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Abstract

This technical report proposes algorithms and a structure for an interactive computer
program for design optimization of multi-coupled cavity filters. User-oriented interactive
features are emphasized. In conjunction with the nonlinear minimax method, the cubic
interpolation technique is introduced to improve computational efficiency. A detailed
description of the incorporation of the cubic interpolation technique with the optimization

procedure is presented.
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I. INTRODUCTION

The superior electrical performance and favorable physical size of multi- coupled
cavity narrow-bandpass microwave filters entitle them to be prominent components of high-
quality satellite communication systems [1]. Efficient approaches to the simulation and
sensitivity evaluation of such filters have been developed and exhaustively discussed in a
report by Bandler, Chen and Daijavad [2], where various formulas and tables are presented in
detail.

One immediate application of this theory is found in the filter design optimization
problem. Conventionally, a nominal design is achieved by the two major stages of
approximation and realization. For the approximation, a filter type suitable for the given
specifications is chosen and the filter function is calculated following one of the synthesis
procedures, which vary with different filter types. Then, for realization, the coupling matrix is
obtained after certain matrix orthogonalization and, to suit the desired physical structure,
similarity transformations. See, for example, Atia, Williams et al. [1,3,4]. Modern
communication systems demand a greater variety and more stringent requirements on
microwave filters and, as special filter characteristics, such as asymmetric, nonminimum-
phase, etc., gain increasing attention, the conventional approach could become tedious or
even inapplicable.

Employing modern computer-aided design techniques, directly taking the
engineering specifications as optimization objectives and the practical network parameters as
optimization variables, our approach offers a unified and user-oriented treatment of multi-
coupled cavity filter design. Various network structures and specifications, including group
delay specifications, are accommodated in an elegant manner. Powerful gradient-based

optimization techniques are integrated with efficient simulation and sensitivity evaluation.



II. FORMULATION OF THE PROBLEM
Introduction
A thorough treatment of the general formulation of the design optimization problem
has been provided by Bandler [5]. Here, to clarify the ensuing presentations, a brief review of
some principles is appropriate.
We define the error function as
e(p,0) = wlw) [F(p,0) -S(w)], (1)
where w denotes the frequency variable and the vector
¢ =1, by, ... o, 1" 2)
contains the design variables of the network under consideration. F(¢,w) is the network
response of interest and S(w) the prescribed specification. The weighting function w(w) is
defined as
w(w) > 0 corresponds to an upper specification,
w(w) < 0 corresponds to a lower specification.
It follows that the specification is satisfied when e(¢,w) < 0, or violated when e(¢p,w) > 0.
Therefore, the objective of optimization becomes essentially

Minimize e(¢,w). (3)
¢

We denote the first-order gradients of the error function by
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Discretization w.r.t.

In practice, the frequency band of interest is divided into a number of subintervals.

Within each subinterval, the specification and the weighting function are kept constant and



the error function (1) is discretized in frequency, that is, we evaluate the error function at a
finite number of sample points, resulting in a set of discrete error functions, as
eij(q)) =w, [F(P, mij)—Sjl, i:1,2,...,mj, j=12,..k (6)

where m, is the number of sample points of the jth interval and k is the total number of

subintervals.

Relative Responses

Sometimes, as in the case of group delay, we are interested in the variations of the
response within a certain frequency band. Taking the minimum of the response over the set

of sample points

Fmin((b) = min F((b’wi) D

I=<i<m
as a reference point, we can define the deviation of F(¢,w.) as
Fld,0) = Flp,o)~F__ (). (®)
The error function here is of the form
e(d,0) = WIF(d,0) -S| (9)
with w > 0, implying an upper specification, since it is obvious that [,% = 0. Alternatively, by

designating the average of F(¢,w,) given by

m

- 1 .
F(p) = — Z F(§,w,) (10)
m
i=1
as the reference point, the variations in F can be measured by
A -
F(,0;,) = F(d,w,)-F(P). (1

One advantage of definition (11) is that the functions ﬁ‘ so defined have continuous
derivatives w.r.t. the optimization variables ¢. The corresponding error function can be
constructed either by

ep(d) = we[lg(q),wi)—S], w,<0,i=1.2,.,m,

A
ei@ = w, [F(p,w)-SI, w >0,i=12,. ,m, (12)



where both upper and lower specifications are applied, since ﬁ has arbitrary sign, or, by
e () = w{|ﬁ(¢,wi)l -Sh, w>0,i=1,2,...,m. (13)
By definition, it is clear that the derivatives of the error functions are given in terms
of the derivatives of the corresponding response, which are readily obtained utilizing the

results we have reported previously [2].

Optimization Technique

Since the microwave filter design problem we are concerned with is known to be a
highly nonlinear one, a powerful and robust optimization package is essential for a successful
software system. Among the various techniques available, the minimax approach is the most
preferred in this area. The theory and general description of the minimax algorithm

employed in our computer program are available elsewhere [6,7].

III. CUBIC INTERPOLATION TECHNIQUE

General Considerations

As required for numerical optimization, the error function needs to be discretized in
the frequency domain. This could be done, in the simplest way, by taking a set of fixed sample
points, which is adequate for a well-behaved error function. As the behaviour of the error
function degenerates, however, the sample points may have to be densely spaced and,
consequently, a large number of discretized error functions may have to be handled by the
optimization procedure. For the filter problem considered here, the presence of sharp ripples
of the response, especially near the band edges, worsens the situation. Asillustrated in Fig. 1,
the solution obtained using fixed sample points may not be optimal in the continuous
minimax sense because some error peaks are missed. As a result, a distinguishing feature of
the minimax method, namely its potentially equal-ripple solution, is degraded. To overcome
the difficulty, we adapt the cubic interpolation technique to locate the maxima of the error

function (referred to as the error maxima henceforth) w.r.t. frequency.



Cubic Interpolation Formula

As a well-known fact, a maximum of a continuous differentiable function e(w) is
characterized by de/dw = 0 and 3%e/dw® < 0. This implies a change in the sign of de/dw and, in
the neighbourhood of the maximum, de/dw decreases as frequency increases. It follows that if
there exist two points w; < w, such that

eclo1 >0 and e(;)z <0
at least one maximum of e(w) lies between o, and w,. If w; and w, are close enough to exclude

the existence of multiple maxima, the location of the detected maximum can be estimated by

the cubic interpolation formula [8]

(@, — @ )[x -y —ew2l (14)
max = (02 - ’ ' ’
’ e —e +2x
©r 99
where
elw,) —elw,)
’ ' 2 1
y:—em—ew+3 (15)
L 2 @979
and
55 ’ ’ (16)
X = [yz —e, e ]1/2.
1 P2

The cubic interpolation formulas (14)-(16) have been used by Fletcher and Powell [8] in their
famous paper of 1963, where the origin of the formulas was said to be a report by Davidon in

1959 [9]. For convenient reference, we also give a proof in the Appendix.

The Search Procedure

The search procedure for a maximum can be performed within a subinterval, where
the error function corresponding to a constant specification is continuous, starting from the
lower frequency edge with a given step-length. As the searching step-length decreases, the
accuracy of maximum location increases, but so does the computational effort. On the other

hand, a maximum could be missed if the step-length is too large. Fortunately, some helpful



preliminary knowledge, such as the general distribution of poles and zeros, is usually
available.

It is clear that the positions of error-maxima are functions of the optimization
variables. During the optimization process, they shift along the frequency axis, and even the
total number of error maxima could be different when we are far from the solution. While we
try to track error maxima, the shift of sample points could cause discontinuity in the
gradients of the corresponding error functions w.r.t. the optimization variables. To smooth
this effect and to stabilize the algorithm, an appropriate number of sample points, e.g. 2-3
times the order of the filter, should be taken.

For a subinterval, a search step-length is chosen, and the total number of search

points for error maxima is given by

the width of the subinterval
Integer + 1. (17
search step — length

The concepts of search points and sample points should not be confused. At the search points
the function values and first-order derivatives w.r.t. frequency of e(¢,w) are computed in
order to detect and locate the error maxima. At the optimally selected sample points, the
function values of e(d,w) as well as their gradients w.r.t. ¢ are computed to construct
discretized error functions to be handled by the optimization package. The number of search
points is usually larger than that of sample points. Computational efficiency can be improved
if these points are manipulated appropriately. A practical algorithm is illustrated in Section

V.

IV. ANINTERACTIVE MAIN PROGRAM
We now proceed to discuss the organization and structure of an interactive main
program. The user is relieved of the tedious task of writing a calling segment or data files, at
the same time he is allowed the maximum freedom to define the system and design goals.

Moreover, after a design is obtained, the user has the choice of simulating the resulting



design and, if the outcome is not satisfactory, to modify the specifications or redefine the
system in order to restart the optimization procedure.
A step-by-step description of such a main program follows.

Step 1 Initially set up or subsequently modify the coupling matrix:

- itsorder,

- the nonzero elements (the desired and physically available couplings),

- the indices of the variable couplings,

- the symmetry pattern.

Comment Considerable computational effort can be saved if the coupling matrix is
symmetrical w.r.t. both its diagonal and anti-diagonal as described in [2]. The
symmetry pattern also determines the sensitivity formulas to be used.

Step 2 Initialize or modify the remaining network parameters:

- the center frequency and the bandwidth parameter,
- the load and the source impedances,
- indicate whether the input- and output-couplings are variables.

Comment It has been verified that the bandwidth parameter acts as a scaling factor and
hence it should not be taken as an independent variable.

Step 3 If a pre-design simulation is desired, go to Step 8.

Step 4 Define or update the subintervals and the specifications:

- typeofresponse: the reflection coefficient,

the transducer loss,

with or without the group delay,
- the number of subintervals to be defined or updated,
- for each such subinterval:
(i) two frequency edges,

(ii) the number of sample points and their initial positions,



Comment

(iii) whether there is to be an error maxima search or specified fixed points; if a
search for error maxima is required, the search step- length,

(iv) a constant specification and a weighting factor associated with the
subinterval.

For lossless designs, the reflection coefficient and the transducer loss are

interchangeable but have different weighting effects, as discussed in the last part

of this section.

Define the linear constraints on the variables, consistent with the optimization

package being used.

Define the control parameters of the optimization package, such as

- maximum number of function evaluations,

initial optimization step-length,

- accuracy requirement of the solution,

- printout control.

Call the optimization package.

Return from the optimization package, go to Step 9.

Simulation. The user defines:

- the frequency band in which the filter is to be simulated, i.e., the lower and
upper edges and the number of frequency points,

- the type of response to be simulated.

The simulation subroutine is called; the results are printed and plotted.

User’s options:

- redefine the coupling matrix — go to Step 1.

- redefine the terminations - go to Step 2.
- modify the specifications - go to Step 4.
- modify the constraints — go to Step 5.

- restart the optimization — go to Step 6.
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- simulation - go to Step 8.

- stop.

Comments on Scaling

The different weighting effects between specifying the reflection coefficient and
specifying the transducer loss will be briefly discussed. Suppose we let w(w) = 1. Then, for an
equal-ripple solution, any violation or satisfaction of the specification will be uniform for both
the passband and the stopband. First, we consider the reflection coefficient. A deviation from
the specified value, say, of 0.01 is negligible for the passband but significant for the stopband.
In the case of transducer loss, the opposite situation occurs, where a difference of 0.5 dB is
insignificant for the stopband but critical for the passband. This becomes clearer when we
relate the reflection coefficient Ipl to the transducer loss A by

A = -10log,, (1-1pl?). (18)

From (18), we relate their first-order changes, denoted by §A and 8lpl, by

20 Ipl
(—E—)5ip1. (19)

SA =
€n10 1— |p|2

For a typical passband specification of Ipl = 0.1, we have
8A = 0.883lpl. (20)
For a stopband specification of Ipl = 0.995 (i.e., A = 20 dB), it becomes
SA ~ 87 8lpl . (21)
The interpretation here is that the passband (or the stopband) is much more emphasized by
specifying Ipl (or A). Such an effect becomes more pronounced when tighter specifications are

used. The situation can be balanced by defining an appropriate weighting function w(w).

V. CONSTRUCTION AND EVALUATION ON FUNCTIONS AND GRADIENTS
The subroutine described in this section works interactively with the optimization

package. At each iteration of the optimization procedure it is called with a new set of design
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variables and returns with the updated functions and their gradients. Different types of

specifications and the search for error maxima are handled here. Hence, this segment is very

important and requires delicate treatment. The necessary information such as the network

structure, constant parameters, definition of subintervals and specifications should be

provided from the main program through common data. The calling segment is the

optimization package.

Step 1

Step 2

Step 5

Comment

Step 6

Step 7

Comment

Step 8

Step 9

Update the variable parameters (couplings, ete.).

Initialize the subinterval index, j « 1.

If the jth subinterval is associated with a group delay specification, go to Step 13.
[f the jth subinterval is specified with fixed sample points, go to Step 12.

Set w, and w equal to the lower and upper edges of the jth subinterval,
respectively; set Sw equal to the user-defined search step-length. Initialize Wy =
w,, W, being the current search point. Initialize step counter k«1.

If w,y is within 0.5 8w of one of the sample points, set w, to that sample point and
set MODE « 2; otherwise set MODE « 1.

Here MODE is an indicator. When MODE = 2 it means that w, is both a search
point and a sample point, hence e, e’ and e'q’ need to be computed at w,. MODE
= 1 means w, is only a search point, thus e'q) is not needed. MODE = 3, as used
later, means w, is only a sample point, thus e’  is not needed.

Call the simulation subroutine.

If this is the first search point (w, = w,), go to Step 9.

In order to perform cubic interpolation, we need two consecutive search points.
Ife’ ; > 0ande’ , <0, call the cubic interpolation subroutine to locate the
error maximum between wy and w,. Denote the result by w . Replace the
sample point closest to w _ by w_, call the simulation subroutine with MODE =
3.

Set ; <y, e(d,w,) —e(d,w,) and e’ —e'y,.
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Comment This step stores the useful information of the current point before proceeding to
the next point.

Step 10 If o, = @, go to Step 14.

Step 11 Set wy < w, + kdw. Setkek+1. Ifw, > 0 ,set w, < w . Goto Step5.

Step 12 Call the simulation subroutine with MODE = 3 at each and every sample point
associated with the jth subinterval. Go to Step 14.

Comment This step processes a subinterval specified with fixed sample points.

Step 13 Call the group delay simulation subroutine at each and every sample point
associated with the jth subinterval. Construct the residual functions and their
gradients using formulas such as (7)-(9).

Comment This step processes a subinterval associated with a group delay specification.

Step 14 Return if the last subinterval has been processed.

Step 15 Setj «j+1. Go to Step 3.

The procedure described here is also illustrated in Fig. 2.

VI. CONCLUSION

Algorithms and the structure for an interactive computer program for design
optimization of multi-coupled cavity filters have been proposed. A user-oriented interactive
main program is described in detail. A subroutine efficiently incorporating the cubic
interpolation technique with the evaluation of objective functions and gradients is illustrated
step by step. Detailed and explicit formulas for computation of various filter responses
sensitivities used in the proposed computer program can be found in [2].” Two individual
subroutines, one for the simulation of gain responses and the other for the group delay, need
to be constructed because they require different adjoint analyses. A computer software
package implementing our approach has been successfully tested. Selected numerical

examples will be presented in separate reports.
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APPENDIX
PROOF OF CUBIC INTERPOLATION FORMULA
We want to estimate the location of a maximum of the function e(w), namely wg, using
computed function values and first-order derivatives w.r.t. @ at two search points w; and w,,

as shownin Fig. 3. We define

(A1)
e 8 ew.) ,
1 1
A de (A2)
e =z — ,
1 9w | ¢
1
o (A3)
" A de
e, — s
and doo 1oy
oA a3e (A4)
e =3 , i=1,2,3.
Jw )

The values of Wy, Wy, €, €y, €," and e, are known. Also we know that Wy > w;, e,"=0 and
e,'<0. Approximating e(w) by Taylor’s expansion to the cubic terms about w,, bearing in

mind that e3' =0, we have

1

" 1

~ _ 2 - 3

e, ~e;+ 5 e, (wl—w3) + p e, (wl-—oo3) , (A5)
1 . 9 L 3 (A6)

e, ~ e, + 5 e3(w2—-m3) + g e, (w2—w3) ,

Y Lo 2 (A7)
e, ~e, ((ol-—co3) + -2- e (wl-o)3)

and

" \ - 2

e, =~ e, (coz—co3) + 5 e, ((o2—oo3) . (A8)

From these 4 approximate equations the 4 unknowns, namely wg, eq. €5" and e,'", can be
solved. Among them only w, is of interest here. For brevity, we use = instead of =~. Subtract

(A5) from (A6),
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1
e,—e =(w,—w,) 593((»2—%0)1—2(»)

27 "1 27 ™M1 3
L Gelos 3 +oltoltw o) (A9)
+ 6e3 Wy =30, Wy =30, W T W+ 0, +w,0,) |
Add (A7) to (A8),
ete = e (0+0 —20)+ ! e (260220, 0.—20. 0. + w02 +w2) (A10)
2 1 32 1 3 2 3 3 372 31 2 17

Utilizing (A10) and (A11), we define two auxiliary parameters y and x as

e,—e
g2 L =Ly (A11)
y = 3002—601 —(e,+e) = 5 eg(w, + 0, —20,) +e,(w,—w,) (@, —w,)
and
a2 e |l 5 o] ’ (A12)
x = (y —6192) = [Z (wQ—wl) (e3) =—-= ((»2—0)1)93 ,

the minus sign on the right-hand-side of (A12) is due to the fact that e;"<0 and w,>w,.

Subtract (A8) and (A11) from (A12),

, " 1
X—y—e,=—(w,—0)|2e,+ 3 eyt 0 —20) |. (A13)
The task now is to suppress the terms e;" and e;"" from (A13). Subtract (A8) from (A7),
l L= ; L (A14
e, —e, = —(0-0) 2e, + EeS(w2+ml—2w3) . )
Add 2 x to (A14),
' ' = L (A15)
e, —e, + 2x = (wl—(02) 2e3+ §e3(w2+w1—2m3) .
Dividing (A13) by (A15) gives
X=Y=€ 0y (A16)
81—62+2X (‘)1"(*)2
From (A16) w4 can be solved to be
(0y—w) x—y —e)) (A17)
Wy = 0y — )

el—e2+2x

Equation (A17), together with (A11) and (A12) defining y and x, is the cubic interpolation

formula used in this report.
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(a) The continuous minimax solution.
e
A

n
|
|
. . { i > ()
Wy W3 \/ﬂh wg Wy wvo\lyn

(b) The solution obtained by using uniformly spaced sample points
o, 1i=1,2,...,11. Notice that

max e(mi) = elw,y) = e(w3) = e(ws) = e(wg).
1=1=11

Fig. 1 Comparison between a possible solution obtained using fixed sample points and
the continuous minimax solution.
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(vii) - . *~——o—o—o >
sub. 1—— sub. 2 «—sub. 3 —|

IMlustration of the algorithm of Section V.

(i) Response of the filter. Three subintervals are defined. S; and S, are lower
specifications, S, is an upper specification.

(ii) The error functions. Assume unit weighting functions.

(iii) The initial positions of the sample points.

(iv) The uniformly spaced search points. dw,; and dw, denote the search step-
lengths of the 1st and 2nd subintervals, respectively. Fixed sample points
are used for the 3rd subinterval.

(v) The search points actually used.

(vi) The located maxima of the error functions.

(vii) The optimally selected sample points.
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0a50 055 060 065 0«70 2475
NORMALIZED FREQUETCY

(1) w; =05 and wy = 0.7

1 ] |

Fig. 3

1
0450 0455 0.60 065 0.70 075
NORMALIZED FREQUENCY

(i1) w; =0.45and wo = 0.65

Two examples of locating a maximum by cubic interpolation using two search
points w; and we . The frequency and function values are normalized. The solid
line shows a 6-th order filter function and the broken line shows the interpolating
function. The exact maximum is indicated by “+” and the located maximum by

[ZNET)

X .



