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Summar

L d

[n this paper, we investigate large change sensitivity problems and formulate a
comprehensive set of formulas associated with matrix and vector operations. They can be
directly applied to linear systems. Different formulas are compared. Relevant expressions
appropriate for computational purposes are provided. These formulas will be very powerful,
especially when the variables exist only in some local areas of the linear system. In an
optimization procedure: the calculation of large change effects can be reduced from solving an
n x n system to solving an r x r system, where r is the rank of the deviation matrix of the
linear system.

Large change sensitivity problems have been approached in many ways, e.g., [1-6].
We feel our method has advantages in efficiency, flexibility and simplicity. Results of
computer implementation show significant reduction in computational time and an easy
procedure for the sensitivity analysis. Also, as a special case, a series of first-order sensitivity
expressions are obtained without using Tellegen’s theorem. All these features are discussed

and presented in the paper.



Basic notation, definitions and relations are introduced and used uniformly
throughout the paper. Formulas are derived for efficient evaluation of large changes in the
inverse of a square matrix and in the solutions of a linear system. Basic large change
formulas are also expanded to various expressions suitable for computational purposes due to
different formulations of the original problem. We provide operational counts for major
formulas to facilitate a deep investigation of the computational effort. Appropriate
formulations yielding efficient calculation of large change effects are further discussed.
Numerical examples are given. A comprehensive set of expressions designed for computation
are provided through tables which summarize and complete the various cases of our analysis.
These tables can be used as a tool for computer-aided designgrs to yield efficient design
procedures.

Let A be an nxn matrix containing the variables ¢ which exist only in rows T PO
i,yand columns j,, j,, o dng

Let U, and U, be matrices whose columns are unit vectors Wiy, Uiy ..., Wi and uj,
Wjo, -y Wj 1, respectively, where unit vector u;, 1 <i=n, is defined as an n-dimensional unit-
vector with 1 in its ith row and zeros everywhere else.

The intersection elements of rows 1,19, i;and columnsjl,jz, o jnJ in A constitute
an np by n; submatrix denoted by Ay Let AA represent the large changes of A due to
changes in ¢. We define

AA~HEA +aA)" AL (1)

[t should be noted that AA can always be expressed in the form of

AA = VDWT, (2)
where V, D and W are matrices of order of n x r, ry xryand nx ry, respectively. We have
great freedom to choose V, D and W for the realization of (2). For example, a simple and
useful realization is

— T
AA=U AA, U,T. (3)



We can fully exploit the freedom of selecting V, D and W so that various efficient
computational schemes are constructed. This is discussed in detail in our paper.
P or p and Q or q are used to represent the solutions of the linear systems with
coefficient matrix A and AT, respectively.
Subscripts similar to the notation of the R.H.S. of the linear equations are added to P,
P, Q and q to identify the solutions for different R.H.S. As an example, p, and Qy are
solutions of
Ap,=b (4)
and
ATQy =W, , (5)
respectively.
We have the following formula to calculate the large change effects of A~ ! as
AAH =—A-lvDa+wlA-lvD) - twTA-L (6)
Notice that D is a matrix of dimension r, xry. The inversion of (1 + WIA-1VD)in
(_6) is the order of ry. A dual formula is also available which results in an r, x r, matrix
inversion. Therefore, if we already know A !, the large change effects of A~! due to changes
in elements of A may be evaluated by inverting an ry X r,orr,xr, matrix and performing
appropriate matrix multiplications. To obtain (A + AA)~!, we simply add A(A~ 1 to A~ L.
We can always choose V, D, and W such that (2) holds and ry < n and ry < n.
Especially, when rank AA < n, we can have r, < nand/or r, < n. Thus, instead of directly
inverting an n x n system, we can obtain the (A + AA)~! matrix by solving a smaller system
of ry x r,or ry x ry. This is one of the major attractions of these formulas. For example, the
simplest way to choose V, D and W is to use U, AA; and U, yielding an n| x nyorn; xn;
smaller system. Further discussion on the formulation of V, D and W as well as
computational aspects of large change formulas associated with A ~! will be presented in the

paper.



As a special case, the well-known Householder formulas [7-8] can be obtained from
our formula. It should be noted that, mathematically, the Householder formulas require D to
be a nonsingular square matrix. In our formulas D can be singular or even rectangular, thus
more freedom can be exploited in the formulation of D. Computationally, compared to
Householder formulas, using our formula, one can either avoid matrix inversion of D or
perform fewer matrix multiplications.

Other special cases of our formula are also discussed, including those originated by
Sherman and Morrison [9] and frequently used in large change analysis, fault location and
tolerance assignment, e.g., [10].

Our basic formulas are expanded according to different formulations of the original
problem. For example, the large change evaluation in a multi-measurement, multi-
excitation system can be represented by

ABTA-lO) |
where the columns of the nxm’ matrix B select appropriate measurements and the columns of
the nxn’ matrix C contain different excitation vectors. According to the values of r,, ry and
the number of measurements and excitations we can choose appropriate approaches such that

the computational effort is reduced. For example, we can use

ABTA-'0) = -8Tq,TcC, (7
where S is the solution of the ro Xr, linear system
(1+ Qy " VD)TS = RHS (8)
with the right-hand sides as
RHS = (Q,"vD)T. (9)
This approach requires m’ + ry FBS in the nxn linear system for Qg and Qy, one LU
factorization and m’ FBS in the ry X ry linear system of (8).
As another example, consider
ABTA"'C)= - BTP; DS, (10)

where S is the solution of the ry X Iy linear system



(1+WTP, DS =RHS (11)
with the right-hand sides as
RHS = WTP,.. (12)
This approach requires r; + n’ FBS in the nxn linear system for P, and P, one LU
factorization and n' FBS in the Iy X T,y linear system of (11).

Comparing the major computational effort required by the approaches of (7) and (10),
we find that (7) can be recommended if m’ < n’ and ro + m' < r, + n’, otherwise, if m’ > n’
andr, + m’ > r, + n’,(10) may be used.

In the paper, we present an exhaustive search for all possible cases of A(BT A~! C)
distinguished by the number of FBS in the nxn and [y X I, Or ryx ry systems. Suitable
expressions are formulated for efficient calculations of A(BT A=! C). Different cases are
classified such that the number of FBS in the n x n system equals the minimum of m’ + Lo,
n’ + r andr; + r, and the number of FBS in the r, X T, Or ry X r, smaller system equals the
minimum ofrl, ry, m'andn’.

Also included are formulas suitable for computations of large change effects of A ™!
associated with vectors b and c.

Operational counts [11] for major formulas are presented for deep investigation of
computational effort. For example, to ca_lculate A(A~! ¢) using (6) we will need ryn (n+
ry) + nry + r23/3—r2/3 + r22 +rn+rr, (r2 + 1) operations.

If we can express AA as V D WT such that r, and r, are very small, using large change
formulas can save considerable computation as compared with direct methods which calculate
everything all over again.

If r; and r, are not small enough, the above computational counts of large change
formulas will even exceed those of the direct methods. However, this computational count can
be further reduced significantly if variable parameters are changed many times. For
example, in an optimization procedure, variables will usually be updated many times before

the optimum is reached. Another example is centering and yield estimation, where Monte-



Carlo procedures are often involved to choose random values repeatedly for variable
parameters. When we apply large change formulas in these cases, we can choose V, D and W
such that D contains variables and V and W are constant. Thus all the FBS in the nxn
system represented by A, are calculated only once and can be used for all subsequent changes
of variables. The operational count becomes r23/3 -ry/3 + r22 +rn+rry(ry + 1) for AA~!
¢) using formulas corresponding to (6), for large changes of the second time and on.

As an example, Table [ shows the operational counts of calculating A(A~! ¢) by using
the direct method and by using our large change formulas. The direct method refers to the
method of calculating the system all over again after a large change. In the paper, we present
the operational counts for A(A~!) and A(A~! ¢) by different approaches. Computer
programs calculating A(A~!) and A(A~! ¢) by our large change formulas have been
developed which confirm the corresponding operational counts.

From the previous discussion, we find that the calculation of large change effects with
A~ linvolved is essentially reduced to solving a smaller system of size r, by ry or ry by ry,
where r, and ryare the numbers of rows and columns in D, respectively. [f'r1 = r,, we use (6)
for an ry X ry smaller system, otherwise use the dual formula yielding an r,x r; system.
Different formulations of V, W and D can lead to different computational cost which depends
heavily upon the value of—rl (ifr, < ro)orry (ifr, > ry). Thus, it is always desirable to have
the value of either r,orryaslow as possible. For example, the formulation of (3) gives r,=n;
and ry =nj. Therefore, r, < nand ry < n. So, we are assured that this formulation results in
solving a system no greater than the original n x n system.

Usually, r,orr,can be further reduced. We have,

min r, = min ry=r, (13)
(V,D,W) (V,D, W)
where r is the rank of AA. The above equation gives the conclusion that for evaluating large

changes involving A~ ! the minimum size of the system we need to solve isr by r.



However, in practical problems, e.g., in computer-aided circuit design, using the
branch and nodal information and the topological relation of the variable elements, the
physical properties of the problem can lead to a formulation of V, W and D such that the
minimum size system is achieved and no additional computations are introduced. This will
result in an algorithm which further reduces computation as compared with [2].

In the following numerical example, we consider a 10x10 system

Ax=h, (14)
where the intersection elements of A at rows 2, 5 and 9 and columns 3 and 6 are constantly
changed. V, D and W are formulated by (3). Numerical solutions as well as intermediate
results are shown in Fig. 1. Fig. 2 shows the efficiency of this method compared with the
direct method, which is to solve the n by n (here 10 by 10) system repeatedly. For example, if
the variables change 5 times, then the computational cost can be reduced by 60%, if they
change 20 times, then 80%. Notice that in Fig. 2, the horizontal axis represents the number of
simulations which include the initial system simulation and subsequent simulations when

system parameters are changed.
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TABLE I

OPERATIONAL COUNTSFOR A(A~1l¢)

n,ry,ro By Direct By Formula
Method (6)

Variables Variables

Change for Change for

the First the Second

Time Time and On

10,1,1 430 133 13
10,3,2 . 430 434 54
10,5,3 430 807 127
10,4,4 430 756 156
10,6,4 430 1096 216
10,6,5 430 1255 305
10,6,6 430 1438 418
10,7,6 430 1650 470
4,3,2 36 116 36

7,2,2 161 172 32
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MATRIX [Al VECTOR [B]
1. 5.6 5.0 1.0 5.0 2.0 1.0 1.6 7.0 2.0 35.0
2.6 3.0 3.0 7.0 0.0 4.0 3.0 6.9 8.0 3.0 32.0
3.0 0.0 2.0 4.0 2.0 6.0 4.0 4.0 9.0 7.0 16.0
6.0 1,0 2,0 5,60 2., 3.6 3.0 7.9 3.0 5.0 51.9
8.6 1.0 2.6 2.0 4.9 4.6 6.0 8.0 4.6 8.0 42.9
4.9 1.8 6.9 T.8 3.9 5.9 T.8 8.9 5.8 2.0 190.9
7.6 9.6 6.9 5.6 9.8 4.9 424,49 9.9 2,0 9.9 34,9
2.6 0.9 4.0 2.0 2.0 5.0 3.6 5.9 4.0 3.0 71.0
3.¢ 2.9 6. 1. 5.6 3.9 4.6 2.9 3.6 1.9 36.9
4.8 2.8 4.9 4.9 6.8 2.8 9.9 6.9 1.6 7.8 51.9
SOLUTICHS BEFORE LARGE CHANGE
JECTOR [X]
-6.892147
59.80097
-3.06667
2.31914
-5.40544
48.42778
-12.11626
-3.6172%
-82.93894
16.99799
Fig. l(a) The original linear system and its solutions. A is a 10x10 matrix containing

parameters of the system. b is the excitation vector. x is the solution vector.
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MATRIH (V] HATRIX [W]

8.6 &.8 5.9 8.9 9.9
1.6 8.9 3.9 8.6 8.9
8.0 8.9 2.9 1.9 9.9
9.9 9.9 2.9 2.9 9.0

1.9 9.9 0.9 0.9
0.6 8.6 8.9 0.2 1.0
8.0 2.6 3.0 9.0 8.9
8.6 2.9 9.9 8.9 8.6
8.0 9.9 1.9 9.9 6.9
9.9 9.9 2.9 9.0 8.9

HATRIX [PV]

-.08634 . 19672 -.829C6
-.397%0 -.26526 . 24838
. B9454 L 99496 -. 158685
-. 04645 -. 236590 . 92049
.02608 -. 99579 12092
~.48%48 -.43199 13812
. 18919 . 22984 . 91487
27869 . 13754 . 80846
.36321 .32717 -.92238
~-.27658 -.28679 ~.99789

Fig. 1(b) Matrices V, W, Py and vector RHS, where Py is the solution of A Py = V and
RHS = WTx,
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MATRIX [D]

2.59609 3.959699
4.06660 5.89696
2.60660 3.06659
MATRIX [H]
1.06802 . 00797
-2.44666 -2.23801
VECTCR [ 8]

—2.66948

-18.72004

SOLUTIONS AFTER LARGE CHANGE :

VECTOR L[]

B. 152494

-3.82546

-27.58607
Fig. 1(¢) Results corresponding to a particular change of variable parameters represented

by D. Hrepesents (1 + WT A-1V D) and s is the solution of the smaller system
Hs = WTx,
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VARIABLES CHANGE FOR ANOTHER TIME CAUSING THE CHANGCE OF (DI,
BUT [V] AND (W1 ARE THE SAME AS TIOSE WITH THE IPREVIOUS (DI,

MATRIR [D]

6.08669 7.58009
5.606689 4.53089
3.60669 4.086800

MATRIX [H]

1.021690 -.225657
-4.,766496 -3.63333
VECTOR [S]

d

SOLUTIONS AFTER ANOTHER LARCE CUANGE

-3, 165642
-7.38773
15.338%3
S5.41279
12.05534

-25. 56992

Fig. 1(d) Results corresponding to another change of variable parameters. H and s are
similarly defined to those in Fig. 1(c).

—
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RGE CHANGE FORMULR

Number of Simulations

Computational time for evaluating large change effects of the linear system of
the example. (The CDC 170/815 System is used. Compilation time is not
included.)
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