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Abstract

This paper presénts a unified approach to sensitivity analysis in linear systems. A
comprehensive set of first-order and large change sensitivity formulas associated with matrix
and vector operations is provided. They-can be directly applied to linear system simulation
and optimization procedures. Different formulas are compared. Relevant expressions
appropriate for computational purposes are listed. These schemes will be very powerful if, for
any particular sensitivity analysis, the variables exist only in one or several local areas of the
system. In an optimizétion procedure, the calculation of large change effects can be reduced
from solving an n x n system to solving an r x r system, where r is the rahk of the deviation

matrix of the linear system.
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I. INTRODUCTION

Sensitivity analysis remains one of the important topics in both mathematical and
engineering problems. In computer oriented simulation and optimization, it is often required
to calculate the gradients of functions of interest w.r.t. variable parameters and to recalculate .
new function values when the values of certain variables are changed. Besides, sensitivity
analysis itself can yield valuable information about the system under consideration. An
elegant approach to the evaluation of these sensitivities should be such that calculations are
performed efficiently using all possible information to reduce computational effort.

In this paper, we investigate first-order and large change sensitivity problems and
formulate a comprehensive set of formulas associated with matrix and vector operations.
They can be directly applied to linear systems. Different formulas are compared. Relevant
expressions appropriate for computational purposes are provided. These formulas will be
very powerful, especially when the variables exist only in some local areas of the linear
system. In an optimization procedure, the calculation of large change effects can be reduced
from solving an n x n system to solving an r x r system, where r is the rank of the deviation
matrix of the linear system.

In Section II, we introduce the basic notation, definitions and relations which will be
used throughout this paper. We first present the basic and relatively easier sensitivity
formulas w.r.t. matrices, vectors or their components in Section III, followed by first-order
sensitivity formulas w.r.t. arbitrary variables in Section IV. Section V is devoted to the
derivation of formulas for evaluating large changes in A~! which is further discussed in
Section VI. Section VII shows the expansion of basic large change formulas to various
expressions suitable for computational purposes due to different formulations of the original
problem. Section VIII provides operational counts for major formulas to facilitate a deep
investigation of the computational effort. Appropriate formulations yielding efficient
calculation of large change effects is further discussed in Section IX. Numerical examples are

given in Section X. A comprehensive set of expressions designed for computation are provided



through tables which summarize and complete the various cases of our analysis. These tables

can be used as a tool for computer-aided designers to yield efficient design procedures.

II. BASIC NOTATION, DEFINITIONS AND RELATIONS

Basic Notation

Let
B M
A11 A12 Aln
Agy Ago Agn
A= . . . (1)
L Aml Am2 mn_J

be an mxn matrix containing the variables ¢ which exist only in rows ij, igy ..y iy and

columnsjl,jz, ...,jnJ. Let M, N, I and J be index sets defined by

M£{1,2,..,m}, (2)
N£{1,2,..,n}, (3)
184, iy, ..., i }C M, (4)
J&G,,dg ig CN. (5)

N

Let U[ and U J be matrices whose columns are unit vectors Wip, Uig ..o, Wi and uj;,
Wjo, -y Wi 1, respectively,i.e.,
UI 8 [uil Ui .. uinI], : (6)
UJé[u]‘l u52"‘ujnJ]’ (7
where u,i€[ isan m-dimensional unit-vector with 1 in its ith row and zeros everywhere
else. Similarly, u, j € J, is an n-dimensional unit vector with 1 in the jth row and zeros
everywhere else. Vectors u; and u; are named unit vectors.
The intersection elements of rows i, iy, ..., 1_; and columns j, o, ..., j, ; in A constitute

an n; by n; submatrix denoted by A, namely,



i1 i1je iind
Aigjy Aizjz Aligjng
A, = . ) ) . (8)
Ay Aiig Ainling
. -

The matrices U; and U have the property of selecting certain components of a matrix
by premultiplication and postmultiplication. For example, we have the relation

— T
AIJ"UIVAUJ- (9)

Basic Definition

Since A contains the variable ¢, a large change in ¢ will cause large changes in A and
also in A~! when m = n and A is nonsingular. Let AA represent the large changes of A due
to changes in ¢. We define

AA-HEA +AA)- - AT, (10)

Basic Relation: The Product Form of AA

It should be noted that AA can always be expressed in the form of

AA=VDWT, (11)

where V, D and W are matrices of order of m x r, Ty XTy and nx Ty respectively. We have

great freedom to choose V, D and W for the realization of (11). For example, a simple and

trivial realization is

AA =1 . AALl ., (12)

where 1 . and 1 are identity matrices of orders m and n, respectively. Another
realization, which is very useful, is

AA = U AA, UST. (13)

This equation is evident since, according to our previous assumption, the variables ¢ exist in

A only in elements Aij, ieljed.



We can fully exploit the freedom of selecting V, D and W so that various efficient
computational schemes are constructed. This will be further discussed in Section IX.
Table I summarizes all basic notation used in the paper. Temporary notation is

explained where it is used.

Representation of Solutions of Linear Equations

Por p and Q or q are used to represent the solutions of the linear systems with

coefficient matrix A and AT, respectively, i.e.,

AP = RHS, (14)
" Ap = RHS, (15)
ATQ = RHS, (16)
AT q = RHS, (17

where RHS is a generic R.H.S. vector or matrix of consistent dimensions with P, p, Q and q.
Subscripts similar to the notation of R.H.S. are added to P, p, Q and q to identify the
solutions for different R.H.S. as shown in Table II. As an example, p, and Qy are solutions of
Ap,=b (18)
and
ATQy =W, (19)
respectively.
The linear equations with coefficient matrix A (e.g., equations (14), ( 15), (18)) and AT

(e.g., (16),(17), (19)) will be called the original and the adjoint systems of A, respectively.

[II. SENSITIVITY FORMULAS W.R.T. MATRICES, VECTORS
OR THEIR COMPONENTS
In this section, we discuss first-order sensitivities w.r.t. variables that are the

components of a matrix or a vector [1]. A complete set of these formulas and associated



computational expressions are provided in Tables III, IV and V. Table IV gives relevant

formulas for the case when A is symmetrical.

Sensitivities of A and A~

To begin with, we can easily find that the sensitivity of matrix A w.r.t. its (i,j)
component is a matrix with 1 at the (i,j) position and zeros everywhere else. Using unit

vectors u; and w, this sensitivity can be expressed as

JA
—— =uu’. (20)
A, 1)

By differentiating A A~! = 1and manipulé.ting relevant terms [1], we have

A"l A

—_— = 1\_1 —‘Q—1 (2D
9 3 ’
Letting ¢ = Aij and substituting (20) into (21), we have
- -1
E_é__ :__A—tu uTA—l (22)
dA. . i :
1] .
The expression appropriate for the computation of (22) is
-1
A T (23)
aA. P Ty
ij

where p ; and q, are the solutions of the original and adjoint linear systems of A with R.H.S.
as u; and u,, respectively, as defined in Table [I. The major computational effort involved in

(23) is one LU factorization and two forward and backward substitutions.

Sensitivities of (BT A C)

The sensitivities of the matrix product BTA C w.r.t. Aij can be derived, using equation

(20) as

8(BTAC) T A
aA.. A,
L] 1)

C

= BTu‘ u.T C. (24)
i7]



The sensitivities of the (£, k) component of (BTAQ) (denoted BT A C] o) W-I.t. matrix
A is a matrix the same order as A. The (i, j) component of the sensitivity matrix is

T T T
d[B"AC], ~ d(u,B"ACu,)

dA. . dA. .
ij ij
_ ToT A

-—ueB _aA Cuk

ij

TpT T
(u, B ui)(uj Cu))
— (T T ~T
=@, Buy)(u C uj)
- ..T - T ~T 25
=u, (BueukC )uj, (25)
where u, and u,_are unit vectors with appropriate dimensions for the postmultiplication to B

and C, respectively. Notice that equation (20) was used to substitute aA/aAij. The R.H.S. of

the last equality indicates that the result of the calculation of (25) is the (i,j) component of (B

u, ukT CT). Therefore, we find

aBTAC] (26)
B =Bu uTCT.

A ¢ 'k '
Comparing (26) with (24), we find that if B and C are both symmetrical matrices, then

aBTAC] BTACI, (27)

dA. . dA
ij

Sensitivities of (BT A=1 C)

Applying (22), we have

E10: B N ) R
—— =B C
aA. I

ij ij

=—BTA"1uiujTA'lc. (28)

Consider the (£, k) component of the matrix product BTA-!Cintermsof Aij as



T ,4-1 T pT 5 -1
é[B" A C]ek a(ueB A Cuk)

dA. . dA. .
1] 1]
T oA’ (29)
=u, B Cu
A, k

Substituting (22) into (29), we find

T -1
aB>A""Cl,

—(u} BTA"lui)(uTA"l Cu)
] k

dA. .
ij
= (A" YB u,uf cTAY . (30)
Therefore, we have the sensitivities of the (£, k) component of BT A~!C w.r.t. matrix A as
Ta-1
a[B* A C]Ek (31)

_ -1\T ‘ T T -~ 1\T
A ——(A)BueukC(A ).

Compare (31) with (28). We find that if matrix products (BT A-!) and (A"! C) are both
symmetrical, then

T 5 -1
sBTA"!C) 9B AT Cl, (32)
A IA '
ij

Remark

Using these basic equations, various sensitivity expressions can be derived. Tables [11
and IV give a list of these expressions. Table V provides sensitivity expressions appropriate
for computations when A ~! is involved. One LU-factorization and two forward and backward
substitutions (FBS) are the major computations required for each of the sensitivity

expressions in Table V.

IV. FIRST-ORDER SENSITIVITIES W.R.T. AN ARBITRARY VARIABLE
In the previous section, we. considered the sensitivities w.r.t. matrix or vector

components of a linear system. These components, however, may be functions of other



variables, e.g., variable ¢. Further, several components in the matrix or the vector may
contain the same variable ¢ simultaneously. In this case, the chain rule may be used to
obtain sensitivities of the functioﬁs of interest w.r.t. variable ¢. For example, suppose A =
A(¢), then
3A ( A Ay ) (33)
ad VA, 99 ' |
where the summation is performed over those indices of i and j corresponding to which the
component Aij contains the variable ¢.
A more efficient approach can be developed when we consider simultaneously all the

components affected by ¢. As introduced in Section II, suppose ¢ exists in A in rows i, i € [,

and columnsj,j € J. Then we have

3A Ay 1 (34)
— =0 — U, .
ad L ap
The sensitivity of the inverse of A w.r.t. ¢ can be found as
— = -A7T" — A~
Id ad
dA
- 1J -
- _A-ly Y yTa-t (35)
I ap J
The corresponding expression suitable for computation, whenn; + n; < n, is
aA~! A L (36)

Y -Pur A Ud
where P(;; and Q. are solutions of the original and adjoint systems of A with R.H.S. U and
UJ, respectively.
Whenn; + nj = n, it is advantageous to perform a matrix inversion directly for A~ L
Using these basic formulas, various sensitivity expressions can be derived. Table VI

shows sensitivity formulas suitable for calculations for different situations.
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V. LARGE CHANGES OF A~ ! DUE TO ARBITRARY VARIABLES IN A
Introduction
Consider the matrix A with arbitrary variables ¢ which exist in components of A at
rows i, 1€ I, and columnsj,j € J. Suppose ¢ is changed from ¢ to ¢ + Ad, then the changes of
A can be easily found as
AA =UAA UT. (37)
The inverse of A will also be affected by the changes of ¢. After the change, the
inverse of A becomes (A + AA)~! which, according to our definition in (10), can be evaluated
by
(A+AA)"=A"1+AATD, (38)
where A=l and A(A~!) may be considered as the nominal value and incremental changes of

" matrix A~L

Derivation of Major Large Change Formulas

Now, we find A(A~1) as follows. Since
(A+AA) 1A +4A) =1, (39)
substituting (38) into (39), we have
ATlA+ A TAA+ AATH (A +0A) = 1. (40)
The term A~ ! A is cancelled by the identity matrix at the right hand side. Thus, we can have
AMA~H = - A-TaA A + 247!
= -A-laa@a-t+aAah). (41)
As discussed in Section II, AA can be represented by the matrix product form of
V D WT. Therefore, equation (41) becomes:
AA~h=—A-lvDwha-l + Al
=—A-lvpwla-l_aA-lvDpwlaAa-h). (42)
Premultiplying (42) by wTand denoting Z as

Z=wTal-Y, (43)
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we have
Z=-wla-lvDpwTa-1_wlTa-lvDz (44)
and consequently, Z can be solved from (44) as
Z=-1+WrA-lvDp)-'wla-lvDwlaA-l (45)
Since Z = WTA(A“I), the product form of WTA(A~1) on the R.H.S. of (42) can be
. replaced by the R.H.S. of (45), i.e.,
AA~h= —A-lvDWIA-l+A-lVvD(1+ WTA-lVD)!
wia-lvDwla-!
-A-lvDia-a+wWrA-lvD)-twla-lvDiwla-!

—A'vDL+WTA-lvD)-la+WTA-lvD)

~a1+wWlra-lvp)-twla-lypiwlfa-t

—A'vDIH+WTA-lvD)- '+ 1+ WFTA-lvD)-'WTA-lvVvD

~1+WrA-lvD)-!WIA-IvDIWTA-!
= —A-lvDa+wra-lvD)-twla-l (46)
Therefore, we have the following formula to calculate the large change effects of A-l
as

AMA~H =—A-lvDa+wWrAlvD) " twTA-L, 47

Similarly, we can obtain
AMA™H =—A-lva+DWIA-ly)-lDwWTA-L (48)
Notice that D is a matrix of dimensions r, x r,. The inversions of (1 + wlA-lv D)

1

in(47) and (1 + D WT A~1 V) in (48) are the orders of ryand r, respectively.

Discussion

Equations (47) and (48) indicate that if we already know A~ L the large change effects
of A~! due to changes in elements of A may be evaluated by inverting an Iy X T OF TyX Iy
matrix and performing appropriate matrix multiplications. To obtain (A + AA)"L we

simply add AA~Hto AL
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We can always choose V, D, and W such that (11) holds and rp<n and ry < n.
Especially, when rank AA < n, we can have r; < n and/or r, < n. Thus, instead of directly
inverting an n x n system, we can obtain the (A + AA)~! matrix by solving a smaller system
ofry xr, orry xry. This is one of the major significances of (47) and (48). Further discussion
on the formulation of V, D and W as well as computational aspects of large change formulas

associated with A ~! will be presented in Section IX.

VL. IMPORTANT SPECIAL CASES OF LARGE CHANGE FORMULAS FORA ™!

Casel: Express AA Directly by Unit Vectors Selecting Appropriate Compohénts of AA

As discussed in (37), AA can be expressed by a submatrix AA| ;» which contains all the
components of A affected by large changes of variables ¢, and unit vectors which select AA| J-
Comparing (37) with (11), we have

AA=VDWT=UaA; U;T. (49)

In this way, matrices V, D and W can be represented by U, AA[; and U, respectively. Thus,

(47) and (48) become
AA Y= AU AA 0+ UTAT U AA U TAE (50)
and
-1 = -1 T p-1 -1 Ta-1
AMA™h = —A-lUu a+aA,UTA- T U)-taA UTAY, (51)

respectively. Using these formulas to obtain AA~!, we need to perform n; + n; forward and
backward substitutions for A ~! U, and UJT A~ ! and to solve an nyx ngor nyx n; smaller
system.

This special case suggests that the simplest way to choose V, D and W for formulas

(47) and (48) is to use U, AA(;and U ;.

Case 2: Householder Formulas[2, 3]

Let AA be expressed by

AA = VDWT (52)
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such that D is square and nonsingular. Then,
D1+ WlA-lvD)-!=D[D-!+ WlA-'V)D]"!
=D+ wla-lv)-! (53)
and
D1+ WrTA-lvD)-'=D1+ Wra-lvD)-!D-!D
=DMD+DWTA-'VD~!D. (54)
Therefore, if D is an invertible square matrix, equation (47) becomes,
AA Y= A lvD-l+ wTAaA-ly)-twTa-l (55)
and
MA™H=-A"'vDMD+DWIA-lVD)-!DWTA-! (56)
or, alternatively, from our definition of A(A~ Lin (10),
A+0A)t=A"1_A-lvD- '+ WTA-lv)-TwTA-! (57)
and
A+2A)"'=A"1_A-'vDD+DWIA-lVD)-!DWTA-L. (58
Formulas (57) and (58) are the well-known Householder formulas [2, 3].
It should be noted that, compared with the general formulas (47) or (48), the
Householder formulas (57) or (55) require one additional matrix inversion for D~! whereas
(58) or (56) require more matrix multiplcations. Also, using the Householder formulas, AA

must be expressed in the form V D WTsuchthat Disa nonsingular square matrix.

Case 3: Rank 1 Change [4-6]

Suppose AA is arank 1 matrix expressed by
AA = vAp wl, (59)
where v and w are n-vectors. In this case, matrices V, D and W in (11) become v, A} and w,

respectively. Equation (47) becomes

-1 Ta-1

A(A—l)z - T 1
1+w A” "vAd
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or, alternatively, using definition (10)

oo A lvwTAa~ 1A
A+A0A)"1=A"1_ — L (61)
1+w A" "vAd

) Equation (60) or (61) are the results of one of the pioneer works in this area by Sherman and
Morrison [4, 5].

Although Sherman and Morrison’s formula is derived for rank 1 changes in A, it can
be used iteratively to calculate general large change effects of A~! for ranks of AA higher
than 1. For example, consider AA = U; AA; U JT where large changes occur in columns j,,
Jgs s ing- At the first iteration, only the j; th column is changed,. all other columns keep their
old values. At the second iteration, changes occur only in the Joth column while the j th
column keeps its new value and the rest of the columns keep their old values. This procedure
is continued for columns j, j,, ..., j, ;- The final (A + AA)~! is the inverse of A~! after
change. The procedure can be generally expressed by

(A+AA)~!=R,,, (62)
where Ry, is the result of an iterative procedure initialized by
R,=A"! (63)

and calculated, e.g., ifr; > r,, by
 s.=R, ,VDu

t t—1 t
wt=Wut
< (64)
T
s w R
t ot t—1
R =R_, -

T
1+wtst

k t=l,2,...,l‘2,

where u, is a unit ry-vector and where V D WT is used instead of U AA,; U JT as a general
form of AA. A similar procedure exists for the case whenr, < r,. However, those approaches
may cause more computational effort than previous formulas. A detailed discussion is

provided in Section VIII. -
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The above different cases are summarized in Table VII. Other special cases, e.g.,
those from [7], are also possible from (47). These formulas require the solutionof a new

system which has the same size as the original n x n system.

VII. LARGE CHANGE FORMULAS AND THEIR COMPUTATION

Formulas When Matrix Inversion is Not Involved

Suppose variables ¢ exist only in matrix A in rows i, i € I, and columns j, j € J.
Evidently, the following relations exist:
AbTA) =bTUAA,UT
=bTVDWT, (65)
A(Ac)=UAA,; U Te
=vDWTe, (66)
AbTAc)=bTU AA UTe
=bTVDWTec (67)
and
ABTAC =BTUAA,; UTC

=BTVvDWTC. (68)

Formulas When A ~! is Involved

Using any of (47), (48), (50), (51), (55) and (56), we can obtain corresponding large
change formulas for the inverse of A~ ! associated with vectors b and ¢ or matrices B and C.
For example, using (47), we have

AMAle)= —A-lvDa+WIA-lVD)-IwlA-le (69)
and

ABTA-1C)= - BTA-'vD(1+ WrAa-lvD)ylwTa-!lC. (70)
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Discussion on the Computational Aspects of (69) and (70)

From the computational point of view, (69) can be expressed as

A(A~le)= - Py Ds, (1)
where s is the solution of the ry x r, linear system:

1+WI'P,D)s=WTp_. . (72)
As for (70), we first notice that the term BT A~! V can be computed either as BT Py or
QBT V, where P, and Qg are solutions of the original and adjoint system of A with right-hand
sides as V and B, respectively, and have been defined in Table II. The bdifference of
operational counts [2] bgtween BT Py, and QBT V is n2 (r, = m') multiplication and divisions,
where r, is the number of columns in V, m’ is the number of columns in Band n is the order of

the square matrix A, as defined in Table I. Therefore, comparing r, and m’, (BT A-!V)can

be calculated by
BTP,_ ,ifr, =m’ (73a)
BTA-lv= { viool
Qg V., ifr, >m'. (73b)
Similarly, we find
wip , ifr, >n’ (74a)
wia-lg = [ C 2
Q;,C ,ifr,<n’, (74b)

where r, and n’ are numbers of columns in W and C, respectively, as defined in Table I.

However, at least one of (73a) and (74b) should be used in order to yield either Q or Py,
which is required in calculating

1+WIA-IVD) =(1+Q, VD)

=1+ WI'P,D). (75)

Hence, according to the values of r|, r,, m’ and n’, we can choose appropriate approaches such

that the computational effort is reduced. For example, when m’ < n"and m’ < ry, We can use

ABTA-1C) = - 8TQ,"C, (76)

where S is the solution of the ry x r,, linear system
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(1+ Q" VDTS = RHS M
with the right-hand sides as
RHS = (Q;"vD)T. (78)
This approach requires m’ + r, FBS in the nxn linear system for Qg and Qy, one LU
factorization and m’ FBS in the ré x 1, linear system of (77).
As another example for computing (70), consider
ABTA-'C)= - BTP,DS, (79)
where 8 is the solution of the r, x r, linear system |
(1+ WTP,D)S = RHS (80)
with the right-hand sides as |
RHS = W' P,,. (81)
This approach requires r; + n’ FBS in the nxn liﬁear system for Py and P, one LU
factorization and n’ FBSin the r, x r, linear system of (80).
Comparing the major computational effort required by the approaches of (76) and (79),
we find that (76) can be recommended if m’ < n’ and ry + m' < r, + n’, otherwise, if m' > n’

andr, + m' >r, + n’,(79) may be used.

Introduction to Tables VIII and IX

In Tables VIII and IX, we present an exhaustive search for all possible cases of A(BT
A~L Q) distinguished by the number of FBS in the nxn and r x r, or ry X r, systems.
Suitable expressions are formulated for efficient calculations of A(BBT A~! C). Tables X and
XI can be referred to for the number of LU factorizations and FBS required for each of these
cases. We find that we always need one LU factorization in the original n x n matrix A, which
is usually performed for the simulation of the original system before large changes and,
another LU factorization in the r| x r| or ry x ry system, which is usually smaller than the
original system and is performed only for the_evaluation of large change effects. Different

cases are classified such that the number of FBS in the n x n system equals the minimum of
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m’ + ry, n' + r, and r, +r, and the number of FBS in the I XTI O TyX Ty smaller system
equals the minimum of r|, ry, m’ and n’. This minimum FBS criterion can be used as a guide
to select appropriate expressions among different cases of A(BT A~! C) as shown in Tables
VIII and IX.

Also included in Tables VIII and IX, are formulas suitable for computations of large

change effects of A ~! associated with vectors b and c.

Discussion and Duality Properties

Since (47) and (48) require the sélution of linear systems of size ry x r, and rxry,
respectively, (47) is preferred for the case of r, < r, and (48) is preferred for ro > r,. Thisis
the phenomenon evident ih Tables VIII and IX where two sets of formulas constitute a series
of dual problems corresponding tor, < r, and ry > r,, respectively. For example, consider the

dual relations between

AbTA-le)= — 6T Qch, (82a)
where s is the solution of
1+ Qy"VD)Ts=(q,TVDT (82b)
and
AbTA"le)= - bTP 5, (83a)
where s is the solution of
1+DW'P)s=DW'p_. (83b)

If we apply the following interchanges

A o AT, (84a)
b - c, (84b)
D o DT, (84c)
V o W, (84d)
P, Aad qy, (84e)

and
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Py <« Qy » (84
then equations’(82) and (83) are completely interchanged. In terms of computational effort,
similar relations exist when we apply the interchanges
(85a)
and

m e n'. ' (85b)

For example, (82) requiresr, + 1 FBS in the n x n linear system, one LU factorization
and one FBS in an r, x r, system. (83) requires r; + 1 FBS in the nxn system, one LU

factorization and one FBSinanr, xr, system.

Remarks
‘ When‘the 'nuﬁlber of FBS exceeds the order of the systém, we would rather perform a
matrix inversion or, FBS operation no more than the order of the system. Together with
necessary linear combination operations, the results required by all the FBS can be obtained.
Also notice that if V and W are chosen to contain variable parameters, other
computational  procedures can be formulated in order to use the large change formulas
efficiently. However, it is recommended to arrange all variables contained in D. Thus, V, W,
Py, and Q can be considered constant and saved for any changes of variable values. This

feature can be found in Tables VIII and IX.

VIII. OPERATIONAL COUNTS FOR LARGE CHANGE FORMULAS
WITHA ! INVOLVED

Operational Counts

We all know that the number of product operations (multiplication or division)
required for an nxn matrix LU factorization is n%/3- n/3, for a forward and backward

substitution is n?, and for a multiplication of an m xn matrix by an nx € matrix is m-n-£.
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Also, inverting an n x n matrix requires n3 product operations [8,9]. Here, one quotient
operation is considered equivalent to one product operation [2].

Consider the computation of A(A™1Y). Supposé r; + ry < n and the matrix A has
already been LU factorized. In order to calculate A(A~1) by (47), we need (r; +ry) n? product
(multiplication and division) operations to get A-1Vand WIT A-!and r,ry (n+ ry) similér
operations to obtain the r, x r, matrix (1 + WT A-! V D) which will be inverted after r23
operations. Together with necessary matrix mulfiplications, the total operational count will
ben(nr, + nry, + r ry) + ry(2r;r, + 1'22 +or, + n?).

| If we use (64) to cdmpute A(A™1), we need to know the original inverse of A. Suppose

A-! hés been obtained. Then for each iteration, we perform n(r, + 2+ 3n) operatioﬁs.
Altogether, we need ry n(r; + 2 + 3n) operations to obtain A(A™ b,

Suppose r, >> ry. We use Table VIII to calculate A(A~! ¢). We will need ryn(n+

ry) + nry + r23/3— ry/3 + rzz + ryn + r;ry (ry + 1) operations. If we use the iterative

procedure of (64), the operational count will be ron (r; + 2 + 3n) + nZ.

Discussion

If we can express AAas VD WTsuch that r , and r, are very small, using large change
formulas can save computation, for example, up to 60% for A(A~!) and 48% for A(A~! ¢), as
compared with direct methods which calculate everything all over again.

If r, and r, are not small enough, the above computational counts of large change
formulas will even exceed those of the direct methods. However, this computational count
will be significantly reduced if variable parameters are changed many times. For example, in
an optimization procedure, variables will usually be updated many times before the optimum
is reached. Another example is centering and yield estimation, where Monte-Carlo
procedures are often involved to choose random values repeatedly for variable parameters.
When we apply large change formulas in these cases, we can choose V, D and W such that D

contains variables and V and W are constant. Thus all the FBS in the nxn system
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represented by A, i.e., Py, and Qyy are calculated only once and can be used for all subsequent
changes of variables. It should be noted that the formulations of V, D and W in this case are
designed only for a certain set of variables whose values will be changed more than once. For

a different set of variables, V, D and W will be different hence P, and Q; have to be obtained
by performing FBS or, under certain conditions, by performing linear combination operations.
The operational count becomes, 1'2(21-11'2 + r22 + nry + n?) for A(A~!) and r23/3- ry/3 +
r22 +rn+rr, (ry + 1) for A(A~Le) using formulas corresponding to (47), for large changes
of the second time and on.

Tables XII and XIII show the operational counts of calculating A(A~1) énd A(A~L¢)
by using the direct method and by using our large change foﬁnulas. The direct method refers
to the method of calculating the system all over again after a large change. Computer
programs calculating A(A™Y) by formula (64) and A(A~! ¢) by (69) have been developed
which confirm the operational count shown in Tables XII and XIII.

From Tables XII and XIII, we can see that when r, and r, are small, all large change
formulas are very efficient. Asr, and r, increase, the scheme of (64) tends to lose efficiency
whereas formula (47) (similarly (48), (55), (56)) can be still preferred if variables are changed

more than once.

IX. ONTHE FORMULATION OF V,Dand W
Introduction
From the previous discussion, we find that the calculation of large change effects with
A~ linvolved is essentially reduced to solving a smaller system of size r, by r, orr, by r,
where r; and r, are the numbers of rows and columns in D, respectively. If r, = r,, we use
(47) for an r, x r, smaller system, otherwise use (48) yielding an r x r; system. Different
formulations of V, W and D can lead to different computational cost which depends heavily

upon the value of ry (if ry <ry)orr, (ifr; > ry). Thus, it is always desirable to have the value
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of either r, or r, as low as possible. According to (13), we can always choose, without

computation,
V=1, (86)
wW=1U; 87)
ax{d
D=A4A;. (88)

In this way, r; = nj, ry = n;. Therefore, r, = n and r, < n. So, we are assured that this

formulation results in solving a system no greater than the original n x n system.

Usually, r, or ry can be further reduced. It can be shown that the lower bound for r| or

ry exists such that D is of dimension r, xryand (11) holds.

The Minimum Value for r, and Iy

Evidently,
Rank (AA) = Rank (VD WT)
< min {Rank V, Rank D, Rank W}
< min{n, r,ry}. (89)
Let
- r&Rank (AA). (90)
Thenr is a lower bound for r; and r,,.

Also, we can always choose V, W and Dsuch thatr, = ror ry=r, i.e., the lower bound
of r; and r, can always be reached. For example, since r = Rank (AA), AA has r linearly
independent columns, the linear combination of which gives all columns of AA. We can
choose V as

V=1[vvy.. vl (91)
such that v, v,, ..., v are the r independent columns of AA. AA can be expressed by linear

combination of Vi Vgs oy V88
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r r r
— (92)
AA = l Z (wli vi) Z (wZi Vi) Z (wni vi) .
i=1 i=1 i=1
Let
ﬂ
r wll W12 er
Wo1 Wog - Yor
W = . ) . . (93)
Wait wn2 War
- -
Then we have’
AA=VWI=vDWT, (94)
where Disanr xr identity matrixandr;, =r, =r.
Therefore, we have
min ri = min ry=r. (95)

(V,.D,W) (V,D,W)

The above equation gives the conclusion that for evaluating large changes involving A~1, the

minimum size of the system we need to solve is r by r, where r is the rank of AA.

Discussion

In persuing the minimum size system, additional computations will probably be
involved to construct V, D and W before using large change formulas. The objective to
decrease r, or r, is to reduce computations in evaluating large change effects. Therefore,
there is a trade-off between reducing r, or r, and the computations caused by this reduction.
The objective should be such that the overall large change computation is reduced. In
practice, one can start from the formulation of (13), which requires no additional computation,
and then persuing the reduction of r, or r, if only little effort needs to be involved. The actual

calculations are usually performed withr <r; < njandr <r, < nj;.
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However, in practical problems, e.g., in computer-aided circuit design, the physical
properties of the problem can lead to a formulation of V, W and D such that the minimum size

system is achieved and no additional computations are introduced.

X. NUMERICAL EXAMPLES

Example 1

To show how our first-order and large change sensitivity formulas are used, we

consider, as an example, a set of linear equations,

Ax=Db, (96)
where - 1
1 2 1 1
2 1 1 0
A = 97
3 1 4 1
_ 6 2 1 -1
and
b = [11 8 23 13T . (98)
The solution can be easily found as
x = [2 1 3 47 . (99)

Suppose elements of A at rows 1, 2 and 4 and columns 2 and 3 are changed yielding

Ane w such that
Anew = A + AA (100)
where
B =) 1 0]
0 3 0 0
AA = . (101)
0 0 0 0
0 -1 2 0
— -
Instead of solving
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for x__ directly, we can use large change formulas. In this example, we choose such a small
system in order to facilitate the demonstration and to guide through the use of formulas easily
step by step.
Evidently, the sets [ and J, defined in (4) and (5), are
1=11,2,4} (103)
and
J=1{2,3}. (104)

Therefore, UI and U J defined in (6) and (7), are

1 o0 0]
| o 1 o |
UI = [u1 u, u4] = (105)
0 0 0
h_O 0 I_J
and
[0 07
1 0
UJ = [u2 u3] = . (106)
0 1
0 0
— -
Also,
-2 1
AAy= |3 0 | . (107)
-1 2

Let V = UI’ W= UJ and D = AAIJ, then we have successfully formulated V, W and D such
that (11) holds. Formally, we have

x=A"!'b. (108)
Applying large change operator A to both sides and using (47), since r; = 3> 2 = r,, we

obtain,
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Ax= A(A~lb)

-A-'vDU+WTA-lvD)-!WTA-1p

= -P,D(+ WTPVD)"IWTx
= -P,Ds, (109)
where s is similarly defined in calculating A(A~! ¢) in Table VIII corresponding to r; = r,.
P, is obtained by performing 3 FBS with the R.H.S. as V, i.e,,
APy =V, (110)
where A has already been LU factorized when we solve (96) for x of (99) and where V = U,.

The solution of PV is

[ 0.50 —3.50 1.00

| -025 425 —1.00
P, = (111)
-0.75 375 —1.00

1.75 -8.75 2.00
- -

and the solution of
(1+ WP, D)s = WTx, (112)

ie.,

[ 15.25 -2.25 ] _ [ 1.00 I (113)
13.75 —-1.75 3.00

is

(114)

l 1.17647 l
7.52941

Therefore,

Ax = —PV Ds
[ _4.11765 ]
= 0.17647

4.52941 (115)

_— 5.94118

and the solution of (102) can be found by
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Xow = X + Ax
[ _2.11765
=| 117647 |. (116)

7.52941

-

-1.94118

If the intersection elements of A in rows 1, 2, 4 and columns 2, 3 change again,

yielding A’ new? _ | -
0 -1.5 1.5 0
0 1.5 1 0
Alnew — A + . , (117)
0 0 0 0
L 0 -2.2 4 0|
the solution of
Alnew x’new =b (118)

can be obtained using not only the LU factorized A, but also Py, WTx and WT Py, which we

already calculated. The computation is then to formulate and to solve the 2 x 2 system

1+ WP, D)s' =W'x (119)
to obtain s’, where
-15 1.5
D'=A4AA; = 1.5 1 (120)
-2.2 4
and where
o= l 1 (121)
-8

The solution of (118) is obtained, by using (109) as
X' ow = X+tAx=x-P;D's’
= (12 0 -8 19IT. (122)

For further changes of element of A at rows i, i € [, and columns j, j € J, we repeat the

procedure from (119) to (122) to obtain corresponding solutions.
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In this example, n = 4, r,=n = 3 and ry=n;= 2. This example is used only for
demonstration since directly solving (102) and (118) is more economical. Large change
formulas can increase efficiency only when we have a large system with relatively small r, or

ry, as shown in Table XIIT and in Example 3.

Example 2

To show the different formulations of V, D and W, we again consider (96) but
~ -

1 2 1 3 0 7 2

2 3. 1 2 4 5 2

A= 6 5 0 2 17 1 3 | (123)

and
b= [76 83 64 8 151 103 85]T. (124)
We find the solution of the system is
x= (1 2 3 4 5 6 77, (125)
Suppose elements of A at rows 1,1 € I, and columnsj, j € J, are changed, where
1={1,3,4,6,7}, (126)
J=1{2,4,5,7}, ' (127)

and



29

AA = 0 2 0 3 1 0 1 . (128)

0 1 0 1 1 0 0

Lo 3 0o 4 2 o0 1

The following shows three different formulations of V, D and W such that (11) is

satisfied. The easiest formulation is to choose V= U, W= U g and D= AA;. In this

example,
UI = [u1 u; u, ug u.l, : (129)
U;=[uy u, uy u,l, | (130)
and
1 3 -1 27
0 1 -1 1
pay= |2 3 o1 1|, (131)
1 1 1 0
- - 3 4 2 1

where the subscripted vectors u are unit 7-vectors defined in Section II. This formulation
requires 5 FBS to obtain Py, and the solution of a 4 by 4 system corresponding to (112). Here
r, =5andr, = 4.

Notice that the first column of AA; can be obtained by adding the third and fourth
columns. Thenr, is reduced to 3 since we can express

V=0, (132)
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3 _1 2 |
1 -1 1
D= | 3 1 1 (133)
1 1 0
4 2 1
L J

and

W= {u4 us +u, u7+u2]

K 0 0]
0 1 1
0 0 0
= 1 0 0 ; (134)
0 1 0
0 0 0
L0 0 1|

Thus the system of (112) becomes 3 by 3.
Further reduction of r, can be achieved by considering the first column of (133) as the

linear combination of other columns. Thus, we can choose

- V=0, (135)
— =
-1 2
-1 1
D= 1 1 (136)
1 0
2 1
- -~

and

W=[u2+u4+u5 u2+2u4+u7]
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Y 0
1 1
0 0

=1 2 . (137)
1 0
0 0

Notice that here ry=2 and no further reduction in rycan be obtained since
Rank(AA) = Rank (AA()) = 2. (138)
r, can also be reduced to 2 by defining V and D as

V=[2u1+u3+u4+ u, —3u1—2u3+u6+u7]

T2 -3
0 0
1 =2
= 1 0 , (139)
0 0
0 1
i - 1 1 -
D= Pl (140)
1 0

and by choosing W the same as (137). By this formulation of V, D and W, we only need to ‘
perform 2 FBS to obtain Py, and to solve a 2 by 2 system corresponding to (112).
Using the last formulation of V, D and W, PV is obtained, after performing forward

and backward substitutions indicated by (110), as
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1.17484 —0.84026

0.25571 —0.46405

-0.26520 0.54841

Py, = | —0.15341 —0.03053

—0.70369 0.86208

0.38460 —0.41274
;—0.82651‘ 0.60036 |

The 2 by 2 system is formulated by (112) which gives
[ 0.76610 —0.60139

—0.80238 0.12237 17.00000

Solving this small system, we have

[ —-29.75797 ]
-56.19887 |

The final solution is then obtained as

xnew=x+Ax=x—-PvDs

[ 76.98124
10.17098
—3.47626
=[-10.09545
—29.83350

26.77673

—46.17895
-

-

If we directly solve (102) by performing a new LU factorization

backward substitution, we obtain the same result as (144).

11.00000
[

(141)

(142)

(143)

(144)

and forward and
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Example 3
The problem of solving a system of linear equations and evaluating the effects in the
solution due to changes in the coefficient matrix is frequently encountered in practice. A
computer program has been developed to implement the method used by the previous two
examples. We formulate a 10 by 10 system, where the elements at the intersections of the
2nd, 5th, 9th rows and 3rd and 6th columns are constantly changed. We formulate V, D and
W by (13). V, W, Py, WTPV and WTx are calculated only once. For different values of
variable elements, the corresponding D is different and we only need to formulate and to solve
the 2 by 2 (ry by r,) system of (112) to obtain s and calculate the new solution x___ by using
Xy = X+ Ax=x-P;Ds. (145)
Numerical solutions as well as intermediate results are shown in Fig. 1. Fig. 2 shows
the efficiency of this method compared with the direct method which is to solve the n by n
(here 10 by 10) system repeatedly. For example, if the variable.s change 5 times, then the
computational cost can be reduced by 60%, if they change 20 times, then 80%. Notice that in

Fig. 2, the horizontal axis represents the number of simulations which include the initial

system simulation and subsequent simulations when the system parameters are changed.

XI. CONCLUSIONS

We have presented a unified treatment of exact first-order and large change
sensitivity problems in linear systems. Computational aspects of this approach have been
discussed. Besides their computational efficiency, the sensitivity formulas also give us
further insight into the relations between system parameters and system outputs, thus
helping us in systems analysis and design. For a system with almost all of its parameters
under change, we do not recommend the use of large change formulas. However, if variables
exist only in some local areas of the system, using our large change formulas can save a
considerable amount of computation. This philosophy can be compared to the use of sparse

techniques where non-zero elements represents only a small number of the whole system
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elements. Besides directly applicable to linear systems, our formulas can also be used for

gradient calculations and in nonlinear systems involving solutions of linear equations.

Relevant expressioris presented in the text and shown in tables can provide a useful tool for

engineering designers to yield fast and efficient design procedures.

(1]

(2]

(31

(4]

(5]

(6]

(71

(8]
(91
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TABLE I

BASIC NOTATION

Category Notation Dimension Comment

Matrices A mxn containing variables ¢.
m = nif A~!isinvolved.

Ay o npxny submatrix of A.

B mxm' constant.

C nxn' constant.

D r xr, such that AA = VD WT.
P nXNppe * solution of AP = RHS.
Q nXngys * solution of ATQ = RHS.
U, nxn ‘ containing unit vectors.
U; nxny containing unit vectors.
\4 mxr, such that AA = VD WT.
w nxr, suchthat AA = VDWT.
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TABLE I (continued)

Category Notation Dimension Comment
Vectors b m constant.
c n constant.
p n * solution of Ap = RHS.
q n * solution of ATq = RHS.
u, m
unit vectors of appropriate
W n dimensions such that the
premultiplications and
u, m'’ postmultiplications in

corresponding formulas exist.

Various subscripts will be added to the notation for various RHS. Table II can be

referred to for the relations of these subscripts, RHS and Npys:
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TABLE II
DEFINITIONS OF MATRICES P AND Q AND VECTORS p AND q
ASSOCIATED WITH VARIOUS SUBSCRIPTS

(* denotes P or p, T denotes Q or q)

(*)or Subscript R.H.S. of Dimension
) of (*) or (1) A(*) = RHS of (*) or (¥)
or AT(f) = RHS

P,Q B B nxm
C C nxn’
\" \'% nxr,
A\ w nxry
UI UI nxn
UJ UJ' nxn;

p.q b b n
c c n
u u. n
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TABLE III

FIRST-ORDER SENSITIVITIES W.R.T. COMPONENTS OF A MATRIX

OR A VECTOR
[dentification Sensitivity Expression
IA T
oA, ok
ij
ab’ A) A
ab
aAc) AT
ac
a(bT Ac) b cT
A
abT Ac) Ac
ab
a(bT Ac) AT b
ac
ab"Ab) (A+ AT
ab
a(BTAC) BT u. U~TC
—— 1
A, :
ij
aBTAC] Tt
2k Bu,u " C

dA
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TABLE III (continued)

Identification Sensitivity Expression
aA—l . _A—l w LLT A-l
—_— P Y
aAij
T,-1
(b A c) __(A—I)T b CT (A—l)T
dA ‘
T -1
a(B A ()] _BT A—l u. U.T A-l C
—_— i Y
aAij
aBTA!C] T p-1\T T a-l (T
ok ~«B*A™Y) u,u, (A C)
JA

Tt Inthiscase, A is a square matrix (m = n).
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TABLE IV
FIRST-ORDER SENSITIVITY W.R.T. COMPONENTS OF MATRIX A

WHEN AISSYMMETRICALAND i =

Identification Sensitivity Expression (A = AT)
IA ‘ T T
aTij ui uj + uj u,
~ab"A) - | A
ab '
aAc) | A
ac
abTAc) bel + cbT
JA
abT Ac) Ac
ab
a(bTAc) Ab
ac
abT Ab) 2A b
ab
a(BTAC) BT(U. u'T +w u.T)C
—_— i jo
aAij
T
qB AC]ek BueukTCT+CukueTBT

dA
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TABLE IV (continued)

Identification Sensitivity Expression (A = AT)
-1
IA -Au uT + uu DA
| i
dA .
ij
(kT A=l .,
Idb A" "¢) _A—l(b cT +ec bT)A—l
dA
T -1
d(B" A C) _BT A'l(ui ujT + uj uiT)A—l C
IA .
ij
T -1
dB" A C]ek -A™Y(B u, ukT cT+c u, ueT BDHA!

dA
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TABLE V
EXPRESSIONS APPROPRIATE FOR COMPUTATIONS FOR SENSITIVITIES W.R.T.

COMPONENTS OF MATRIX A WHEN A~! ISINVOLVED

Sensitivity Expression

Identification
(a) General (b) when A = ATandi = j
aA~! ' T T T
—_— “Pyi quj _(pui puj + puj Py )
dA..
ij
abTA le) T T T
—_— -q, P, (P, P, + PPy )
JA
aBTA'C) BT To BT T, %
_— B Py Ay B Py Py Py Pyi
dA..
ij
aBTA"'C) : T T T
_ —-qy, P, “P,P. tP.P,) T
JA

T

where b is the €th column of B and ¢ is the kth column of C. Both b and ¢ are used as the

R.H.S. of the system involving A for original solutions p,, p, and adjoint solution q,,.
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TABLE VI
EXPRESSIONS APPROPRIATE FOR COMPUTATION OF SENSITIVITIES

W.R.T. VARIABLE ¢ WHEN A~! ISINVOLVED

Identification Sensitivity Expression
aA~! ' p J AIJ T
ad T g4 Q,
abTA™ 98 o
0 @) Y Q;
aA " e A,
£ —PUI o (pc)J
abTA ! e) L OA
ad _(qb)l ad (pc)J
aB"A™!C) 3 A,
e . —(* )
ad 9
T M .I T M r
" = B PUX 1fnl<m " = QUJC LfnJ<n
T . r T . '
QBUI 1fn12m UJPC LfnJZn

(qy); and (pc)J are defined as vectors consisting of all ith elements of q, i € [, and all

jthelementsof p_,j € J, respectively.
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TABLE VII

LARGE CHANGE FORMULAS FOR THE INVERSE OF A MATRIX

Formulation of Formulas for A(A~1)
AAasVDWT
vDWT - A-lvDa+ WTA-lvD)-lwTAa-!
(general form) - A'va+DWTA-lv)-lpwTA-!
t - A-lviD-l+wla-tv)-lwTa-!
t — A-'lvDD+DWTA-'lvD)-!DWTA-!
T -1 Ta-1 -1 Tx-1
U,AA,; U, - ATlupaAa+ UTAT U A )t TA
(unit vectors - AT'ua+ A UTAT Ul aA UL TAC!
selecting proper
variable elements) tt — ATtuaAa, T+ uTa-tup-tuTact

tt — A~IUAA(AA+AA,U,TA-UAA, )" 1AA,,U,TA!

T
vwoAe A"lvaA_l

(rank 1 charge) Acp'l +wlia-ly

i where D is a nonsingular square matrix.

Tt where AA; is a nonsingular square matrix.
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TABLE VIII
FORMULAS FOR THE COMPUTATION OF LARGE CHANGES

WHEN A~!ISINVOLVED AND WHEN r,=r,

Identification Formula Definitionof Sor s
AATH - P, DS Q" H S=1
ABTA-Y -sTQ,T H"s=DTvq,
A(A~ e - P,Ds | Hys=W'p,
AbTAle) -sTQy"¢c | - HTs=DTVTq,

o ABTA-LO) (1) -sTQyTc H"s=DTvTq,
| 2 -BTP,DS H,S = WT P,
(3 -Qg'VDS H,S=Q,"C
4 -BTP,DSQy'C H S=1
® - Q'VDSQyC HS=1

where H) = (1 + Q" VD), H, = (1 + W' P, D)

t Table X can be used as a guide to select among (1) to (5) by the minimum FBS criterion.
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TABLE IX
FORMULAS FOR THE COMPUTATION OF LARGE CHANGES

WHEN A~!ISINVOLVED AND WHEN T, < r,

Identification Formula Definition of Sor s
A(A™YH -P,SD Q" H,S=1
ATA-Y -s"TD QT HTs=VTq,
AA~le) - Pys Hés:DWTpc

AbTA e -bTP;s H,s =DW'p_

i ABTA-IO) (1 -BTP,S H,S = DWT P,
| @ -8 DQy'C HTs=vTq,
3 -sTpwTp, H,"s=pP,/ B
@ -BTP,SDQ,’C H,S=1
6) -BTP,SDWTP, H,S=1

where H, = (1 + DQy"V), H,=(1+ DWTP)

T Table XI can be used as a guide to select among (1) to (5) by the minimum FBS criterion.
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TABLE X
MAJOR COMPUTATIONAL EFFORT FOR CALCULATING A(BT A-1 C)

BY FORMULASIN TABLE VI WHERE r; = r,

Category Corresponding The n x n System The rg x rg System
Case in Represented Represented
Table VIII By A By H; or Hy
No. of LU
Factorizations (1)-(5) 1 1
No. of FBS (1) m’ + r, m'’
(2) n’ +r, n’
3 m’ + r, n’
4) r, + 1y r,
(5) m’ +r, ry
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TABLE XI
MAJOR COMPUTATIONAL EFFORT FOR CALCULATING A(BT A1 ©)

BY FORMULAS IN TABLE IX WHERE r, <r,

Category Corresponding The n x n System Ther; x r; System
Case in Represented Represented
Table IX by A by Hy or Hy
No. of LU
Factorizations . D-® 1 1
No. of FBS ‘ (1) n' +r, n’
(2) . m' + Ty m'’
(3) ' n' +r, m’
(4) ry +r, r,

(5) n' +r, - r
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TABLE XII

OPERATIONAL COUNTS FOR A(A~1)

n,r,ro By Direct By Formula By Formula
Method (47 (64)
Variables Variables
Change for Change for
the First the Second
Time Time and On
10,1,1 1000 323 _ 113 - 330
10,3,2 1000 852 292 700
10,5,3 1000 1517 567 : 1110
10,4,4 1000 1712 752 1440
10,6,4 1000 2136 . 896 1520

10,6,5 1000 2625 1225 1900
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TABLE XIII

OPERATIONAL COUNTSFOR A(A~!le¢)

n,ri,rg By Direct By Formula
Method ‘ 47

Variables Variables

Change for Change for

the First the Second

Time Time and On

10,1,1 430 133 13
10,3,2 430 434 54
10,5,3 : 430 807 127
10,4,4 430 : 756 156
10,6,4 430 1096 216
10,6,5 430 1255 305
10,6,6 430 1438 418
10,7,6 430 1650 470
43,2 36 116 36

72,2 161 172 32
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MATRIX [Al . VECTOR (DI
1.0 5.6 5.0 1.0 5.6 2.0 1.0 1.0 7.0 2.0 35.0
2.6 3.0 3.0 7.0 0.0 4.0 3.0 6.0 8.0 3.0 32.0
3.0 0.0 2.0 4.0 2.0 6.0 4.0 4.0 9.0 7.0 16.0
6.6 1.0 2.0 5.0 2.0 8.0 3.0 7.0 3.0 5.0 51.0
8.0 1.0 2.0 2.0 4.0 4.0 6.0 8.0 4.0 8.0 42.0
4.0 1.0 6.0 7.0 3.0 5.0 7.0 3.0 5.0 3.0 19.0
7.0 0.6 6.0 5.0 9.0 4.0 8.0 9.0 2.0 9.0 34.0
2.0 0.0 4.0 2.0 2.0 5.0 3.0 5.0 4.0 8.0 71.0
3.0 2.0 0.0 1.0 5.0 3.0 4.0 2.0 3.0 1.0 36.0

4.0 2.0 4.0 4.0 6.9 2.0 9.0 6.0 1.6 7. 61.0

SOLUTIONS BEFORE LARGE CHANGE :

VECTOR [X]
-8.89217
39.80097
-3.00067

2.31014

48.42778
-12.11626
-3.6172
=-32.93004

16.99799

Fig. 1(a) The original linear system and its solutions. A is a 10x10 matrix containing
parameters of the system. b is the excitation vector. x is the solution vector.



Fig. 1(b)

2.0
1.6
6.6
¢.9
0.0
0.0
0.0
0.9
0.0
0.0

MATRIX
0.6
6.9
6.0
6.0
1.9
0.9
0.9
0.9

0.0

0.9

-.093684
-.30799
. 00454
~. 04643
.02608

-.48948

. 18919

. 27060

. 36321

-.27658

Matrices V, W, Py and vector RHS, where Py is the solution of A Py = V and

RHS = WTx.
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(vl
0.0
8.9
9.0
0.0
0.0
0.0
6.0
0.0
1.0
0.0

MATRIX (DPV]
. 19972
-.26526
. 09406
-.23600
-.09579
-.43199
. 22984
. 13754
32717
-.20670

VECTOR [REHSI
-3.00067
48.42778

-.00936
. 94838
-. 15865
<. 02949
. 12002
. 13912
.01487
. 99846
-.02233
=.09789

MATRIX (W]
8.0 9.0
9.0 0.9
1.0 8.0
8.0 9.0
0.0 9.6
0.0 1.9
6.0 6.0
9.0 6.0
9.9 9.0
9.0 6.0
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MATRIX [D]
. 2.00000 3.00000
4.00000 - 5.00000
2.00000 3.00000

MATRIX [H]
1.06802 . 90797
-2.44666 -2.23801

VECTOR [S1]
-2.66983
~-18.72004

SOLUTIONS AFTER LARGE CHANGE :

VECTOR (X3

8.15496
-3.82546
-2.66983
-23.34277
~6.40993
-18.72064
24.40133
27.88727
22. 14324
~27.53607

Fig. 1(¢) Results corresponding to a particular change of variable parameters represented
by D. H repesents (1 + WT A-1 V D) and s is the solution of the smaller system
Hs = WTx



Fig. 1(d)
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VARIABLES CHANGE FOR ANOTHER TIME CAUSING TIHE CIANGE OF (D).
BUT [V] AND [{W1l ARE THE SAME AS THOSE WITH THE PREVIOUS (D1.

MATRIX [ D]
6 .000006 7.00000
5.00090 4°0¢000
3.00000 ~ 4.00000

MATRIX [HI
1.02160 -.22657
-4.70646 -3.63383

VECTOR (81
-4.57788
=%.39775

SOLUTIONS AFTER ANOTHOER LARGE CHANGE @

VECTOR [X]
-2.26815

3.567983
-4.57788
-12.479201
-3.16642
-7.39775
15.58395
25.41279
12.05334

~20.00992

Results corresponding to another change of variable parameters. H and s are
similarly defined to those in Fig. 1(c).
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0.2

0.1

Computation Time (seconds)
° -
o
]
W

Number of Simulations

Fig. 2 Computational time for evaluating large change effects of the linear system of
the example. (The CDC 170/815 System is used. Compilation time is not
included.)
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