG, + (V2 + AVD AG, + (V2 + AVS) AG,
= — (=AVSG,+ AVEG, + AV) G,

which has three unknowns AGe, AG3 and AG4. But, since we have already solved for AGy and
AGy only one excitation is required to get AG3. Note that if we had started with node 2 we
would have needed three independent excitations instead of two. This emphasizes the

importance of choosing the sequence of nodes (or, more generally, the sequence of cut sets).

3.2.2.5 Conditions for Measuring a Particular Element [82]

Trick et al. [163] and Mayeda et al. [82] have given the conditions for measuring an
element in passive networks.
Theorem 3.9 [163]: Consider an element which is connected between accessible nodes €1 and
€9 in a passive network. The measurement of the admittance of this element is possible if and
only if each path in the circuit from node €; to node €3 (excluding the path through the
element) contains at least one accessible node.

Based on this result some practical techniques for measuring specific circuit elements
are implemented [124]. In[163] a scheme that utilizes an operational amplifier requires only
one measurement. It is very easy to implement using ATE for in-circuit component

measurement.
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IV. FAULT VERIFICATION TECHNIQUES

Practically, the number of performed measurements n, is less than the number of
network elements ng. Also, it is quite realistic to assume that the number of faulty elements
nf is very small such that the inequality nf < ny, < ng holds. A number of techniques have
been proposed to address the problem of locating the faulty elements utilizing a limited
number of measurements. We discuss in this section the techniques that are based upon
checking the consistency of certain equations which are invariant on the changes in the faulty
elements [36], [471, [60], [93], [112], [150], [155]. Unless otherwise stated, the network is

assumed excited once and only voltage measurements are performed.

4.1 Substitution Theorem Technique
The change of value of a component with respect to nominal can be represented by
either a current or a voltage source in parallel or in series, respectively, with the component

[3],[148].

4.1.1 Node-Fault Diagnosis [57]
Without loss of generality, we assume that the changes are represented by current
sources only, AIb. For linear networks, and using the superposition theorem, we may write
Y AV® = QAIP = AT, (4.1)
where AInf represents the faulty nodal currents.
Assumption 4.1 [57]: Node i is faulty if and only if the ith component of AInf is nonzero.

For n¢faulty nodes, we may write (4.1) after appropriate rearrangement as

AV™® Z
[ n_m}zYJIAFf:[Z ]AFQ (4.22)
AV n—mn
Z _ Al
_ [ mf o=t ’[ ] (4.2b)
Zn—m,f n—m,n—f 0
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Hence,

AV™ = Z_ Al (4.2¢)
where A Ifis the nonzero part of AInf and consists of nf components. Since ny, > ng, (4.2¢) is an
overdetermined system of equations. The least-squares solution of (4.2¢) is given by

Af =zr z_17'z" Av™. (4.3)
Therefore, eliminating AIf, we get [19]
[z (2> z )~ 'zl -1, | AV™=0. (4.4)
Equation (4.4) gives us a relationship between the measured voltages when all the nodes of
the network are nonfaulty except those corresponding to AIf. In a network, a node is faulty if
any of the network elements incident with it is faulty. Also, (4.4) provides a necessary
condition for isolating the faulty nodes. It is independent of the values of the faulty currents
AlIf and depends only on their location.
The faulty nodes can be uniquely located, utilizing the concepts developed by Huang,
Lin and Liu in [566], [57] and verified in [154] concerning the testability of the network.
Definition 4.1 [57]: A network is said to be nsnode fault testable if one will be able to
determine from the measurements on accessible nodes:
1) whether or not the network has no more than n¢ node faults.
2) if affirmative, whether the faulty nodes can be uniquely located.
The n¢ faulty nodes are uniquely located if the following rank test, which is known as

the nfnode-fault testability condition, is satisfied.

Rank[qu] =ng+ 1 (4.5)
for all possible q, where q refers to (nf + 1) columns of Z,,.
For linear passive networks topological conditions exist for checking the satisfaction
of (4.5) [57].
Theorem 4.1: The network is ngnode testable if and only if there exist at least ng+ 1
independent paths from any inaccessible node to n¢ + 1 accessible measurement nodes of the

network. (The ground reference node is deleted from the network.)
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Two paths are independent if they do not have any common node, except at the
terminal node. Theorem 4.1 provides a very simple topological condition. It can be used for
designing for testability by adding accessible measurement nodes until the condition in the
theorem is satisfied. For active networks, some necessary and almost sufficient topological
conditions are given in [145], [146]. The conditions are derived in terms of the Coates flow
graph. [t is to be noted that the topological conditions are sufficient under the assumption
that there is no relation between the elements of the network. For specific values of the
network elements they could fail. Therefore, the algebraic conditions are more universal.

If ny, < n¢ we could still locate a fault region that is defined as any set of n,, nodes
which contains the n¢ faulty nodes with n,, > ny. This approach has been followed in [146],
where necessary and sufficient conditions as well as a topological algorithm for isolating the
fault regions have been presented.

For the simple ladder network of Fig. 21a, if nodes 1 and 3 are the measurement
nodes, then n,, = 2 and we can at most locate a single faulty node uniquely. Constructing

equation (4.2a) using the nominal element values of the network, we get

AV 5 2 1

NG -181 1 2 5 arf .
AVET® 2 4 2

= J

Since every 2 columns of Z,,,,, are linearly independent, the network is 1-node fault testable.
Now, let us assume that a fault has occurred such that AVim = AVqm = 1/24 and it is
required to find which of the nodes 1, 2 or 3 is faulty. We construct equation (4.4) for the three

possible nodes and check which one will yield 0. For node 1 we have

[T I A [ A P8
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For node 2 we have

(NI W B S

For node 3 we get

[ I[l 51[1”‘1[1 51 1 0”[1/241
5 0o 1111124 17156

It is clear that node 2 is the faulty node since (4.4) is only satisfied for node 2 and the algebraic

1 -5/156

-0

1-node-fault testability condition (4.5) is satisfied. Solving for A12f using (4.3), we get
ALf = 1/6.

For the network of Fig. 21a, we have just one inaccessible node, and it is clear that
there are two separate paths from node 2 to the measurement nodes 1 and 3, respectively.
Therefore, Theorem 4.1, which provides us with the topological testability condition, is

satisfied.

4.1.2 Branch-Fault Diagnosis [66]

It is clear that a faulty two-terminal element affects two nodes, thus we may have
some redundancy. This could be addressed by either reducing the number of unknowns as
reported in [146] or we may address the more difficult problem of isolating faulty branches
[17],[19]. Recalling (4.1), we have

AV™ Z
[ i (4.6)

T | bf _
= v_'Qar ‘[z

n— m,b

Avn— m

and equations similar to (4.3) and (4.4) for faulty branch currents could be derived [19].

For a linear network, Lin, Huang and Liu [66] developed the condition for uniquely

identifying any n; faulty branches, namely, the ncbranch-fault testability condition. The
network is nebranch-fault testable if every n. + 1 columns of Z , are linearly independent.
Topologically, this implies that if the network contains loops consisting of a number of

elements less than or equal to ng + 1, then the network is not nfrbranch-fault testable [148].
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More rigorously, necessary conditions have been given in [148] and necessary and almost
sufficient conditions for linear passive networks are given in [64]-[66].
Theorem 4.2: Let Q be a set of (n; + 1) branches and qu be the nmx(nf +1) submatrix of Zmb
whose columns correspond to branches in Q. Then qu has full column rank only if there
exists a tree T such that
1) T contains Q,
2) (T'-Q) is connected when all accessible nodes are shorted to the ground.
The converse is also true for almost all values of the network parameters ¢.

Lin et al. [66] have derived topological conditions to check the nf-branch-fault
testability condition.
Theorem 4.3: The network is ngbranch-fault testable if and only if there exist at least ng + 2
independent paths from any inaccessible node to n. + 2 accessible measurement nodes that
could include the ground reference node.

Recalling the simple ladder circuit example of Fig. 21a, we find that the inaccessible
node 2 is connected to the measurement nodes 1 and 3, as well as the ground node by three
separate paths. Therefore, the network is single-branch-fault testable. Also, constructing

(4.6) we get

1 -1 2 -3 5

which clearly identifies that every two columns are linearly independent. In fact, if
AV,™ = 3/8 and AV,™ = -1/8, we find that the algebraic fault invariant equations, similar to
(4.4), are only satisfied for G,.

The adjoint network approach that is outlined in Section 3.2.2.4 could be utilized to
get equations similar to (4.6). Since the theoretical implications would be the same, we do not

elaborate further on the adjoint network approach [23], [124], [125], [159], [161], [162], [164].
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4.1.3 Calculation of Faulty Element Values
Node-fault isolation has been developed to overcome the difficulty in uniquely
identifying the faulty branches [19]. Using multiple excitations [57], [147], the faulty
branches could easily be identified after isolating the faulty nodes. This is a very efficient
way of utilizing the identification technique presented in Section 3.2.2.2, without the need for
measuring all voltage nodes; in fact, the inaccessible node voltages are computed using (4.2)
and (4.3) as
AVITm=Z (207 TN Z AV 47
Topological conditions for identifying remote inaccessible subnetworks using
multiple excitations at a subset of the accessible nodes, injection nodes, are given in [147].
Other conditions are given in [56]. From the theory of perturbation, we have
AP = —AY [V + AV"]= —QAY, QI V™ + AV™. (4.8)
Consequently, and similar to (3.57a), we have
A = —Q (V] + AV Ay, (4.9)
where Qs, Vpf and Aybf are submatrices of Q, V}, and Ayb (see (3.57)) that are associated with
the faults. For multiple excitations, we can construct a system like (3.58) and solve for Aybf.
The substitution theorem technique is based on checking whether a certain subset of
network elements could be faulty or not. Therefore, it is usually referred to as a fault

verification technique. The technique has the advantage of reducing the requirements on test

points. ny = ng + 1 measurement nodes are necessary and in many cases sufficient for the
unique isolation of n¢ faulty nodes or branches. Also, for linear networks, all computations
involved are linear and rely only on the nominal network parameters. Moreover, the ns
testability conditions (to ensure the uniqueness of the identified faults) depend only on the

graph of the network, not its element values.
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4.2 Failure Bound Techniques
For a network with ng elements, n¢ of them faulty, the number of different com-
binations considered by the fault verification technique of Section 4.1.2 will be equal to
()
D¢
For large networks, this number is enormous and the required computations will be

prohibitive.

4.2.1 Combinatorial Technique [146]

It is evident from Section 4.1.2 that if we have n,, independent measurements, then
the maximum number of faulty elements which we can identify is equal to n,, — 1. Based on
the assumption that n¢* is the maximum number of faulty elements, we divide the elements
into ni subsets such that the cardinality of each subset is equal to the integer part of
(ny -1)/ng*. Taking a combination of n¢* subsets, the total number of elements in the
resultant set will be less than or equal to ny, -1, and we can apply the fault verification
technique of Section 4.1.2 to check whether this set contains the n¢faulty elements. It is clear
then, that following this procedure, the number of combinations to be considered is reduced to

()
n./
f
4.2.2 Heuristic Technique

Wu et al. [177] have introduced a fault diagnosis algorithm under the assumption of a

bound on the number of faults nf* and Liu’s heuristic assumption that the effect of two

independent analog failures will never cancel. This is an inherently analog heuristic since
two binary failures have a fifty-fifty chance of cancelling one another. In the analog case,
however, two independent failures are highly unlikely to cancel one another. Their

algorithm, applicable to linear as well as nonlinear networks, has the following structure.
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Comment

Comment

Step 3
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* Partition the network elements into two subsets. Assume that the subset 1

elements are good. Using the meausrement data and the characteristics of the
elements of subset 1, determine the inputs and outputs of the elements of subset
2.

The number of subset 2 elements should be greater than n* and less than the
number of measurements n__.

Test each element in subset 2 by determining if the inputs and outputs of the
elements are consistent with the nominal characteristics. The elements with
inputs and outputs consistent with nominal values are assumed good. No
decision is possible for the rest of the subset 2 elements.

If all elements of subset 1 are actually good, then the results for all subset 2
elements should be reliable. Since this is not the case, we invoke the heuristic
assumption which leads to the result of Step 2.

Repartition the elements, transferring all elements that are found to be good
into subset 1. Go to Step 2 and continue the process until the subset 1 elements

are entirely good.

The number of steps required is determined by the number of elements which could be

tested in one step and the bound on the maximum number of simultaneous faults. Therefore,

the procedure yields a natural set of tradeoffs between the number of measurements,

simultaneous faults and steps required by the algorithm.

To accelerate the speed of convergence, a coupling table was introduced. This coupling

table (generated by sensitivity analysis) indicates whether or not a faulty element of subset 1

will affect the test results on an element of subset 2 (i.e., whether or not they are coupled). If

an element in subset 2 is found good, then all elements in subset 1 that are coupled to it are

also good.

For linear networks, let the element equations of subset 1 be given by

Y, VPl =1 (4.10a)
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and those of subset 2 be given by
Y,, VPZ = P2, (4.10b)

We may write KCL and KVL for the network in the form

Q"+ Q"= 1", (4.11a)
Q_ .., I"+Q __,I"=0, (4.11b)
Q:n Vi Q:_ m,1 Vit m= v (4.11c¢)
Q,V'+Q  ,VT= V2 (4.11d)

where the incidence matrix Q is partitioned as

Q Q
Q Q

and subscripts 1 and 2 refer to subset 1 and subset 2 elements, respectively.

ml

m2 (4.12)
Q=

n— m,1 n— m,2

Equations (4.10a) and (4.11) can be represented in tableau form as follows.

~ " A B 7
bl
le Ybl 0 Qm2 0 v "
Qn— m,1 Ybl : 0 Qn— m,2 0 e 0
= . (4.13)
T b2 T
_lnbl Q n—m,l1 0 0 I -Q lem
T b2 T
- 0 Q n-m,2 0 ‘lnbz N _V . __Q m2 Vm_J

n-m

One may further eliminate the unknown variables VP! and V and solve the resultant

1’2 and V2. In general, this is possible under the condition of the existence of

equations to get
a left inverse of the matrix Q, o, which in turn determines the allowable element

subdivisions. After some mathematical manipulations, we may write

b2 _ n—m — Lyym T ym 414
- Q Q Ybl Qn m,1 v + Qm;[I - le YbIle v, ( a)
n—m (4.14Db)
Q NV Qn maV ,
where sz'L is the desired left inverse and
n—m__ T
v - [Qn— m,1 Ybl Qn— ml Qn m, 2Q le len ml
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: r ~Lpm T ym 4.14
(Q,_ 1 Vi1 Ut Vint Qe iz Ung 17 = Qg Y1y @y VI (4.14c)

Although the expressions appear to be foreboding, they may all be computed off-line

n—m,1 n— m,2

and stored in a database to be retrieved at the time of conducting the testing procedure.
Therefore, the only on-line computation required for fault diagnosis of linear networks is the
matrix by vector multiplication indicated by (4.14). Using the nominal element values and
VP2 6f (4.14Db), we compute
2 =Y, Vv (4.15)

and compare 1°2 with 12 of (4.14a). If I-fibQ—Iib2| is less than or equal to a predetermined
threshold, the ith element is good, otherwise, it is faulty [176].

As an illustration of this technique, we consider the ladder network example of Fig.
21a under the assumption that n* = 1 and all nodes are assumed accessible, i.e., Vo s
empty and V,"™ = 2/3, V,™ = 1/3 and V," = 1/6. The diagnosis procedure could be
summarized in the following steps.

Step1 Subset 1 contains Gy, G, and G4 and subset 2 contains G, and G, Therefore,

0 0 0 1 1
Q, = 1 1 0 |, Q.= 0 -1
0 -1 1 0 0
and
1 1 0
-L_
m2 0 -1 Ol

Substituting in (4.14) withI™ = [1 0 0]7, we get

b b
I \%
[ Gy 1/2 Gy 2/3
Iblzll/zl’ [Vb]:II/gl’
G2 G2

which implies that both G, and G, are faulty, but this contradicts the maximum

failure bound, therefore we consider them not faulty and place them into subset 1.

Step2  Subset 1 contains Gy, Gg and G4 and subset 2 contains Gs and Gs. Therefore,
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1 1 0 0 0
Q,=|0 -l 1|, Q,=|1 0
0 0 -1 0 1
and
0 1 0
_L:
m2 0 0 1]

Substituting in (4.14), we get
b

b
I \%
l G3] 11/6] [ G3] [1/31
b |~ ’ b |~ ’
I 1/6 \ 1/6
G5 G5
which implies that Gy is good element and we do not know whether G, is faulty or
not since subset 1 contains G, which could be faulty.

Step3  Subset 1 contains G, G, and G, and all are known to be nonfaulty. Therefore, the

results of this step are completely reliable. Subset 2 contains Gg and G, Therefore,

1 1 0 0 0
Q,=/0 -1 0|, Q,=|1 1
o0 0 1 0 -1
and
0 1 1
— L:
m2 0 0 — 1] ’
Substituting in (4.14), we get
° Vb
IE PSR
b = , b = s
I 1/6 \4 1/6
Gy Gy

which implies that G, is nonfaulty and G, is the only faulty element, which is a

correct conclusion.

In [38], the failure bound technique is implemented in the tableau context. Also, in
[49], the theory of analog system t-fault diagnosability has been developed to provide

theoretical characterization of the failure bound technique.
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4.3 Network Decomposition Approach[126]-[128]

This technique utilizes network decomposition in isolating the fault to within a small
subnetwork. A large network could be viewed as a set of mutually uncoupled subnetworks
that are connected at the nodes of decomposition. Without loss of generality, we assume that
all subnetworks are grounded. The input-output relation of the ith subnetwork S, is given by

M = W™i(V™, ¢,), (4.16)
where ¢, is the vector of the subnetwork parameters and I and V™ are the currents and
voltages of the external nodes of the subnetwork. Let

M, = M, UM UM, U Mg, 4.17)

B
where M, is the set of nodes where both voltages and currents are known, MiB is the set of
nodes where only voltages are known, Miy is the set of nodes where only currents are known,

M,; is the set of nodes were neither currents nor voltages are known, and M, is the set of all

external nodes of the subnetwork not including the ground node. Accordingly, we may write

(4.16) as
[Mia = hMig(V™ia V™ VMiy | Vs | b)), (4.18a)
[Mif = h™Mif(V™Mia | VM V™iy | V™Tis | ®), (4.18b)
IMiy = hMiy(V™Tia, VB V™0iy, Vi, ), (4.18c¢)
M8 = hMiB(V™ia, VB Vi VTS ) . (4.18d)

4.3.1 Testing Conditions
If the cardinality of the set M, is greater than the cardinality of the set M, a

necessary condition for the subnetwork to be faulty free is that (4.18a) and (4.18c) constitute a

consistent system of overdetermined equations with ¢, assuming nominal values <l>i0. If the
external nodes do not decompose the subnetwork further, then the condition is also almost

sufficient. This condition is referred to as the internal-self-testing condition (ISTC). In

general, the nodes of decomposition are chosen among the set of nodes where voltage



81

measurements-can be performed. When all the voltages of M, are known and the cardinality
of the set M,  is greater than or equal to one, the subnetwork will be fault free if and only if
[Mia — hMia (V™ 4,10) =0. (4.19)

This is known as the self-testing condition (STC). Practically, it is difficult to

measure the currents I™ia, except when they represent the input excitations to the whole
network. The application of KCL and topological relations overcomes this difficulty. The
currents are not measured: they are computed using the nominal parameter values together
with the measured voltages, then KCL is invoked. Under the assumption that the heuristic
assumption holds (the effect of two faults will not cancel), we have the following results.

Lemma 4.1: Mutual-Testing Condition (MTC) [128] A necessary and almost sufficient

condition for subnetworks S, i € J,, that are incident on a common node c to be fault-free is

that

> h:li (vmi,¢?): 0. (4.20)
i€ Jt

Instead of considering the incidence on a node, we may consider the generalized KCL
that involves the incidence on a cut.

Lemma 4.2: Generalized-Mutual-Testing Condition (GMTC) [128] Let E.CM,i¢d . denote

some external nodes of the subnetwork Si' Each subnetwork Si is connected and its external
nodes do not decompose it further. If the currents incident to E,, i € J p form a cut set. Then, a

necessary and almost sufficient condition for these subnetworks to be fault free is that

> > h v eh=0. (4.21)
iEthEEi

The ISTC is utilized in identifying faulty region(s) inside a faulty subnetwork that is
identified by the application of STC, MTC and GMTC. The application of ISTC starts by
partitioning the faulty subnetwork S, into smaller subnetworks Sj, S, such that S, = SjUSk.
Utilizing (4.18) we can identify whether SJ. or 5, are fault free or not. We utilize the nonfaulty

subnetwork to determine the currents and voltages of the common nodes between Sj and S.
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We continue the binary partitioning process in the identified faulty region until we can not
find a partition that satisfies the cardinality condition, namely [M; | > [M_4.
As an example of applying ISTC, we consider the resistive mesh network S shown in
Fig. 23 with the nominal values of elements G, =1.0,i=1,2,...,20. All outside nodes
{1,2,3,6,7,10,11, 12} constitute our measurement nodes where both voltages and currents
are known and are given in Table 4.1. Node 12 is taken as the reference ground node. Nodes
4, 5, 8 and 9 are internal nodes where no measurements can be performed. Two faults are
assumed in elements G, and G;q. The process of identifying the faulty elements is
summarized in the following steps.
Step 1 Sis decomposed as shown in Figs. 24 and 25 into S, and S,,
M,, ={7,11}, MIB = {3, 12}, Mly = {0}, M5 = {8},
M, ={1,2,6,10}, Mzg = {3, 12}, M2Y = {D}, Mys = {8}
Applying ISTC, namely, verifying the consistency of (4.18a) and (4.18¢c), S; was found
to be faulty free and S, was found to be faulty and the following currents and voltages

were computed

1 _ 2 _

I = — 0= 0227A,

1 _ 2 _

I = — Ig = 0.162 A,

1 _ 2 _
I,=—T,=-03894,
Vy= 05736 V.

Step 2 S, is decomposed as shown in Figs. 24 and 25 into S; and S.
M, =1{3,8,12}, M3‘3 = {1, 10}, M3Y = {J}, M5 = {5},
My, = {2,6}, Myg = {1, 10, M, = (@}, M, = {5}.
Applying ISTC, S; was found to be faulty and S, to be nonfaulty and the following

currents and voltages were computed

If = _ If = 0.3785 A,
4 _ 3 _
I} = - IJ = -010174,
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4 _ 3 _
I}, = - )= —0.2754 A,

V5 = 0.7071 V.

Step3 S, is decomposed as shown in Figs. 24 and 25 into Sy and S,
M, = {5,8,10, 12}, MGB = {J}, Mg, = {D}, Mgg = {4}
Applying ISTC, S; and S; were found faulty.
Step4 S; is decomposed into S; and Sg as shown in Figs. 24 and 25. S, is not decomposable
according to the cardinality condition, namely, [M, | > [M.
Using KCL, we compute the following currents
5_ 8 _
I4—— I4 = —0.3945 A,

8
I9

and thus, My = {4}, M7v = {9)and Mg, = {4,9}.

_ 7
__._.19

Il

0.335 A,

Applying ISTC, Sg was found to be nonfaulty and S, to be faulty and the following
voltages were computed.
V,= 08579V,
Vo =04731V.
Step5 For both Sy and S, all external voltages and currents are known. Searching for a
single fault in both of them, we found G, in S to be faulty and equal 0.5, and G4 in S,

to be faulty and equal 0.5. Hence, we were able to locate the faults in five steps.

4.3.2 Logical Analysis
The results of the application of different testing conditions (STC, MTC, GMTC) are

analyzed using logical functions to identify the faulty and nonfaulty subnetworks. Every
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subnetwork -has associated with it a logical variable o which takes the value 1 if the
subnetwork is good and 0 if it is faulty. Every logical testing function (LTF) is equal to the
complete product of variables o; if all subnetworks involved in the testing condition are fault
free

LTF;, 405 Noj, N ... Noj, (4.22a)
where

I, 84,0 00t (4.22b)

j; refers to the jth subnetwork and k is the number of subnetworks involved in the testing
condition, or the complete union of complemented variables 9; if at least one of the
subnetworks is faulty

LTF, 25}, UTj, U ... UTj, . (4.23)

A logical diagnostic function (LDF) is defined as the logical intersection of all LTF's.
A d (4.24
LDF £ () LTF, , 24)
t=1 t

where € is the total number of testing conditions. In LDF, the subnetworks that are
represented by Ej are faulty and those which are represented by o; are nonfaulty. If a
subnetwork is not represented in the LDF, we assume nothing about its status: more testing
conditions are needed to be applied.

Other applications of logical analysis to fault isolation have appeared in [45], [67],
[68]. Also, conditions for subnetwork diagnosability are investigated further in [95].

As a simple illustration of the application of the network decomposition technique and
logical analysis, the ladder network of Fig. 21a is decomposed into five subnetworks using the
measurement nodes 1, 2 and 3 as shown in Fig. 26. Using the measured voltages and the
nominal element values, we compute the input currents to these subnetworks as given in
Table 4.2. Then we check KCL at the nodes 1, 2 and 3 and form the corresponding LTFs.
From Table 4.2, we have

LTF,, =0, No,,
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LTFg34 =02 UG3 U0y,
and
LTF45 =04 No5.
Consequently,
LDF = (01 Nog) N (o3 Uoz Uog) N(ogNas),
=o01NogNogNaogNos,
which clearly identifies Sg as the faulty subnetwork, i.e., G3 is the only faulty element.

The network decomposition approach has a number of appealing advantages [126]. It
is applicable to very large networks as has been demonstrated in [128], with the number of
measurement nodes kept within practical acceptable bounds. Subnetwork testing conditions
depend on the network topology and KCL, so the technique is applicable to linear and non-
linear networks. For linear networks, the on-line computational requirements are similar to
the maximum fault bound techniques and the off-line computation involves the analysis of
the nominal network only. No upper bound is assumed on the number of faults as in other
techniques. Parallel processing techniques could be employed to perform the on-line
computations, in particular, when the network is nonlinear, thereby reducing the testing

time.

44 Symbolic Function Approach [48],[113]

We present the application of this approach to the double fault case, i.e., when two
circuit elements are faulty. Greater than two faults, the approach does not appear to be
practical although it could be applied.

A network function H(s) of a linear active circuit can be expressed as a function of the

two faulty parameters ¢; and ¢; in the form
a, + alcpi +a2¢>j +a3c1>i<1>j

by + b, + byb. + bbb

(4.25)

H@, ¢) =
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where the coefficients aj, b; are functions of the complex frequency s and the nominal
parameters of the nonfaulty elements. The function H(;, ¢;) is obtained by direct
measurements at a certain frequency se. Assuming that ag or bg = 0, and considering ¢; ¢; as
an independent unknown variable, we construct a system of linear equations in the unknown
variables ¢;, ¢; and ¢; ¢; by measuring H(s) and computing the coefficients a;, b; at three
independent frequencies (two could be enough). If the parameters are all real and if from the
solution we find that the value of ¢; d; equals the product of ¢; by ¢; we conclude that the fault
is localized in the parameters ¢; and ¢;. Or, utilizing the measurements at three independent
frequencies, we construct two systems of equations in the parameters ¢;, ¢; and ¢; ¢; and solve
for these unknowns and check the consistency of the two solutions. For the linear frequency

dependent circuit of Fig. 4, we have

out () = aO + aZCI
V. b0+b1R4+b2CI+b3R40l

n

where the coefficients are given by

ap = Rg,

ag = sRy Ry,

bo = (R; + Rg) + s(C2 + C3)(RgR3 + R; R3 + R1 Ry),

by = sC3(Ry + Rg) + s2C9C3(R1 Ra + R3Rg + RgRy),

b2 = sR; Ry + s2R; Ro R3(Cs + Cy),

bg = s2R{ Ry C3 + s3R; R2R3CQC3
and are computed using the nominal parameter values. Assuming that at @ = 200 and 800
rad/sec Vyut/Vin is measured and is given by (.0958, -.3961), (-.0431,-0.0687), respectively.
We form a real linear system of equations to solve for the variables Cy, R4 and R4 C;. We get
Ci =10-9F, Ry = 5x106 Q and R4 C; = 0.005, which implies that C; and R4 are the actual

faulty elements.
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45 Fault Verification in Nonlinear Systems [172]
Recalling (3.1), we may write
Vm = h(Im, $9, Af), (4.26)
where A¢f represents the change of the network elements from nominal. Based on the
assumption that n¢ < n,, A¢f will have only nf nonzero components and (4.26) is an
overdetermined system of equations. A search procedure is implemented to find the faulty
elements by assuming that a certain set of nf elements is faulty and minimizing
[Vm - h(Im, 0, AdD, (4.27)
with respect to Af, for all possible different combinations of n¢ network elements. If the
actual values of all nonfaulty elements are nominal, the value of (4.27) will be zero only if the
correct faulty parameters are chosen in A¢f.
The problem of the diagnosability of a network from a set of nonlinear equations is
related to the rank of the test matrix R. Visvanathan and Sangiovanni-Vincentelli have

given the conditions for single fault diagnosability [172]. The network is n¢-fault diagnosable

if we can locally identify the ngfaulty elements uniquely, for all possible nf element
combinations. This is similar to the concept of ns fault-testability introduced for linear
systems. Let Q C Iy be the set of (nf+1) indices and Rqq be the qxq submatrix of the test
matrix R corresponding to Q, then we have the following theorem.

Theorem 4.4 [172]: If for all possible Q C Iy, the matrix Rqq(¢0) is positive definite and the

rank of Ryq(99) is generic, then the network is np-fault diagnosable.
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V. APPROXIMATION TECHNIQUES

Approximation techniques address the problem of fault isolation with a limited
number of measurements. They identify the most likely faulty elements that satisfy a
prespecified testing criterion. These techniques are characterized by the need of extensive on-
line computations. Two techniques are discussed; the probabilistic techniques [22], [61], and
the optimization based techniques [4], [50], [85], [107]. The probabilistic techniques could be
classified under the simulation-before-test techniques since all simulations are performed
before testing and also due to their great similarity, in principle, to the fault dictioﬁary
approach.

We consider here three techniques that utilize optimization in finding the most likely
faulty elements. The €3 approximation technique [50], [107] utilizes the weighted-least-
squares criterion. The changes in network elements are obtained by solving a system of
linear equations. The quadratic optimization technique [85] and ¢; approximation techniques
[4] utilize the €1 norm in identifying the elements which have exhibited large changes from
nominal. These elements are considered to be the faulty elements. All techniques assume

that all good elements are within their tolerance bounds.

5.1 Inverse Probability Technique [22],[61]

This technique is quite similar to the fault dictionary techniques. It is primarily
applied to locate single faults. In the pre-test stage the possible faults are characterized
statistically. At the time of testing, the probability for each individual element to be faulty is
computed using a limited number of measurements and the pre-stored statistical diagnostic
data base. Since all network simulations are done before actual testing, this technique is
classified as a simulation-before-test approach. In contrast to the fault dictionary techniques,

the on-line computation requires extensive calculations.
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Recalling (2.34), the conditional probability of obtaining V™ measurements when the
fth network element changes by A, is given by
1 m f\T af =1,m f
exp{— E(V -V (Amm) (VP=VH}

m 5.1)
Prob (V™| Ad,) = . (

The actual value of the failed component is not desired. The only quantity of interest
is the probability that each element has failed.
This is obtained using Bayes’ theorem (2.35), and by integrating over all possible

values of Ad,

, (5.2
Probid, | V™ =k J[ Prob(Vm!Acbf.)Prob(Acpf)dAcp(., )

where k is a normalization factor determined by setting the sum of the probabilities of all
possible failures equal to one. The element which corresponds to the greatest value of (5.2) is
the one most likely to have failed.

It is to be noted that in (5.1) both Vf and Afmm will vary with the change in the
barameter Ad, Therefore, the computer implementation of the technique requires a library
of inverted covariance matrices and associated values of the network response V{ at different
values of Ap, The integration (5.2) is performed numerically using any efficient integration
rule (e.g., Simpson’s rule). Obviously, infinite changes of A, are not considered. Therefore,
some catastrophic faults are considered only in the limiting sense.

The generdtion of the covariance matrix elements is achieved by a Monte-Carlo
simulation of the variations from nominal of the in-tolerance elements. For the A change in
the fth element, € circuits are randomly generated, while the remaining circuit element
values are constrained within their tolerance bounds.

Each of the ¢ circuits is then simulated to compute the correspnding responses V.o
The fault represented by A, is now characterized statistically on the basis of the responses

m . . L
V™ i=1.2,..,0 Then xn_  covariance matrix is given by

13
£ _ S £ £\T (5.3a)
A = —.: (VE“—V)(V;“—V) ,



where Vfin (5.3a) is given by

Ill>

1 é (5.3b)
e .=

As indicated above the pre-test preparation is cumbersome due to both the large
amount of data to be stored and the amount of necessary computation. If every network
parameter is discretized at n_ points the number of values to be stored is equal to

(nI2n+ n_+ 2)n_n (5.4)

x ¢’
which is enormous for very large networks.

5.2 €, Approximation Technique

This technique is based on the assumption that the catastrophic faults have been
eliminated and the circuit failure is due to components drifting out of tolerance (as from age,
temperature changes, etc.) [107]. A limited number of measurements, insufficient to identify
all network elements, are utilized to estimate the most likely element values. The least-
squares criterion is employed to find the changes in the network elements from nominal.

For linear networks, the changes in measurements are related to auxiliary current
sources as follows from (4.2), namely,

AV® =7 AL (5.5)
Equation (5.5) is an underdetermined system of linear equations in the components of

the vector AIPf Utilizing (3.59) every component of AI’f could be expressed in the form

Ibf (Vb+ AVb)Ay = (vb+ AVb)(JO)) Ad.. (5.6)

It is clear that AI" is directly dependent on the changes in the network elements. In

general, (5.5) is a set of complex equations which could be modified into real form as follows.

Re (AL (5.7)

[ Re[AVm]J [ Re(Z ] —Im[Zmb]l

|

Im[AV™] Im(Z RelZ Im [Albf]

mb]

We utilize the €2 criterion, namely, to minimize

mb

b
Z( [Re[AIbf]] + w, [Im[AIbf]] (5.8)
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subject to (5.7) to get an estimate of AIb. wj; and wig are positive weighting functions. The

weighting functions could be chosen such that (5.8) approximates

)
Z A¢i2 (5.9)
i=1
under the condition that the changes A¢; are quite small. An appropriate choice of wi; and
wig could be
a. 5.10a)
w,, = 1/ [Relfe) ' VOI?) , (5.10a
(5.10b)

% (b2
W, = 1/2 [Im(Gw) " V%) .
The solution of the linear ¢3 problem is directly obtained in terms of the generalized
inverse of the matrix of equation (5.7).

For the ladder circuit example of Fig. 21a let Cr1 = 1.02, G2 = 0.5, G3 = 0.98, G4

0.98 and Gy = 0.95. The voltages at the measurement nodes 1, 2 and 3 are given by vV, =
0.718V, V2 = 0.183V and V3 = 0.093V, respectively. Therefore,we have only three
measurements:not enough to identify all network elements. Since all branch voltages are

known we minimize

5
> @by

i=1

subject to
Ca
5 03 2 1 1| ALY [ 0.003
2 -2 4 2 2 ALY = | -0.067 ,
1 -1 2 -3 5 AL ~0.032
Lo

where the RHS is the change of the nodal voltages from nominal. The solution is given by
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-

[~ .0049
2140
A =|_ 0217 | ,
—.0043
-.0014

— -

from which we get AG1 = .0068, AG2 = — .398, AG3 = 119, AG4 = .047 and AG5 = .0148

which are the expected deviations in the conductances from the nominal value of unity.

5.3 Quadratic Optimization Technique [85]

Contrary to the €, approximation technique, the main assumption here is that the
difference between the actual and the nominal values for a few elements, which correspond to
the faulty elements, is much greater than for the remaining network elements that are
nonfaulty.

An optimization technique is employed that utilizes an objective criterion of the form

n

$

(> v Ao+ ¢, )+ c, IAV™ — ZmbAIbf", (5.11)

i=1

where the first term penalizes the nonzero element values and the second term implies that
the result should satisfy (5.5). ¢, and ¢, are constants. c; is included in (5.11) to eliminate
differential problems when A¢, = 0. Merrill [85] considered a sequence of quadratic
approximations to (5.11). This led to solving a sequence of quadratic programming problems.
The reported results of this approach [85] were in complete agreement with the

hypothesis of a few faulty elements. The hypothesis agrees with most practical observations.

5.4 ¢, Approximation Techniques

Instead of solving a sequence of quadratic optimization problems, a linear
programming formulation has been proposed in [3],[4]. This technique takes advantage of the
nature of the £, norm as well as the linearity of (5.5). The linear optimization problem is

defined as follows.
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n

b
Minimize » (w. [Re[AL] + w.|[Im[AL"]), (5.12)
i=1

subject to the linear equality constraints (5.7). This linear optimization problem can be easily
converted to the regular linear programming form by an appropriate transformation of the
variables.

The least-one objective function tends to satisfy the equality constraints (5.7) with the
minimum number of parameters different from zero. This is consistent with the assumption
that a few elements are actually faulty.

The results of the linear programming problem provides us with AI?Y. The network is
then simulated using AI’ to find AV®. The changes in every network parameter can then be
easily computed using (5.6). Comparing the change in every component with its allowed
tolerance, the most likely faulty components could be isolated.

We consider here the same example that has been considered for the €, approximation

technique. We minimized

5
> lar]
i=1

subject to the same set of equality constraints. The solution of the linear programming
problem provided us with AIibf, i=1,2,...,5, which gave the following values for the changes in
the elements: AG; = 0.0, AG, = —0.473, AG; = 0.0331, AG, = 0.03 and AG, = 0.0. Clearly,
the £, approximation technique provides sharper results as compared to the £, approximation
technique.

Practically, we would like to have (5.7) less underdetermined. This is achieved
without increasing the number of accessible nodes by exciting the network more than once
using different excitations, e.g., a different frequency or different input signals. We then
consider A instead of AI’ as the error parameters.

Equation (5.5) can be written as

AVR =7 Q (V, + AV,) A, (5.13a)
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where

a Q a

1 2 n )
Q =diag{jo) (o) .. (o) % (5.13b)

To preserve the linearity of (5.13a) AVy, is initially assumed. This is a linearization of
(5.13a). An iterative procedure is applied to update AVy and at the same time compute the
changes A ¢.

For k different excitations applied to the faulty network, we consider the following

optimization problem.

n

b
Minimize < 0 (5.14a)
i=1
subject to
ol T | 2
Avl Zmbl le (Vb + AVb)l
m
AV‘Z Zmb? Qb? (Vb * AVb)Q
= . Ad . (5.14b)
A yin
__Avk_J L Z e Lo Vi, T AV, y

The solution of (5.14) provides the changes A¢ that are utilized together with the
input excitations to the network to update (Vy, + AVy) as well as Z,,,. This iterative

procedure is repeated until convergence is achieved [4].
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VI. DISCUSSION AND COMPARISON
6.1 Artificial Intelligence Technique
Recently, there has been an attempt to apply artificial intelligence (AI) concepts to
the problem of fault location [27],[28]. As pointed out in [27], the Al approach depends on the
use of circuit understanding in developing test programs. The approach, in general, will work
well in circuits designed in, more or less, a modular form. The Al testing approach could be

summarized in the following steps.

1) Decompose the circuit into functional entities,
2) Apply a test signal and do signal tracing to isolate the fault to one or more subcircuits,
3) Apply a diagnosis model to isolate the fault to one element within the subcircuit.

Clearly, the approach is quite similar to the decomposition approach described in
Section 4.3, with the exception that functional decomposition is utilized instead of nodal
decomposition. Nodal decomposition, which could include functional decomposition, is much
more powerful and, as described in [128], a hierarchical decomposition technique could be
employed during testing to reduce testing time and provide an efficient and systematic

testing procedure.

6.2 Comparison

A number of different points are very important regarding the practical application of
any fault location technique. We consider the following criteria: on-line computational
requirements, off-line computational requirements, test points, robustness, type of faults,
network types, network models, diagnosis resolution and in-situ testing. In what follows we
consider in some detail the goals for a practical algorithm together with the degree to which

the various techniques of Sections II-V achieve these goals.



96

6.2.1 On-Line Computational Requirements

The optimum technique should have minimal on-line computational requirements.
This implies that the after-test simulation is fast and the computations needed are simple.
This is directly related to the cost and the speed of testing.

Fault dictionary techniques usually implement a very simple isolation criterion, e.g.,
the nearest-neighbor rule, and the required computations involve only simple mathematical
operations. Therefore, they satisfy the on-line computational requirements. For a very large
network the dictionary size could be large, such that many entries are processed before
isolating the fault, i.e., the testing time could be long. An appropriate approach is to use the
decomposition concept in dictionary construction [130] and in the isolation procedure. The
advantage of having a minimal on-line computational requirement has made the fault
dictionary approach the most logical for practical considerations. Nevertheless, the other
inherent deficiencies forced the researchers to search for other more promising approaches.

We have considered two classes of techniques for the parameter identification
approach. The nonlinear techniques, while providing us with strong theoretical results, need
a nonlinear equation solver. This implies that the ATE should possess sophisticated
computational facilities. Moreover, the computation time, in general, will be more than
needed for the fault dictionary approach. This usually renders these techniques impractical
in an on-line environment under the demand of fast testing time. In contrast to the nonlinear
techniques, the linear techniques require solutions of systems of linear equations.
Consequently, the on-line computational requirements are moderate and, with rapid
advances in the microprocessor technology, the ATE could easily have the simple capability of
solving linear systems of equations. In that respect the linear techniques for the parameter
identification approach are very close to the practical goal. But, unfortunately, the
improvement in on-line computational requirements is usually achieved at the expense of

increasing the number of test nodes.



97

Fault verification techniques have been proposed to achieve the goals of minimal com-
putational requirements without the need of accessing all network nodes. The combinatorial,
heuristic and network decomposition techniques have been proposed to reduce the number of
combinations considered, i.e., testing time. For linear networks the on-line computations are
reduced to matrix by vector multiplications. For nonlinear networks a nonlinear network
solver is still required. Using the parallel processing capabilities of modern ATE, the testing
time could be further reduced to approach the practical goal.

The approximation techniques utilize a limited number of measurements to
essentially perform parameter identification. The on-line computational requirements for
the technique that employs quadratic programming could be impractical for on-line
implementation. The techniques that only utilize linear programming require less com-
putational power, but they could still be beyond the capability of on-line ATE. The inverse
probability technique requires the usage of numerical integration, which is quite feasible for
practical implementation and we may consider it to need only moderate computational
requirements. Definitely the €9 approximation technique is the best approximation techni-
que concerning the required computational power since it only requires a matrix by vector
multiplication under the assumption that the required pseudo-inverse matrix is obtained
beforehand. The problem with the €9 technique is that the choice of the objective function

weights is very crucial to achieving a good approximate solution.

6.2.2 Off-Line Computational Requirements

Since the off-line computations are done before performing the actual test, the
optimum technique should have moderate off-line computational requirements. The purpose
is to reduce, as much as possible, the on-line computations.

The problem with the fault dictionary techniques is that the off-line computations
could be excessive due to the need of considering a large number of hypothesized fault cases.

Three factors could reduce the off-line computations, namely, the use of network
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decomposition in dictionary construction, the use of efficient before-test simulation
procedures, e.g., the Householder formula and the complementary pivot theory, and the use of
fault models that resemble the corresponding fault conditions and do not cause any ill-
conditioning problems during the before-test simulation.

For the parameter identification techniques the before-test simulation is usually done
to identify the testing signals and to select the test nodes to achieve a desired degree of test-
ability. This is considered a minimal activity compared with the on-line activities, as we
indicated earlier.

The fault verification techniques utilize the nominal network parameters in
constructing most of the information needed at the time of testing. In particular, for linear
networks the matrices that describe the performance of the network are computed and stored
before carrying out the actual testing. These computations, though minimal compared with
those carried out in the fault dictionary techniques, reduce the on-line computational
requirements considerably. Therefore, these techniques closely approach the practical goal.

The on-line implementation of the approximation techniques requires the availability
of much test data that could be obtained beforehand either using the nominal or the fault
models of the circuit under test. The inverse probability technique is quite similar to the fault
dictionary techniques, where most of the computations are done off-line and could be
considered reasonably high. For the quadratic programming technique and the €, approxi-
mation techniques, much valuable information is obtained off-line using the nominal
parameters. But, compared with their on-line requirements, the off-line requirements could
be considered minimal. For the €5 approximation technique the pseudo-inverse matrix is
usually computed off-line to reduce the on-line requirements to matrix by vector
multiplication. Therefore, the off-line requirements for the €3 approximation technique could

be considered moderate.
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6.2.3 Test Nodes

Due to the practical restriction that there are usually only a few nodes accessible for
measurements and testing, the number of required test nodes has to be as small as possible.
Some researchers have suggested the upper limit of \/Hd, [121].

Except for the linear techniques of the parameter identification approach, which
require all network nodes to be accessible, all other techniques utilize a limited number of test
nodes. Nevertheless, the correct isolation and speed of testing usually increase with the
increase of the number of test nodes. Also, some techniques utilize fewer test nodes than the
others. More specifically, the fault dictionary approach usually needs a very limited number
of test nodes. In many cases the fault dictionary is constructed using only input-output
measurements.

The nonlinear identification techniques usually need a greater number of test nodes
than the fault dictionary approach to achieve full diagnosability of all network parameters.
But, as we indicated in Section III, time-domain testing needs fewer test points compared with
de testing.

In the fault verification techniques there is usually a compromise between the
number of test nodes, the testing time and the degree of diagnosability. For example, in the
network decomposition approach using a very limited number of test nodes, the network could
be decomposed into very few large subnetworks connected through these test nodes. Isolation
of the faulty subnetwork would be fast, but the location of the sources of fault inside the faulty
subnetwork would be relatively slow. The case of the combinatorial technique and the
heuristic technique would be similar.

The approximation techniques are proposed to cope with the practical restriction of a
limited number of test nodes. Since they are approximate, any increase of accessibility

improves their diagnostic results.
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6.2.4 Robustness

The optimum approach should be robust against the deviations of the nonfaulty
elements inside their tolerance region. In analog circuits, unlike digital circuits, the actual
values of circuit parameters always deviate from the nominal values. Therefore, any analog
testing program has to face the tolerance problem.

The parameter identification techniques solve the robustness problem by evaluating
all network elements. But, the testing requirements of the techniques, namely, the large
number of test nodes and the on-line computational power could be impractical.

For fault dictionary techniques the effect of tolerances on degrading the degree of
diagnosability is the major deficiency of the approach. The degree of diagnosability could be
maintained by increasing the size of the dictionary, which, in general, is an impractical
solution. In Fig. 27 we illustrate the effect of increasing the tolerances on the nonfaulty
elements on the correct diagnosability of the 14 fault cases of Fig. 4 [170]. The nearest-
neighbor rule criterion was utilized in isolating the faults. Clearly, a decrease in the degree of
diagnosability results.

Fault verification techniques are developed based on the concept that the nonfaulty
elements will be at their nominal values. Therefore, the tolerance problem has to be tackled.
Several ideas [3],[19], [65], [70], [128] have been proposed with that in mind.

For linear networks, recalling (4.4), the consistency relations are not satisfied, in the
presence of tolerances, to the required degree of accuracy. Taking tolerances into

consideration and utilizing a first-order approximation (4.4) can be expressed as

n n
¢ [} m
dH AV
H @9 Avm:[z —Acb.JAVm+H[Z = ap | =T, (6.1)
o1 9%, 1 9 !
where
_ T -1,T 1
HeY =1z @' z )7'z] —1 1. (6.1b)

m
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All derivatives in (6.1a) are evaluated with respect to the nominal point. From (6.1a) the
norm of €, namely |¢], could be evaluated, thereby a possible bound on the inconsistency due

to tolerances, or fuzzy consistency, can be estimated [19].

(6.1a) is, usually, an underdetermined system of equations in the deviations A¢.
Similarly to the €2 approximation technique the weighted-least-squares solution provides an
estimate of the deviations A¢ (the expected value of Ap given AVm). If any component of the
computed vector A significantly exceeds its tolerance value, the equation’s inconsistency is
considered not to be due to tolerance variations of the nonfaulty elements. This technique has
been utilized in conjunction with the network decomposition technique [126]-[128] for testing
nonlinear networks. Satisfactory results were obtained.

Tolerances make the location of the fault more difficult, exactly as noise makes the
recovery of an original signal a difficult task. A high signal/noise ratio is usually desired and
similarly the performance of many fault location algorithms will depend on the
fault/tolerance ratio, in a certain sense. The €3 approximation technique assumes that all
elements could be changed from nominal with the changes assumed small. For very large
changes in certain elements (faults) the performance of the algorithm is extremely unreliable.
In contrast, the £; approximation techniques assume that few elements have been changed
significantly. The increase in the deviations in the remaining elements (due to tolerances)
will affect the reliability of the techniques. The inverse probability method is built around
the idea of extracting the original signal from a noisy signal. Therefore, for reasonable

deviations of the nonfaulty elements the method behaves well [61].

6.2.5 TypesofFaults

The ideal approach should be able to handle single or multiple faults, whether they
are catastrophic or deviation faults.

Most fault dictionary techniques are suited to single fault location, in particular,

single catastrophic and large deviation faults. It has been observed that this covers more
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than 70% of the actual faults [53]. By adding certain specific faults that are unique to the
tested circuit, the percentage of fault coverage could reach 85%.

The parameter identification techniques can handle easily all types of faults,
although numerically some catastrophic faults could cause ill-conditioning and difficulty in
the convergence of the numerical solution may result.

Fault verification techniques are, in general, very efficient in locating single faults.
The use of the decomposition technique, the heuristic technique, and the combinatorial
technique made it possible to practically locate multiple faults.

Except for the f9 approximation technique, all other approximation techniques

assume very few faulty elements, e.g., a single fault in the inverse probability technique.

6.2.6 Network Types

The objective is to handle all types of analog networks, especially, linear and
nonlinear networks. Most techniques have been applied to linear or nonlinear networks.

The advantage in applying the dictionary approach to nonlinear networks is that the
on-line computational requirements will be almost the same as in the linear case. For all
other techniques the on-line computational requirements are higher than in the linear case.
Nevertheless, the availability of parallel processing could substantially remedy this
difficulty. We also should note that some techniques are only suited to linear networks. We

have indicated this for every technique in Table 6.1.

6.2.7 Network Models
The ideal technique should be able to utilize both the nominal models and the fault
models of the network elements. As indicated in Section 2.4.4, many fault models for network

elements and devices should be developed.
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The use of the correct fault model is essential to the success of fault dictionary
techniques. All other techniques, which are analytically based, primarily depend on the use
of the nominal network model which is known and is quite reliable. The use of an exact fault
model may be essential in achieving full diagnosability using parameter identification
techniques, or speeding up the performance of fault verification techniques. For example,
after locating the faulty subnetwork, the fault model could be used to identify the source of

fault inside the network [126].

6.2.8 Diagnosis Level

Isolation to the element level could be impractical. It has been noted that a module
oriented algorithm is preferred over a parameter oriented algorithm if it can be formulated
without compromising other factors [121]. This is evidently true in the age of integrated
circuits.

Most fault dictionary techniques achieve a very high degree of diagnosability when
diagnosis is limited to the ambiguity set level. For example, if fault cases R;7, Cy"and C4™ of
the circuit of Fig. 4 are in one ambiguity set, the diagnosability will reach 100% for this
ambiguity set [170].

The parameter identification techniques and the approximation techniques, though
described as parameter oriented techniques, could equally well be applicable as module
oriented techniques. This could reduce the size of the identification problem (the number of
unknown parameters in the module oriented description) and result in the saving of testing
time [111].

The use of the network decomposition technique has the advantage that the method is
initially modular, during which the faulty subnetwork is isolated. Subsequently, it is
element oriented, when the faulty elements inside the faulty subnetwork are identified. In

that respect the fault verification techniques are very close to achieving the required goal.
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6.2.9 In-Situ Testing

The ideal algorithm should allow for in-situ testing. Such an algorithm should work
with an arbitrary input signal rather than a fixed set of test inputs.

Fault dictionary techniques and parameter identification techniques, in general,
require specific sets of test inputs. From that point they are not suitable for in-situ testing.

Fault verification techniques and approximation techniques utilize a limited number
of measurements that could be obtained using the normal input signal to the circuit under
test. Therefore, they are more amenable to in-situ testing.

In Table 6.1 the goals for a practical algorithm are summarized and the degree to

which the various techniques achieve these goals is indicated.

6.3 Testability Measures

In order to ascertain the effectiveness of an analog test technique, it is usually
necessary to establish a measure of testability. A number of measures of testability based on
sensitivity matrices, graph theory and circuit understanding has been proposed [.31], [74]. In
particular, in Section 2.2.1 the D-optimal criterion [104] could be utilized as a measure of
testability as well as test complexity. In Section III, the rank of the test matrix is utilized in
defining a measure of testability [122], [134], [172] and in Section IV we have introduced
concepts of ne-node-fault testability [56], [57], ng-branch-fault testability [66] and subnetwork
testing conditions [128].

Some examples of simple measures could be [31] the number of circuit elements, the
number of inputs per output, the average number of ambiguity groups, the ratio of the total
number of elements that can be sensed from the test nodes to the total number of network
elements [151], as well as some other heuristic measures [74].

The analog test program should be ‘;'erified to ensure that it performs as expected.

This verification can be performed by checking the test program on randomly selected
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network samples, against the theoretic measure of testability and against another well
recognized independently developed test program [31].
Test complexity affects testing costs and it is well recognized that testability is the

key to future cost savings with the increasing complexity and sheer density of VLSI boards.
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VII. CONCLUSIONS

We have considered in detail the theory and techniques for the analog fault diagnosis
problem. Naturally, we have selected the most widely accepted techniques. Some other tech-
niques, which either address specific analog circuits or contribute essentially similar
practical and theoretical concepts [29], [52], [71]-[73], [75], [80], [84], [90], [96], [106], [109],
[1371,[152]1,[160], [178], have not been considered here.

The recent theoretical developments in parameter identification techniques and fault
verification techniques have suggested regarding network diagnosis as a third branch of
network theory. Early fault dictionary and statistical techniques have emphasized the
heuristic nature of the subject.

A successful practical technique for fault isolation is still the objective of many
current researchers, but the recently developed techniques have been incorporated in some

automatic test program generation (AATPG) schemes [41], [105], [153].
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TABLE 2.1

FAULT DEFINITION OF THE VIDEO AMPLIFIER EXAMPLE

FAULTS
NUMBER DESCRIPTION
1 QIBES
2 Q2CES
3 Q2BO
4 Q3BES
5 Q3BO
6 Q4BES
7 Q4BO
8 Q5BES
9 Q5BO
10 Q6BES
11 Q6BCS
12 Q6BO
13 DZ10
14 DZ1S
15 DZ20
16 DZ2S
17 DZ30
18 DZ3S
19 DZ40
20 DZ4S

S indicates short condition.
O indicates open condition.
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TABLE 2.2

THE DC FAULT DICTIONARY FOR SPECIFIC FAULTS

Faults
Measurement Input
Nodes Stimuli

Q3BES Q6BES DZ1S
Node 2 -30V 6.95 0.12 0.12
+30V 6.95 6.91 6.95
Node 5 —-30V 0.09 5.93 5.92
+30V 0.09 0.09 0.09
Node 8 —-30V 5.99 0.09 0.08

+30V 5.99 5.97 6.0

Node 11 -30V 5.32 5.93 1.7
+30V 0.15 0.2 0.13
Node 16 -30V 0.02 3.07 3.11
+30V 0.03 4.22 0.03
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TABLE 2.3

SIGNATURE CODES OF THE DEVIATION OF THE
AMPLITUDE RESPONSE FROM NOMINAL

Signature Code

Interpretation

within 0.5 dB of nominal

0.5 to 1 dB less than nominal

1 to 2 dB less than nominal

2to 5 dB less than nominal

greater than 5 dB less than nominal

0.5 dB to 1 dB higher than nominal

1 to 2 dB higher than nominal

2to 5 dB higher than nominal

| || O] ] W] N

greater than 5 dB higher than nominal
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TABLE 2.4

SIGNATURE CODES FOR SPECIFIC FAULT CASES

Code Fault Case Code Fault Case
10000 R,* 56000 R~
50000 R," 21000 Ry~
02434 R,* 06788 Ry~
00214 R,* 00578 R,~
05050 c,* 01210 C,”
02334 C," 06778 Cy
02434 C,* 06788 C,~

+ indicates +50% change in the corresponding element.
— indicates —50% change in the corresponding element.
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TABLE 2.5

SPARSE FAULT DICTIONARY CONSTRUCTED USING QUANTIZATION

Measurements

Faults

R+

- + - + - + - + - +
R~ R,* R~ R R, RS RS CY C C,

C.-

C;t Cy”

Gain at
10 rad/sec

Gain at
200 rad/sec

Gain at
800 rad/sec

Phase at
2000 rad/sec

Phase at
8000 rad/sec

no entry means zero.
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TABLE 2.6

SPARSE FAULT DICTIONARY CONSTRUCTED USING
NONDIMENSIONALIZATION AND NORMALIZATION

Faults
Measurements
+ - + - + - + — + - + - + -

Rl R‘l RZ R2 R3 R3 R4 R4 Cl Cl CZ CZ C3 C3
Gain at 99 —-96 —98 .98
10 rad/sec
Gain at -25 —-14 16 81 -—-57 29 —-15 —-99 97 71 —-53 80 —.63
200 rad/sec
Gain at b6 —-76 38 —22 —08 .16 48 —45 52 _—.62
800 rad/sec
Phase at A5 —-26 79 —-77 09 —.14 45 —5H59 25 _—.39
2000 rad/sec
Phase at 35 —.57 2 =39 —.21
8000 rad/sec

no entry means zero.
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TABLE 2.7

THE AMBIGUITY SETS FOR EACH TEST NODE OF
OF THE VIDEO AMPLIFIER CIRCUIT

Ambiguity Sets
Measurement Input
Nodes Stimuli Set 1 Set 2 Set 3 Set 4 Set 5
Node 2 -30V 2,4,5,8,9,13,17 nominal*
30V 3,6,7,15 19 20 nominal
Node 5 -30V 2,4,513 9 17 18 nominal
30V 3,6,7,15 nominal
Node 8 =30V 2,4,5,13 nominal
30V 3 7 15 16 nominal
Node 11 -30V 2 5 13 14 nominal
30V 3,6,7,15,19 nominal
Node 16 -30V 2,4,5,8,9,15,17 11 nominal

30V 3,6,7,10,12,15,19 nominal

Node 26 -30V 2,4,5,8,9,13,17 nominal
30V 3,6,7,15,19 nominal
Node 27 =30V 2,4,5,8,9,13,17 nominal
30V 3,6,7,15,19 nominal
Node 33 -30V 2,4,5,8,9,15,17 nominal
30V 3,6,7,15,19 nominal

* the nominal set contains the rest of the 20 faults given in Table 2.1.
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TABLE 2.8

SELECTED MEASUREMENTS AND THEIR CONFIDENCE LEVEL

Measurements
Sequence Number of Confidence
Number  Measurements Gain at Phase at Level
1 1 100 rad/sec 50%*
2 2 10 rad/sec 100 68.25
3 3 10 100,600 85.55
4 4 10 100,600,10000 87.31
5 4 10 100,600,9000 87.55
6 4 10 100,600,8000 87.84
7 4 10 100,600,7000 87.24
8 6 10,80,1000 100,600,6000 87.95
9 7 10,80,500,900 100,600,6000 88.07
10 9 10,80,200,400,700 100,600,5000,9000 89.33
11 9 10,70,200,400,700 100,600,5000,9000 89.27
12 9 10,70,200,400,700 100,600,4000,8000 89.52
13 10 10,70,200,400,700 100,200,600,4000,7000 89.03
14 11 10,70,200,400,600, 100,200,600,4000,7000 88.95
1000
15 12 10,60,200,400,600, 100,200,600,3000,6000, 89.22

1000

9000

* in percentage -
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TABLE 3.1

RESULTS OF THE DC TESTING OF THE INVERTER CIRCUIT

Input Output p*

in Voutl 4

Vin Voutl’ Vout2 2

in Voutl’ Vout2’ Icc 0
TABLE 3.2

RESULTS OF THE DYNAMICAL TESTING OF THE INVERTER CIRCUIT

Input Output p¥*

Vin(t) Voutl(t) 3

Vin(t) Vout1(t) vouta(t) 0
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TABLE 4.1

VOLTAGES AND CURRENTS OF MEASUREMENT NODES OF THE MESH NETWORK

Node No.  Voltage Current

V) (A)
1 1.246 1.0
2 0.8675 0.0
3 0.8222 0.0
6 0.6494 0.0
7 0.5952 0.0
10 0.3740 0.0

11 0.3896 0.0
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TABLE 4.2

DIAGNOSIS OF THE LADDER NETWORK USING NETWORK
DECOMPOSITION AND LOGICAL ANALYSIS

Measurements Computed Currents Diagnosis Test
vV,m=2/3V SubnetworkS, L'+ I1%=0 LTF,,
V,m=1/3V I'=-1/3A L2+ 12+ L,Y20 LTF,,,
V" =1/6V Subnetwork S, LY+ L>=0 LTF

L =1A [2=13A
2= -1/3A

2
Subnetwork S3
3 _
L= 13A
Subnetwork S4
4 _
L*=16A
4 _
L= —16A

Subnetwork S5

5 _
L% =1/64A
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TABLE 6.1

COMPARISON OF THE FAULT LOCATION TECHNIQUES WITH THE PRACTICAL GOALS

On-Line Off-Line Test Robustness Typesof Network Network Diagnosis In-Situ
Compu- Compu- Nodes Faults Types Models Level Testing
tation tation

Fault Minimal High Limited No Single Linear/ Fault Set No

Dictionary Nonlinear

Nonlinear

Parameter High Minimal Limited Yes Multiple Linear/ Nominal Element No

Identification Nonlinear

Linear

Parameter Minimal Moderate  Almost Yes Multiple Mostly Nominal Element No

Identification All Nodes Linear

Combina-

torial Fault Moderate  Minimal Limited Yes/No Multiple Linear/ Nominal Element Yes

Verification Nonlinear

Failure Moderate  Minimal Limited Yes/No Multiple Linear/ Nominal Element Yes

Bounds Nonlinear

Network Minimal Minimal Limited Yes Multiple Linear/ Nominal Subnetwork Yes

Decomposition Nonlinear

Inverse Moderate High Limited Yes/No Single Linear Nominal Element Yes

Probability

€9 Approx- Minimal Moderate Limited No Multiple Linear/ Nominal Element Yes

imation Nonlinear
€1 Approx- High Minimal Limited Yes/No Mostly Linear/ Nominal Element Yes
imation Single Nonlinear
Goals Minimal Moderate  Limited Yes Multiple General Fault/ Module/ Yes
Nominal Parameter




Fig.1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7a

Fig. b

Fig. 8

Fig.9

Fig. 10a

Fig. 10b

Fig. 11

133

Figure Captions

Classification of the fault location techniques according to the stage in the testing
process at which simulation of the tested circuit occurs.

The block diagram of the dc approach for the construction of a fault dictionary as
proposed by Hochwald and Bastian [53].

The video amplifier circuit example which is utilized by Hochwald and Bastian [53]
to illustrate their dec fault dictionary approach.

The passive circuit example which has been taken from Varghese et al. [169]. We
utilize it to illustrate the application of various fault location techniques.

The loci of the changes in the transfer function of the circuit of Fig. 4 with respect to
the changes in the seven different elements of the network at the test frequency w
= 200 rad/sec.

The use of the pseudo-noise signal to generate the impulse response function of the
circuit under test. The output samples provide signatures which describe the
condition of the circuit.

The two-pole Butterworth filter example which has been taken from Schreiber
[129], to illustrate the application of the complementary signal method. The
nominal parameter values are given by Ry = 100Q, L; = V2x 102H, C3 = V2 x
10-2F and Ry = 1009Q.

The response of the circuit of Fig. 7a to the nominal complementary signal. Curve
a indicates the case when all parameters are kept at nominal. Curve b indicates
the case when Cq changes by -50% of its nominal value. For the complementary
signal we haveag = 1,a; = -1.318,a9 = 0.493 and v = 0.5 sec.

Grouping faults using heuristic as well as fault bands techniques. Profile (a)
represents the fault bands profile, profile (b) represents the nominal fault profile
and profile (¢) represents the heuristic fault profile. F; represents an ambiguity
faulty set.

The flow diagram of the iterative procedure of optimum measurement selection
utilizing the heuristic technique which has been proposed by Varghese et al. [169].

A simple RLC passive circuit utilized to illustrate the application of the D-criterion
in obtaining the optimum measurements.

The dependency of the determinant of Ay, on the choice of test frequency. The
dashed curve a is for the case when |V 41| is the output and the solid curve b for the
case when |V t9| is the output.

Comparison of fault isolation using two different criteria as reported by Huanca
and Spence [55].
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The representation of fault conditions by switches as proposed by Lin [69].
(a) represents an open circuit fault condition, (b) represents short circuit fault
condition and (c) represents a fixed resistance change fault condition.

Multiport representation of a faulty network obtained by extracting ng ideal
diodes, ny, measurement ports and ng switches from the original network [69].

A fault model of the transistor which has been proposed by Tucker et al. [165], that
can be used in conjunction with any computer-aided analysis program. The normal
unfaulted resistor values are given by Ry =Ry=R3=0.01 Q and R4=R5=Rg=100
MQ. The different realizable fault conditions are given as follows.

Fault Condition Resistor Value
Collector Open Ry = 100 MQ
Base Open Rg = 100 MQ
Emitter Open Rs = 100 MQ
Collector-Base Short R4 =10.01Q
Collector-Emitter Short Rs = 0.01 Q
Emitter-Base Short Rg = 0.01 Q

A simple nonlinear resistive circuit example that has been utilized to illustrate the
application of the nonlinear dc testing theory which has been developed by
Visvanathan and Sangiovanni-Vincentelli [172].

A simple illustrative example that has been utilized by Saeks et al. [122] to
illustrate the application of the theory of nonlinear dynamic network testing.

The transistor inverter circuit that has been utilized by Visvanathan and
Sangiovanni-Vincentelli [173] to illustrate the practical application of the time
domain testing theory. The nominal element values are given by Ry = 4kQ, Ry =
1.6kQ,R3 =130 Q, R4 = 1kQ and [ ;g = 1.0x10-14 A,

The transistor model that is utilized in the simulation of the transistor inverter
circuit. The nominal element and parameter values are given by r,.'’ = 75 Q,
rpp’ = 200 Q,ree’ =2 Q, Cpe = Cpe = 1 pF, Br = 200, fgr = 2and Iy = 1.5x10-15 A,

A simple RC passive network.

A linear passive resistive network that has been proposed by Navid and Willson
[91] to illustrate the application of their linear resistive network testing theory.

The resistive network of Fig. 19 after eliminating node 5.

The resistive network of Fig. 19 after eliminating nodes 5 and 6. All elements of
the resultant network could be obtained by direct measurements.

The graph representation of the equations that are used in reviving node 6. The
graph is a connected dendroid.

The graph representation of the equations that are used in reviving node 5.

The ladder network example which is used to illustrate the application of different
fault location techniques.
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The proper tree of the ladder network is indicated by solid lines.

The adjoint network that is used for identifying the changes in G; and Gg from
their nominal values.

The adjoint network that is used for identifying the changes in G4 and Gg from
their nominal values.

The adjoint network that is used for identifying the changes in Gg, G3 and G4 from
their nominal values.

The resistive network that is utilized to illustrate the application of the internal-
self-testing condition in identifying faulty regions.

The tree of decomposition obtained during testing using ISTC.
The subnetworks obtained during testing of the network of Fig. 23.

Decomposition of the ladder network of Fig. 21a into five subnetworks using
measurement nodes 1, 2 and 3.

The effect of increasing tolerances on the degree of diagnosability. This figure is
constructed using data that has been published in [170]. Curve a indicates the case
when the tolerances on the nonfaulty elements are +3%, curve b for £6%
tolerances, and curve ¢ for £ 9% tolerances.
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