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Summary

The development of modern communication systems demands frequent application of
multi-coupled cavity filters. The theory originated by Atia and Williams [1] has inspired
many advances in this area. The increasing variety and complexity of the design and
manufacture of these filters necessitate the employment of modern computer-aided design
techniques. We have developed a systematic and efficient approach to the simulation and
exact sensitivity evaluation of multi-coupled cavity ﬁ—lters. The network parameters as well
as non-ideal effects such as losses are treated directly as possible variables. Both first- and
second-order derivatives, including exact group delay and its sensitivities, are considered.
Arbitrary terminations and filter structures can be easily accommodated. The usefulness of
the approach presented here is highlighted by selected examples of very practical
applications.

A narrow-band lumped model of an unterminated multi-cavity filter has been given
by Atia and Williams [1] as

JjZI =V | (1)

where
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1 denotes an nxn identity matrix and M the nxn coupling matrix whose (i,]) element
represents the normalized coupling between the ith and jth cavities and the diagonal entries
M;; represent the deviations from synchronous tuning. The normalized frequency variable s

in (2) is given by
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where ® is the synchronously tuned cavity resonant frequency and Aw is the bandwidth
parameter.

The system can be reduced to a two-port model whose parameters and sensitivity

expressions can be obtained by solving the real systems

Zp =e, , (4)
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Zp=p (6)
and
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where e; 2100 ..0Tand e, 200 0 ... 0 1]T. The solutions of (4) - (7) require only one
real LU factorization of matrix Z. The two-port model, including the input and output

transformers, is given by
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n, and n, being the input and output transformer ratios, respectively. Utilizing the solutions
of (4) - (7), first-order and second-order sensitivity expressions of y have been derived. Special
features of the network model such as the lossless property and the possible anti-symmetry of

the coupling matrix have been exploited in order to optimize the computational efficiency.



Detailed results are available [2]. Some typical results are selected and shown in Table 1.

Full results will be presented at the symposium.

The input and output currents of the filter terminated by a load Z; and a normalized

voltage source E = 1V with an impedance Zg can be solved to be
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The sensitivities of Ip are given by
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From these results, various filter responses and their sensitivities are readily

formulated. For example, denoting the insertion loss by A, we have
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The group delay and its sensitivity w.r.t. M,, can be computed by
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respectively. Explicit formulas for other filter responses of engineering interest such as the
input and output reflection coefficients and the gain slope have also been derived [2].

The computational efficiency and flexibility of our approach have made the
application of modern CAD techniques to many engineering problems possible and very
practical. In conjunction with a powerful, exact-gradient-based minimax method [3], our
approach has been implemented in a computer program to produce optimal filter designs.
Network parameters such as the coupling values are solved directly.

Self-equalized filters satisfying stringent specifications on both amplitude and phase
responses are of great interest to the design of satellite communication systems. Figure 1
shows the responses of a nonminimum-phase filter resulting from simultaneous optimization
of amplitude and group delay. Based upon a nominal design obtained by using an ideal
model, the behaviour of the actual devices can be predicted by taking the non-ideal effects into
account using appropriate sensitivity information.

Figure 2 shows the predicted non-ideal response of a 6-pole filter assuming uniform
cavity dissipations.

The correct identification of parameters deviating from nominal design provides
essential information for automatic tuning of manufactured filters. One such example of a
10-th order filter, employing the €, optimization techni;que for identification [4], is illustrated
in Figs. 3 and 4. Our approach, with the capacity of accommodating arbitrary terminations,
can also be efficiently incorporated with the simulation and optimization of a large network
into which the filters may be embedded, such as a multiplexer. The external network can be

appropriately modelled as equivalent terminations.

References

[1] AE. Atia and A .E. Williams, “New types of waveguide bandpass filters for satellite
transponders”, COMSAT Technical Review, vol. 1, 1971, pp. 21-43.




(2]

(3]

(41

J.W. Bandler, S.H. Chen and S. Daijavad, “Efficient approaches to the simulation of
narrow-band multi-cavity filters”, Department of Electrical and Computer
Engineering, McMaster University, Hamilton, Canada, Report SOS-84-9-R, 1984.

J. Hald and K. Madsen, “Combined LP and quasi-Newton methods for minimax
optimization”, Mathematical Programming, vol. 20, 1981, pp. 49-62.

J. Hald and K. Madsen, “Combined LP and quasi-Newton methods for nonlinear ¢
optimization”, SIAM J. on Numerical Analysis, to be published.




TABLE 1

SELECTED SENSITIVITY EXPRESSIONS

Variable Derivative Sensitivity Expressions
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t where Clé l

—1 otherwise

Tt riis the lumped resistive parameter of the ith cavity.
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(a) Return loss and insertion loss response.
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(b) Group delay response.

Fig. 1 Responses of the synchronously tuned 10-pole filter showing optimized
amplitude and group delay.
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